
Reliable Resource Searching in P2P Networks�

Michael T. Goodrich1, Jonathan Z. Sun2,
Roberto Tamassia3, and Nikos Triandopoulos3,4

1 Dept. of Computer Science, U. California, Irvine, USA
2 School of Computing, Univ. of Southern Mississippi, USA

3 Dept. of Computer Science, Brown University, USA
4 Dept. of Computer Science, Boston University, USA

Abstract. We study the problem of securely searching for resources in
p2p networks where a constant fraction of the peers may act maliciously.
We present two novel hashing-based schemes that can be employed to
reliably support resource location and content retrieval queries, limiting
the ability of adversarial nodes to carry out attacks. Our schemes achieve
scalability and load balancing and have small authentication overhead.
In particular, for a network with n peers, resources are securely located
with O(log2 n) messages and content from a collection of m data items
is securely retrieved with O(log n log m) messages.

Keywords: peer-to-peer, overlay networks, distributed hash tables, one-
way hash functions, digital signatures.

1 Introduction

An overlay peer-to-peer (p2p) network is a distributed structure imposed on a
set of machines, called nodes or peers, for sharing data and computing resources.
A p2p network can achieve load balancing and scalability by allowing peers to
efficiently join and leave the network and users to efficiently store and retrieve
data content. Data storage is typically supported by realizing a distributed hash
table (DHT) that exports a basic put/get API. A data item can be inserted into
the DHT with a put operation under a key and can be retrieved from the DHT
with a get operation given its key. At a lower level, any resource is mapped to
some peer that is responsible for this resource and can be efficiently located.

In this paper, we study the problem of verifying the resource searching func-
tionality in a p2p network in the presence of faulty or malicious nodes. While
faulty nodes are trouble enough, adversarial p2p nodes—a considerable threat
since most p2p systems do not impose any restrictions on membership in the
network—can be especially troublesome. For example, a coalition of adversarial
nodes may wish to degrade the network performance by falsifying responses to
redirection queries during resource location. Alternatively, nodes responsible for
� Work supported in part by NSF grants 0713046, 0713403, and 0724806, the RISCS

Center at Boston University and the Center for Geometric Computing at Brown
University.

Y. Chen et al. (Eds.): SecureComm 2009, LNICST 19, pp. 437–447, 2009.
c© Institute for Computer Science, Social-Informatics and Telecommunications Engineering 2009

438 M.T. Goodrich et al.

some stored data may respond with content that appears to be a file of interest,
but is in fact of degraded quality, virus infected, or outdated. Even more insidi-
ously, adversaries may collude to systematically misdirect queries to a “parallel”
p2p network that has invalid content. Finally, a group of nodes may mimic nor-
mal behavior and only aim at taking control over a small set of target items, by
maliciously subverting resource locations or falsifying content retrievals.

To defend against such attacks, we are interested in designing techniques that
protect the integrity of resource location at the network level and of content re-
trieval at the application level. That is, we wish to authenticate the p2p routing
paths (followed by the distributed location process) as well as the p2p content
(returned through a get operation over a DHT). With respect to routing protec-
tion, we aim at defending against shunting attacks, where adversaries misdirect
queries and updates to malicious nodes. With respect to content protection, we
would like to detect content forgery, where invalid data is returned, and replay
attacks, where out-of-date content is retrieved.

We consider an adversary that inserts corrupted machines into the system
and controls their behavior, stored content and routing information. However,
we assume that at all times the adversary controls a constant fraction of the
participating peers—1

4 in our case, which is reasonable for any large-scale p2p
network. Thus, we do not consider denial-of-service attacks. Our goal is to design
crypto-enhanced schemes that employ lightweight cryptographic primitives, such
as collision-resistant hashing. When malicious behavior is sporadic or selective,
we additionally wish that if no attack is in place, our verification mechanisms
asymptotically incur no extra overhead. To the best of our knowledge no existing
work has this mode-adaptability property for crypto-based secure routing. Ap-
plying standard techniques for content authentication results in solutions that
do not achieve either scalability or load balancing. For instance, storing signed
items results in a linear-size overhead as all items must be resigned to prevent re-
ply attacks. Also, hash-tree based schemes introduce “hot-spots” in the system,
as nodes storing hash values close to the root are more heavily accessed.

We assume the existence of a PKI where the public keys of the users (not
necessarily peers of the p2p network) publishing data into the DHT are known
to all parties. In addition, for an owner of a data collection of size m we assume
the availability of a public and reliable storage of size O(log m) (e.g., a web
page managed by the owner). Thus far, existing works have addressed the two
problems in isolation, solely providing either route or content verification.

Related work. Early work on secure routing [3] in p2p networks tolerates
certain attacks by assigning verifiable identifiers to network nodes. Numerous
DHTs (e.g., [14,17]) have been shown to tolerate random failures. Other schemes
(e.g., [10,16]) have been designed to deter misbehavior in adversarial models,
and in particular some schemes (e.g., [2,5,6]) use quorum-based approaches,
where regular network nodes correspond to large random blocks of machines
and faulty behavior is prevented through majority-voting. Schemes using redun-
dancy in searching (e.g., [9,11]) have also been proposed to tolerate random
Byzantine behaviors. Most p2p storage systems (e.g., [4,15]) support content

Reliable Resource Searching in P2P Networks 439

authentication using “sign-all” techniques where data items are each individu-
ally signed. Signature amortization (i.e., signing a single digest) is used in some
systems by storing the so-called self-certified data [7], but only for large individ-
ual items in static data sets. A distributed Merkle tree (DMT) is presented in [18];
realizing a p2p extension of Merkle’s hash tree, this scheme lacks load-balancing.

Our contributions. We present two new authentication schemes for efficiently
and securely verifying resource location and content retrieval operations, respec-
tively. Our schemes are based on corresponding novel hashing schemes, which
constitute extensions of hash trees to general directed acyclic graphs (DAGs).

Our first authentication scheme, called skip-DHT, is based on skip graphs [1].
Its hashing scheme embeds a set of DAGs in a skip graph so that source-to-
sink paths in each DAG correspond to search paths in the skip graph. Our
construction efficiently authenticates all possible search paths that can be used
for resource location. By combining this scheme with quorum-based techniques
(e.g., [2]), an n-node skip-DHT supports resource locations that are cryptograph-
ically verifiable with O(log n) messages in O(log n) time, has near-optimal query
complexity in the absence of faulty nodes and is attack-resistant in the presence
of a constant fraction ≤ 1

4 of adversarial nodes using O(log2 n) messages.
Our second authentication scheme is a middleware component that can oper-

ate on top of any DHT to efficiently verify put/get operations on a data set of size
m owned by a given data source. We define a hashing scheme of high expansion
over the data items and we store this structure in the DHT so that retrieved con-
tent can be associated with many equivalent verification hash paths, linking each
item to one of O(log m) publicly available digests that are signed by the data
source. As paths can be retrieved with uniform workload, we obtain a distributed
implementation of Merkle’s hash tree where load balancing is preserved. Using
certain algorithmic techniques, item insertions and delayed item deletions can
be supported with O(log n log m) amortized time and communication overheads.

Combined together, our two schemes yield a new distributed hash table with
certain unique features: (i) it is the first DHT to provide cryptographic security
guarantees for both resource location and content retrieval; (ii) it has near opti-
mal searching performance in the absence of adversarial nodes; (iii) it achieves

Table 1. Qualitative comparison of our authentication schemes with other approaches

path verification secure routing quorum-based redundancy scheme 1

attack-resistant • • • •
crypto-enhanced – – – •
mode-adaptable • – – •

content verification self-certified sign-all DMT scheme 2

dynamic – • • •
replay-safe N/A – • •

load-balanced – • – •

440 M.T. Goodrich et al.

both scalability and load balancing. Table 1 compares our work with previous
approaches for path and content verification.

2 Resource Location Authentication

In this section, we describe a new attack-resistant DHT that is based on the
structure induced by skip graphs [1]. To authenticate the search paths in the
DHT, we design a hashing scheme that is defined over its graph structure.

A skip graph on a set K of keys is a distributed structure that supports
operation suc(k), returning the smallest key k′ ∈ K such that k′ ≥ k. Although
designed for the purpose of supporting order-based queries, skip graphs provide
a natural method for support put/get operations. The structure of a skip graph
can be viewed as a distributed extension of skip lists [13]. Both skip lists and skip
graphs consist of a set of increasingly sparse, sorted, doubly-linked lists ordered
by levels starting at level 0, where membership of a particular key k ∈ K in a
list at level i is determined by the first i bits of a potentially infinite sequence of
random bits associated with k, referred to as the membership vector of k, and
denoted by m(k). We denote the first i bits of m(k) by m(k)|i. In the case of
skip lists, level i has only one list, for each i, which contains all keys k such that
m(k)|i = 1i, i.e., all keys whose first i coin flips all came up heads. As this leads
to a bottleneck at the single node present in the uppermost list, skip graphs have
2i lists at level i, which we will index from 0 to 2i − 1. Key k belongs to the jth
list of level i if and only if m(k)|i corresponds to the binary representation of j.
Hence, each key is present in one list of every level until it eventually becomes
the only member of a singleton list. The set of all lists to which a particular key k
belongs meets the definition of a skip list, with membership in level i determined
by comparison to m(k)|i rather than to 1i. We refer to such a skip list as the
skip list defined by m(k) and denote it by SL(m(k)) or SL(k).

To search for the successor of k′ we begin from the sparsest list at, say, level
x and traverse the list by pointers to the right as far as possible without moving
to a node whose key is greater than the key sought; we proceed downward to
the list at level x − 1 in the same way, until level 0 is reached, where we move
rightward to get the result. In a distributed setting, we map each graph node at
level i in to a network node, so that each node stores only four links: pointers
L and R for the network addresses of the machines assigned to the nodes of the
list immediately before and after the given node, and pointers U and D for the
machines responsible for the same key at levels i+1 and i− 1. To search for the
successor of key k′, a machine mapped to key k performs a search in the skip
list SL(k) defined by m(k). If k < k′, a rightward search is performed beginning
at the top-most list of SL(k), which we refer to as the root of k and denote by
r(k). This root list must contain key k and hence can be reached by following
the U pointers of the lower level nodes of k. Based on the analysis in [13] it can
be shown that queries in a skip graph take O(log n) time and messages.

Reliable Resource Searching in P2P Networks 441

Search-path hashing scheme. We present a hashing scheme consisting of a
collection of DAGs embedded in the skip graph so that the authenticity of any
root-to-leaf search path may be verified by the querier. Overall, our hashing
scheme is an extension of the one used in [8]. Let h be a cryptographic collision-
resistant hash function, and let h(a, b) � h(h(a)‖h(b)). Let v be a level-i node in
a skip list SL(k), with neighboring nodes w = R(v) and u = D(v), and denote
by d(v) the digest of v. Node w is called a plateau node if its key does not appear
at level i+1 in SL(k) or a tower node otherwise. Then skip list SL(k) is hashed
as follows: If v is at level 0, then d(v) = h(ID(v), ID(w)) if w is a tower node
or d(v) = h(ID(v), d(w)) if w is a plateau node; if v is not at level 0, then
d(v) = d(u) if w is a tower node or d(v) = h(d(u), d(w)) if w is a plateau node.
All these digests can be computed efficiently.

Lemma 1. If L is a distributed skip list with n nodes with a longest search path
of size H and where each node maps to a machine, then the digests of L can
be computed by respective nodes in H rounds using at most three messages per
node (sent plus received) and n − 1 messages in total.

Given the true digest of a root node digest in the above hashing scheme, a
querier is able to verify the value returned by the node at the end of the search
path, since every search in a skip graph is also a search in a skip list. Thus,
if the digests of every skip list in the skip graph were computed and stored at
those nodes, the searches could be verified given the true value of the root node’s
digest. On the surface, this seems an unsatisfactory solution, as nodes are present
in as many as n

log n different skip lists, and hence would seem to need to store
an equally large number of digests. However, consider a level-i list L in a skip
graph corresponding to membership prefix s. Suppose the above hashing scheme
is applied to two skip lists, which have membership prefix sb, b ∈ 0, 1. Then the
digests of all nodes in L are identical between the two skip lists. Therefore, it
turns out that each node takes on only two distinct digest values, one for those
skip lists in which the node is a plateau and one for those in which it is not.

Lemma 2. A skip graph can be hashed to authenticate the search path of each
membership query, with each node maintaining two digests. The two digest values
at each node can be computed using O(1) messages per node and O(n) messages
for all nodes. With high probability, this process takes O(log n) rounds.

Quorum-based extension. To make this path authentication scheme resilient
to shunting attacks, we need to satisfy the following requirements: 1) the digests
are computed correctly at each node and passed correctly to neighboring nodes,
and 2) the querier machine knows the true value of the root node’s digest. We
observe that the only machines that begin a query from a particular root node
v are those machines assigned to v or some node directly below v. As such,
the hashing algorithm should pass each root digest down to the nodes directly
beneath it. We therefore need a message-passing scheme that is resistant to
adversarial tampering in order to satisfy these both requirements.

442 M.T. Goodrich et al.

We consider the quorum-based extension (e.g., as in [2]) of our skip-graph,
where each skip-graph node corresponds to a supernode consisting of Θ(log n)
machines. Members of a supernode are completely connected, forming a clique,
edges between supernodes correspond to complete sets of edges between their
members, and data mapped to a supernode is stored by all of its members. Doing
so increases the degree of each machine and the number of stored keys by a factor
of O(log n). For a constant fraction of adversarial nodes, if it is guaranteed
that each supernode contains a random subset of machines, then, with high
probability, every supernode will consist of a majority of honest machines.

In this redundant DHT, reliable search and update operations can be per-
formed using a voting scheme in which each step in the traversal of the skip
graph is verified by requesting the correct local answer from every machine in
the current supernode. Also, when a search reaches the supernode responsible
for the key sought, all of its members are polled to determine what data, if any,
matches the search key. Our scheme employs this polling-based search when-
ever the path-verification protocol indicates an error in the resource location
execution. Furthermore, we use voting-based computations to ensure that the
digests are correctly reported to neighboring supernodes and the root digests are
correctly reported to the supernodes beneath the root. This increases the asymp-
totic message costs by a factor of log2 n, as each node-to-node communication
because hash updates now uses O(log2 n) messages.

Updates. As described, our authentication scheme supports secure resource
locations in a static collection of keys, since the digests of all root nodes need to
change when a key is added or removed from the skip graph. We regain efficient
support for updates as follows. We assume that the fraction of bad nodes is less
than 1

4 and use the construction of [2] to assign node identifiers from the interval
[0, 1) to the machines in such a way that w.h.p. every interval of length c log n

n
contains a 3

4 -majority-good supernode of Θ(log n) machines. We construct a skip
graph whose keys consist of the node identifiers of the smallest member of each
supernode. Data items are stored to supernodes through a pseudo-random hash
function mapping arbitrary strings to [0, 1) and then to the closest supernode
identifier. Thus, exact searches for data items are supported by searching for the
hash of the desired key. We refer to this structure as a skip-DHT.

We use the skip-graph hashing scheme to certify query results in the skip-
DHT in a way that avoids recomputing the digests after every key or machine
update. We use the machine identifiers in a supernode as the data that will be
hashed as the digest of leaf nodes. Therefore, data updates no longer must yield
an update in the root digests, since supernode membership is verified instead—
we do not need to know the current list of machines in a supernode to have
confidence in the query results. Instead, we rely upon knowing that the majority
of the remaining original machines can be trusted. This is true as long as less
than 1

2 of the original nodes have left the network.
Overall, when a resource location query is executed, a non-redundant search is

carried out given the query resource key—that is, a pointer to a single, arbitrary
member of the next node in the search path is requested from a (single, arbitrary)

Reliable Resource Searching in P2P Networks 443

member of the current node. When a destination machine is reached that claims
to be a member of the supernode nearest the search key, it must provide a list of
the identifiers of the original members of the supernode to which it belongs. The
querier then computes the hash of this list and checks it against the verification
path. This verifies the successor supernode in the skip list, thus the correct
resource location. Each of these steps requires O(log n) messages.

Theorem 1. An n-node skip-DHT satisfies the following properties: (1) In the
absence of faulty nodes, verifiable exact-match queries are executed with O(log n)
messages in O(log n) time; (2) In the presence of a constant fraction of adversar-
ial nodes, queries are answered and securely verified with O(log2 n) messages in
O(log n) time; (3) The hashing scheme adds only a constant number of messages
to amortized bandwidth usage for adding and removing machines.

3 Content Retrieval Authentication

In this section, we study the problem of authenticating content at the application
level through the put/get core functionality of any DHT. Our goal is to design
a distributed scheme that verifies that data items claimed to have been added
by a data source were really put in the DHT by this entity and have not been
modified by malicious nodes. We wish this scheme to achieve load balancing,
that is, to evenly distribute the workload related to authentication across the
network nodes. We consider a standard query model where an underlying DHT
stores key-value pairs of the type (k, x), each added through operation put(k, x),
where keys are unique identifiers and values are associated with keys. We assume
that the DHT supports operation get(k), which returns the value associated with
key k, with O(log n) expected time and message costs.

For simplicity, we assume that a single data source is storing items in the
system; for more data sources, we make use multiple invocations of our scheme.
We assume that the public key of each data source storing data in the DHT is
known to any entity querying the DHT. Also, we assume the availability of some
public reliable storage that is associated to a given data source and that can be
easily accessed and updated independently of the underlying DHT. The size of
this information is only logarithmic in the number of data items published by
the source. In practice, this assumption is easily implementable through a web
service that posts to a web-site a small amount of data regarding a data source.

Load-balanced hashing scheme. Our data structure achieves signature amor-
tization by applying a hashing scheme over the data items stored in the DHT.
The main idea in our construction is to use a hashing scheme G of high expan-
sion rate, namely with a structure that resembles the FFT computation graph
or a butterfly network, such that for any data item, there exist many equivalent
verification paths. We distribute DAG G to the network nodes of the underly-
ing DHT by appropriately indexing the digests and storing them as special data
items. We preserve the structure of the hashing scheme G in the DHT as follows:
the network node storing the digest of node v in G also stores the keys under

444 M.T. Goodrich et al.

which the digests of the immediate successors and predecessors of v in G are
stored in the DHT. We then randomize the generation of the verification paths
to achieve a uniform workload over the visited network nodes.

We describe our hashing scheme G for m data items and its embedding into
an n-node DHT. For simplicity and without loss of generality, we assume that
m = 2k. The nodes of G are partitioned into k + 1 levels, each having m nodes.
The nodes at level 0 are source DAG nodes, each associated with a data item.
Each of the nodes at one of the remaining levels has two predecessors nodes
at the previous level. The edges in G are defined so that the nodes at level k
are the roots of m perfect binary trees over the data set. More formally, let us
number the nodes on each level and denote with vi,j the j-th node of G on level
i, i = 0, . . . , k, j = 0, . . . , m − 1. For i > 0, node vi,j has two incoming edges
from nodes vi−1,j and vi−1,j+δ(i,j), where δ(i, j) = (−1)�j/2i−1�2i−1. Let h be
a cryptographic collision-resistant hash function. For i = 0, we set d(vi,j) =
h(k||x), where (k, x) is the data item associated with vi,j . For i > 0, we set
d(vi,j) = h(d(vi−1,j) || d(vi−1,j+δ(i,j))). By symmetry, the nodes of G at level
i store 2k−i distinct digests. The data source signs the single digest stored at
nodes of level k and makes it available as public information. Then, each DAG
node vi,j is indexed by a unique identifier idi,j , where in particular node v0,j

that is associated with data item (k, x) is indexed by k, and is inserted in the
DHT as a special data item, using idi,j as the key and the digest and identifiers
of its predecessors and successors in G (O(1) information) as the value.

Query and verification. We now describe how get operations are handled.
We begin by performing a query according to the underlying DHT structure
(e.g., as discussed in the previous section). Given that data item (k, x) stored
at network node W is located by the DHT, node W initiates a randomized
process for generating a verification path for (k, x). Namely, W flips a coin to
determine which of its two parents at level 1 (next node in the path) to contact
next (through a resource location operation, first). In general, a network node
V at level j randomly chooses the next network node (to be contacted while
forming the verification path) independently and with probability 1

2 . Thus, any
query results in a verification path of length O(log m), using O(log m) location
operations, with O(log m log n) computation and communication costs. Through
the randomized search process, every verification path for a fixed data item is
actually an independent and identically distributed random variable and no hot-
spots are created while accessing the authentication structure. The verification
path is returned by the DHT and given this, one can authenticate the answer
of operation get by processing the digests contained in the path, verifying the
publicly available signed digest and checking their consistency. The total storage
required is O(m log m); that is, assuming perfect mapping functions from keys
to network nodes (usually through a cryptographic hash function), the storage
is logarithmic in n per network node, when m = O(n)—i.e., still optimal, since
most DHTs use routing tables of logarithmic size. Using a caching technique as
in [18], we can further improve the creation of the verification paths.

Reliable Resource Searching in P2P Networks 445

Updates. To support updates, we modify the scheme described above using a
dynamization technique due to Overmars [12], which allows to transform a static
data structure into a corresponding dynamic structure. The idea is to partition
a data set of size m into sequence of O(log m) blocks, where the size of each
block is twice the size of the previous block, and to completely rebuilt blocks
after updates, as necessary. We apply this technique to support insertions of data
items with new keys. Let D be a data set of size m and let (bk, bk−1, . . . , b1, b0)2
be number m written in binary, with bk = 1. Note that items in D are not
assumed to be sorted. We partition D into �log m� + 1 blocks B0, B1, . . . , Bk,
each a subset of D, according to the weights of the bits of m, i.e., |Bi| = bi · 2i.
Let then G(i), 0 ≤ i ≤ k, denote the hashing DAG described in previous section
that is built for the items of block Bi. DAG G(i) has bi · 2i · i nodes. DAGs
G(0), G(1), . . . , G(k) are used separately as authentication structures: that is,
for i = 0, . . . , k, if bi = 1, the source signs the top-level digest hi of DAG G(i)
and each G(i) is distributed over the network nodes as before. For any queried
data item in block Bi, the corresponding verification path in G(i) is retrieved
using O(i) location operations. Thus, O(log m) signed time-stamped digests (one
for each block) are made available as public information.

We perform insertions of data items through operations put as follows. Let i be
the smallest i such that bi = 0 or i = k+1 if no such i exists. To insert an item x
into D, we merge DAGs G(0), G(1), . . . , G(i−1) to create DAG G(i) for the new
block Bi = B0∪. . .∪Bi−1∪x. Note that |Bi| = 1+

∑i−1
j=0 2j = 2i. The insertion of

a data item into a set of size m stored into a DHT of size n takes O(log m log n)
expected amortized time. Accordingly, we update the public information: the
data source creates new fresh time-stamps and re-signs the publicly available
digests. This occurs for all blocks after every update of a block, independently
of whether or not the corresponding block structure has been altered in the
most recent update. Thus, at any point in time, we maintain O(log m) fresh
signed digests as public information. At asymptotically no additional cost and
using similar ideas with the verification of queries, the data source can verify
the correctness of an operation put performed by the DHT: any change in the
hashing scheme is checked for consistency with the O(log m) signed digests.

We can also support delayed deletions, defined in our context as item removals
that do not actually occur on-line, but instead occur at some future time and dur-
ing the insertion of new items. Asymptotically, these deletions incur no additional
communication or computational cost. In particular, we schedule the deletion of
an item in block Bi during the construction phase of a new DAG G(j), j > i,
where j depends on the exact state of the authentication structure. This deletion
procedure requires minor modifications to the above insertion algorithm. Replay
attacks are eliminated by having the data source S performing controlled delayed
deletions of items before they are replaced by new items in the system. Moreover,
using delayed deletions, our structure supports data item expiration and content
revocation: we remove expired or revoked items during the construction of some
particular new DAG G(j). In this case, our structure has the following important
self-correction property that limits the window of opportunity for replay attacks:

446 M.T. Goodrich et al.

any expired or revoked item is automatically removed from the structure the first
time that the corresponding block containing the item is restructured (rebuilt).
Thus, the system supports item expiration/revocation in the sense that no old
item can stay forever in the system; in particular, no item can be more than m/2
steps old, where m is the current number of items, and depending in the exact ap-
plication, items can be scheduled to leave the storage system such that no replay-
attacks can be launched by the DHT.

Theorem 2. Given an n-node DHT where resource location has O(log n) ex-
pected time and message cost, there exists a distributed authentication scheme
for verifying content from an m-item data set such that: (1) The scheme uses
O(log m) public reliable storage and O(m log m) distributed storage; (2) Retrieved
content is verified in O(log m) time with one signature and proofs of O(log m)
size computed with O(log n log m) expected time and message cost and with uni-
form workload over the DHT nodes; (3) Data-item insertions have O(log n log m)
expected amortized time and message cost; (4) The scheme is resilient to content
forgery and replay attacks and supports delayed data-item deletions.

References

1. Aspnes, J., Shah, G.: Skip graphs. In: SODA, pp. 384–393. ACM, New York (2003)
2. Awerbuch, B., Scheideler, C.: Towards a scalable and robust DHT. In: SPAA,

pp. 318–327. ACM, New York (2006)
3. Castro, M., Druschel, P., Ganesh, A., Rowstron, A., Wallach, D.S.: Secure routing

for structured P2P overlay networks. In: OSDI, pp. 299–314. ACM, New York
(2002)

4. Dabek, F., Kaashoek, M.F., Karger, D., Morris, R., Stoica, I.: Wide-area cooper-
ative storage with CFS. In: SOSP, pp. 202–215. ACM, New York (2001)

5. Fiat, A., Saia, J.: Censorship resistant peer-to-peer content addressable networks.
In: SODA, pp. 94–103. ACM, New York (2002)

6. Fiat, A., Saia, J., Young, M.: Making Chord robust to Byzantine attacks. In:
Brodal, G.S., Leonardi, S. (eds.) ESA 2005. LNCS, vol. 3669, pp. 803–814. Springer,
Heidelberg (2005)

7. Fu, K., Kaashoek, M.F., Mazieres, D.: Fast and secure distributed read-only file
system. Transactions on Computer Systems 20(1), 1–24 (2002)

8. Goodrich, M.T., Tamassia, R., Schwerin, A.: Implementation of an authenticated
dictionary with skip lists and commutative hashing. In: DISCEX 2002, p. 1068.
IEEE, Los Alamitos (2001)

9. Kapadia, A., Triandopoulos, N.: Halo: High assurance locate for distributed hash
tables. In: NDSS, pp. 61–79 (2008); Internet Society

10. Kothapalli, K., Scheideler, C.: Supervised peer-to-peer systems. In: I-SPAN,
pp. 188–193. IEEE, Los Alamitos (2005)

11. Nambiar, A., Wright, M.: Salsa: a structured approach to large-scale anonymity.
In: CCS, pp. 17–26. ACM, New York (2006)

12. Overmars, M.H.: The Design of Dynamic Data Structures, vol. 156. Springer,
Heidelberg (1983)

13. Pugh, W.: Skip lists: a probabilistic alternative to balanced trees. Communications
of the ACM 33(6), 668–676 (1990)

Reliable Resource Searching in P2P Networks 447

14. Ratnasamy, S., Francis, P., Handley, M., Karp, R., Shenker, S.: A scalable content-
addressable network. In: SIGCOMM, pp. 161–172. ACM, New York (2001)

15. Rhea, S., Godfrey, B., Karp, B., Kubiatowicz, J., Ratnasamy, S., Shenker, S., Sto-
ica, I., Yu, H.: OpenDHT: A public DHT service and its uses. In: SIGCOMM,
pp. 73–84. ACM, New York (2005)

16. Saia, J., Fiat, A., Gribble, S.D., Karlin, A.R., Saroiu, S.: Dynamically fault-tolerant
content addressable networks. In: IPTPS, pp. 270–279. Springer, Heidelberg (2002)

17. Stoica, I., Morris, R., Karger, D., Kaashoek, F., Balakrishnan, H.: Chord: A scal-
able P2P lookup service for Internet applications. In: SIGCOMM, pp. 149–160
(2001)

18. Tamassia, R., Triandopoulos, N.: Efficient content authentication in peer-to-peer
networks. In: Katz, J., Yung, M. (eds.) ACNS 2007. LNCS, vol. 4521, pp. 354–372.
Springer, Heidelberg (2007)

	Reliable Resource Searching in P2P Networks
	Introduction
	Resource Location Authentication
	Content Retrieval Authentication
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

