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Abstract

In greedy geometric routing, messages are passed in a network embedded in a metric space
according to the greedy strategy of always forwarding messages to nodes that are closer to the
destination. We show that greedy geometric routing schemes exist for the Euclidean metric in
R2, for 3-connected planar graphs, with coordinates that can be represented succinctly, that is,
with O(log n) bits, where n is the number of vertices in the graph. Moreover, our embedding
strategy introduces a coordinate system for R2 that supports distance comparisons using our
succinct coordinates. Thus, our scheme can be used to significantly reduce bandwidth, space,
and header size over other recently discovered greedy geometric routing implementations for
R2.

1 Introduction

In an intriguing confluence of computational geometry and networking, geometric routing has shown
how simple geometric rules can replace cumbersome routing tables to facilitate effective message
passing in a network (e.g., see [5, 13, 24, 25, 29, 30, 31]). Geometric routing algorithms perform
message passing using geometric information stored at the nodes and edges of a network. For
example, geometric information could come from the latitude and longitude GPS coordinates of
the nodes in a wireless sensor network or this information could come from an embedded doubly-
connected edges list representation of a planar subgraph of such a network. Indeed, in one of
the early works on the subject, Bose et al. [5] show how to do geometric routing in an embedded
planar subgraph of a wireless sensor network by using a geometric subdivision traversal algorithm
of Kranakis et al. [28], which was first introduced in the computational geometry literature.

1.1 Greedy Geometric Routing

Perhaps the simplest routing rule is the greedy one:

• If a node v receives a message M intended for a destination w 6= v, then v should forward M
to a neighbor that is closer to w than v is.

∗This work was supported by NSF grants 0724806, 0713046, 0830403, and ONR grant N00014-08-1-1015.
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This rule can be applied in any metric space, of course, but simple and natural metric spaces are
preferred over cumbersome or artificial ones.

The greedy routing rule traces its roots back to the original “degrees-of-separation” small-world
experiment of Milgram [34], where he asked randomly chosen individuals to forward 296 letters,
initiating in Omaha, Nebraska and Wichita, Kansas, all intended for a lawyer in Boston, using the
rule that requires each letter to be forwarded to an acquaintance that is closer to the destination.

In the modern context, researchers are interested in solutions that use a paradigm introduced by
Rao et al. [39] of doing greedy geometric routing in geometric graphs that assigns virtual coordinates
in a metric space to each node in the network, rather than relying on physical coordinates. For
example, GPS coordinates may be unavailable for some sensors or the physical coordinates of
network nodes may be known only to a limited degree of certainty. Thus, we are interested in
greedy routing schemes that assign network nodes to virtual coordinates in a natural metric space.

Interestingly, the feasibility of the greedy routing rule depends heavily on the geometry of the
underlying metric space used to define the notion of “closer to the destination.” For example, it is
easy to see that star graphs (consisting of a central vertex adjacent to every node in an arbitrarily
large independent set) cannot support greedy geometric routing in any fixed-dimensional Euclidean
space. By a simple packing argument, there has to be two members of the large independent
set, in such a graph, that will be closer to each other than the central vertex. Likewise, even
for bi-connected or tri-connected planar graphs embedded in R2, a network may have “holes”
where greedy routing algorithms could get “stuck” in a local metric minimum (e.g., see Funke [16]
for related work on hole detection in sensor networks). Alternatively, several researchers (e.g.,
see [13, 25, 35]) have shown that greedy geometric routing is possible, for any connected graph, in
fixed-dimensional hyperbolic spaces. Our interest in this paper, however, is on greedy geometric
routing in R2 under the Euclidean metric, since this space more closely matches the geometry of
wireless sensor networks.

Interest in greedy geometric routing in fixed-dimensional Euclidean spaces has expanded greatly
since the work by Papadimitriou and Ratajczak [37], who showed that any 3-connected planar graph
can be embedded in R3 so as to support greedy geometric routing. Indeed, their conjecture that
such embeddings are possible in R2 spawned a host of additional papers (e.g., see [1, 10, 11, 13, 33,
35]). Leighton and Moitra [32] settled this conjecture by giving an algorithm to produce a greedy
embedding of any 3-connected planar graph in R2, and a similar result was independently found
by Angelini et al. [1]. Greedy embeddings in R2 were previously known only for graphs containing
power diagrams [10], graphs containing Delaunay triangulations [33], and existentially (but not
algorithmically) for triangulations [11].

1.2 Succinct Geometric Routing

In spite of their theoretical elegance, these results settling the Papadimitriou-Ratajczak conjec-
ture have an unfortunate drawback, in that the virtual coordinates of nodes in these solutions
require Ω(n log n) bits each in the worst case. These space inefficiencies reduce the applicability
of these results for greedy geometric routing, since one could alternatively keep routing tables of
size O(n log n) bits at each network node to support message passing. Indeed, such routing tables
would allow for network nodes to be identified using labels of only O(log n) bits each, which would
significantly cut down on the space, bandwidth, and packet header size needed to communicate the
destination for each packet being routed. Thus, for a solution to be effectively solving the routing
problem using a greedy geometric routing scheme, we desire that it be succinct, that is, it should

2



use O(log n) bits per virtual coordinate. Succinct greedy geometric routing schemes are known
for fixed-dimensional hyperbolic spaces [13, 35], but we are unaware of any prior work on succinct
greedy geometric routing in fixed-dimensional Euclidean spaces. We are therefore interested in this
paper in a method for succinct greedy geometric routing in R2, with distance comparisons being
consistent with the standard Euclidean L2 metric.

1.3 Additional Related Prior Work

In addition to the greedy geometric routing schemes referenced above, there is a hybrid scheme, for
example, as outlined by Karp and Kung [24], which combines a greedy routing strategy with face
routing [5]. Similar hybrid schemes were subsequently studied by several other researchers (e.g.,
see [15, 29, 30, 31]). An alternative hybrid augmented greedy scheme is introduced by Carlsson
and Eager [9]. In addition, Gao et al. [17] show how to maintain a geometric spanner in a mobile
network so as to support hybrid routing schemes. Although such schemes are local, in that routing
decisions can be made at a node v simply using information about v’s neighbors, we are interested
in this paper in routing methods that are purely greedy.

As mentioned above, Rao et al. [39] introduce the idea of doing greedy geometric routing
using virtual coordinates, although they make no theoretical guarantees, and Papadimitriou and
Ratajczak [37] are the first to prove such a method exists in R3, albeit with a non-standard
metric. In addition, we also mentioned above how Leighton and Moitra [32] and Angelini et al. [1]
have settled the Papadimitriou-Ratajczak conjecture, albeit with solutions that are not succinct.
Moreover, the only known succinct greedy geometric routing schemes are for fixed-dimensional
hyperbolic spaces [13, 35]. Thus, there does not appear to be any prior work on succinct greedy
geometric routing in R2 using the standard Euclidean L2 metric.

The problem of constructing succinct greedy geometric routing schemes in R2 is related to the
general area of compressing geometric and topological data for networking purposes. Examples of
such work includes the compression schemes of Suri et al. [44] for two-dimensional routing tables,
and the coordinate and mesh compression work of Isenburg et al. [23]. We should stress, therefore,
that we are not primarily interested in this paper in compression schemes for greedy geometric
routing; we are interested primarily in coordinate systems for greedy routing, since they have a
better applicability in distributed settings. In particular, we are not interested in a compression
scheme where the computation of the coordinates in R2 of a network node v depends on anything
other than a succinct label for v. That is, we want a succinct coordinate system, not simply
an efficient compression scheme that supports greedy routing. Indeed, we show that succinct
compression schemes are trivial, given known Euclidean greedy geometric routing methods [1, 32].

Another area of related work is on methods for routing in geometric graphs, such as road
networks (e.g., see [2, 19, 22, 26, 40, 41, 45]). For example, Sedgewick and Vitter [41] and Goldberg
and Harrelson [19] study methods based on applying AI search algorithms, and Bast et al. [2]
explore routing methods based on the use of transit nodes. In this related work, the coordinates of
the network nodes are fixed geometric points, whereas, in the greedy geometric routing problems
we study in this paper, vertices are assigned virtual coordinates so as to support greedy routing.

1.4 Our Results

We provide a succinct greedy geometric routing scheme for 3-connected planar graphs in R2. At the
heart of our scheme is a new greedy embedding for 3-connected planar graphs in R2 which exploits
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the tree-like topology of a spanning (Christmas cactus) subgraph. Our embedding allows us to form
a coordinate system which uses O(log n) bits per vertex, and allows distance comparisons to be done
just using our coordinate representations consistently with the Euclidean metric. Although we are
primarily interested in such a coordinate system for greedy geometric routing, we also give a simple
global compression scheme for greedy geometric routing, based on the approach of Leighton and
Moitra [32] and Angelini et al. [1], which achieves O(log n) bits per vertex, which is asymptotically
optimal.

Our coordinate scheme for greedy geometric routing in a graph G is based on a three-phase
approach. In the first phase, we find a spanning subgraph, C, of G, called a Christmas cactus
graph [32]. In the second phase, we find a graph-theoretic dual to C, which is a tree, T , and we
form a heavy path decomposition on T . Finally, in the third phase, we show how to use T and C to
embed G in R2 to support greedy routing with coordinates that can be represented using O(log2 n)
bits, and then we show how this can be further reduced to O(log n) bits per node.

2 Finite-Length Coordinate Systems

Let us begin by formally defining what we mean by a coordinate system, and how that differs, for
instance, from a simple compression scheme. Let Σ be an alphabet, and let Σ∗ a set of finite-length
strings over Σ. We define a coordinate system f for a space S:

1. f is a map, f : Σ∗ → S, which assigns character strings to points of S.

2. f may be parameterized : the assignment of strings to points may depend on a fixed set of
parameters.

3. f is oblivious: the value of f on any given x ∈ Σ∗ must depend only on f ’s parameters and x
itself. It cannot rely on any other character strings in Σ∗, points in S, or other values of f .

Clearly, this is a computationally-motivated definition of a coordinate system, since real-world
computations performed on actual points must use finite representations of those points. This is
an issue and theme present, for instance, in computational geometry (e.g., see [3, 4, 6, 7, 8, 12, 14,
20, 21, 23, 36, 38, 42, 44]). Note also that our definition can be used to define finite versions of
all the usual coordinate systems, since it allows for the use of symbols like “π”, “/,” and k-th root
symbols. Thus, it supports finite coordinates using rational and algebraic numbers, for example.
In addition, note that it supports points in non-Cartesian coordinate systems, such as a finite-
length polar coordinate system, in that we can allow strings of the form “(x, y)” where x is a string
representing a value r ∈ R+ and y is a string representing a value θ ∈ [0, 2π), which may even
use “π”. It also allows for non-unique representations, like the homogeneous coordinate system
for R2, which uses triples of strings, with each triple representing a point in the Euclidean plane,
albeit in a non-unique way. If f is lacking property 3, we prefer to think of f as a compression
scheme. Examples of compression schemes are mappings that use look-up tables, which are built
incrementally based on sequences of previous point assignments [23]. Given a compression scheme
f : Σ∗f → S, note that it is possible to construct a coordinate system f ′ : Σ∗f ′ → S by augmenting
strings in Σ∗f with the data required to evaluate f (such as the assignments of other points in a set
of interest).
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3 Greedy Routing in Christmas Cactus Graphs

Our method is a non-trivial adaptation of the Leighton and Moitra scheme [32], so we begin by
reviewing some of the ideas from their work.

A graph G is said to be a Christmas cactus graph if: (1) each edge of G is in at most one cycle,
(2) G is connected, and (3) removing any vertex disconnects G into at most two components. For
ease of discussion, we consider any edge in a Christmas cactus graph that is not in a simple cycle
to be a simple cycle itself (a 2-cycle); hence, every edge in is in exactly one simple cycle. The dual
tree of a Christmas cactus graph G is a tree containing a vertex for each simple cycle in G with an
edge between two vertices if their corresponding cycles in G share a vertex. Rooting the dual tree
at an arbitrary vertex creates what we call a depth tree.(See Fig. 1.)

(a) (b)

Figure 1: (a) A Christmas cactus graph and (b) its dual tree.

Having a depth tree allows us to apply the rooted tree terminology to cycles in G. In particular:
root, depth, parent, child, ancestor, and descendant all retain their familiar definitions. We define
the depth of a node v to be the minimum depth of any cycle containing v. The unique node that
a cycle C shares with its parent is called the primary node of C. Node v is a descendant of a cycle
C if v is in a cycle that is a descendant of C and v is not the primary node of C. Node v is a
descendant of node u if removing neighbors of u with depth less than or equal to u leaves u and v
in the same component.

3.1 Greedy Routing with a Christmas Cactus Graph Embedding

Leighton and Moitra [32] show that every 3-connected planar graph contains a spanning Christmas
cactus subgraph and that every Christmas cactus graph has a greedy embedding in R2, which
together imply that 3-connected planar graphs have greedy embeddings in R2. Working level by
level in a depth tree, Leighton and Moitra [32] embed the cycles of a Christmas cactus graph on
semi-circles of increasing radii, centered at the origin. Within the embedding we say that vertex
u is above vertex v if u is embedded farther from the origin than v, and we say that u is to the
left of v if u is embedded in the positive angular direction relative to v. We can define below and
right similarly. These comparisons naturally give rise to directions of movement between adjacent
vertices in the embedding: up, down, left, and right.

Routing from start vertex s to a terminal vertex t in a Christmas cactus graph embedding can
be broken down into two cases: (1) t is a descendant of s, and (2) t is not a descendant of s.
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1. As shown in Fig. 2(a), if t is a descendant of s, then we can route to t by a simple path of up
and right hops, up and left hops, or a combination of the two.

2. As shown in Fig. 2(b), if t is not a descendant of s, then we route to the least common (cycle)
ancestor of s and t. Suppose, without loss of generality, that t is to the left of s, then we can
reach this cycle by a sequence of down and left hops. Once on the cycle, we can move left
until we reach an ancestor of t. Now we are back in case 1.

3.2 A Succinct Compression Scheme

Using the Christmas cactus graph embedding discussed above, we can assign succinct integer values
to each vertex, allowing us perform greedy routing according to the Euclidean L2 metric. Our
embedding f : V (G)→ Z3

n produces a triple of the following integers: radialOrder(v): the number
of vertices to the right of v; level(v): the number of semi-circles between the vertex and the origin,
excluding the semi-circle that v is embedded on; and boundary(v): the smallest radialOrder value
of all vertices that are descendants of v. The Leighton-Moitra embedding has the property that
all descendants of v fall between v and the vertex embedded immediately to the right of v on the
same level as v. Since each element of the triple can take on values in the range [0, n], the triple
can be stored using O(log n) bits.

We can implement each step of the routing scheme using only the triples of s, the neighbors
of s, and t. Queries of the form u is left/right of v, involve a straightforward comparison of
the radialOrder element of the triple. Likewise for u is above/below v, using level. The same
comparisons can be used to determine which neighbors of s are a left, right, down, or up move
away. Finally, queries of the form u is a descendant of v are true if and only if boundary(v) ≤
radialOrder(u) ≤ radialOrder(v) and level(v) ≤ level(u).

To extend this routing scheme to graphs that have a spanning Christmas cactus subgraph,
we need to ensure that the routing scheme does not fail by following edges that are not in the
Christmas cactus subgraph. Since the Christmas cactus graph has bounded degree 4, for a node
v, we can store the triples of neighbors of v in the Christmas cactus graph, in addition to storing
the triple for v, and only allow our greedy routing scheme to choose vertices that are neighbors in
the Christmas cactus subgraph. Storing these extra triples in the coordinate does not increase its

s

t t

s

(a) (b)

Figure 2: Arrows indicate valid greedy hops. (a) Descendants of s can be reached by a simple path
of up and right hops, up and left hops, or a combination of the two. (b) If t is not a descendant of
s, then we route down and (left or right) in the direction of t until we reach an ancestor of t.
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asymptotic bit-complexity.
This routing scheme is greedy according to the Euclidean coordinates of the vertices, using

the Euclidean L2 metric. Unfortunately, if we only have access to the integer triples then it is not
obvious that there is any metric that we can define that will satisfy the definition for greedy routing
using just these integer values. Therefore, we must concede that, while this routing scheme fulfills
the spirit of greedy routing, it is not greedy routing in the strictest sense. This is an example of a
compression scheme and not a coordinate system.

4 Toward a Succinct Greedy Embedding

Given a 3-connected planar graph, we can find a spanning Christmas cactus subgraph in polynomial
time [32]. Therefore, we restrict our attention to Christmas cactus graphs. Our results apply to 3-
connected planar graphs with little or no modification. In this section, we construct a novel greedy
embedding scheme for any Christmas cactus graph in R2. We then build a coordinate system from
our embedding and show that the coordinates can be represented using O(log2 n) bits. In the next
section, we show how to achieve an optimal O(log n)-bit representation.

4.1 Heavy Path Decompositions

We begin by applying the Sleator and Tarjan [43] heavy path decomposition to the depth tree T for
G.

Definition 1. Let T be a rooted tree. For each node v in T , let nT (v) denote the number of
descendants of v in T , including v. For each edge e = (v,parent(v)) in T , label e as a heavy edge if
nT (v) > nT (parent(v))/2. Otherwise, label e as a light edge. Connected components of heavy edges
form paths, called heavy paths. Vertices that are incident only to light edges are considered to be
zero-length heavy paths. We call this the heavy path decomposition of T .

For ease of discussion, we again apply the terminology from nodes in T to cycles in G. A cycle
in G is on a heavy path H if its dual node in T is on H. Let H be a heavy path in T . We
say that head(H) is the cycle in H that has minimum depth, we define tail(H) similarly. Let C1

and C2 be two cycles such that C1 = parent(C2) and let {p} = V (C1) ∩ V (C2). If C1 and C2

are on the same heavy path then we call p a turnpike. If C1 and C2 are on different heavy paths
(where C1 = tail(H1) and C2 = head(H2)) then we call p an off-ramp for H1 and the vertices
v ∈ V (C2) \ {p} on-ramps for H2.

4.2 An Overview of Our Embedding Strategy

Like Leighton and Moitra [32], we lay the cycles from our Christmas cactus graph on concentric
semi-circles of radius 1 = R0 < R1 < R2 . . .; however, our embedding has the following distinct
differences: we have Θ(n log n) semi-circles instead of O(n) semi-circles, on-ramps to heavy paths
are embedded on special semi-circles which we call super levels, turnpikes are placed in a predefined
position when cycles are embedded, and the radii of semi-circles can be computed without knowing
the topology of the particular Christmas cactus graph being embedded. Since the path from the
root to any leaf in the depth tree contains O(log n) heavy paths, our embedding has O(log n) of
super levels. Between super levels we lay out the non-trivial heavy paths on baby levels.
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(a) (b)

Figure 3: (a) A depth tree T with positive-length heavy paths highlighted, and (b) the new depth
tree T ′ after the modification procedure.

To make our embedding scheme amenable to a proof by induction, we modify the input Christ-
mas cactus graph. After constructing a greedy embedding of this modified graph, we use it to prove
that we have a greedy embedding for the original graph.

4.3 Modifying the Input Christmas Cactus Graph

Given a Christmas cactus graph G on n vertices, we choose a depth tree T of G, and compute the
heavy path decomposition of T . For a cycle C on a heavy path H, we define relativeDepth(C)
to be depth(C) − depth(head(H)). For each C1, C2 = child(C1) forming a light edge in T , let
{p} = V (C1) ∩ V (C2). Split p into two vertices p1 and p2 each on their own cycle, and connect p1

to p2 with a path of n− 1− relativeDepth(C1) edges. The new graph G′ is also a Christmas cactus
graph, and our new depth tree T ′ looks like T stretched out so that heads of heavy paths (from T )
are at depths that are multiples of n. (See Fig. 3.) We continue to call the paths copied from T
heavy paths (though they do not form a heavy path decomposition of T ′), and the newly inserted
edges are dummy edges.

4.4 Embedding the Modified Christmas Cactus Graph in R2

Given a Christmas cactus graph G on n vertices, run the modification procedure described above
and get G′ and T ′. We embed G′ in phases, and prove by induction that at the end of each phase
we have a greedy embedding of an induced subgraph of G′.

Lemma 2 (Leighton and Moitra [32]). If the coordinates

c = (0, 1 + z)
b = (− sinβ, cosβ)
a = (−(1 + ε) sin(β − α), (1 + ε) cos(β − α))
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t

u

s

Figure 4: s, u and t form a lower bound for δ(G′0).
are subject to the constraints

0 <α, β ≤ π/2

0 <ε ≤ 1− cosβ
6

0 ≤z ≤ ε

sinα ≤ε(1− cosβ)
2(1 + ε)

then d(a, c)− d(b, c) ≥ ε2 > 0.

We begin by embedding the root cycle, C = (v0, . . . , vk−1), of T ′. We trace out a semi-circle of
radius R0 = 1 centered at the origin and divide the perimeter of this semi-circle into 2n+ 1 equal
arcs. We allow vertices to be placed at the leftmost point of each arc, numbering these positions 0
to 2n. We place vertices v0, . . . , vk−1 clockwise into any k distinct positions, reserving position n
for C’s turnpike. If C does not have a turnpike, as is the case if C is a dummy edge or the tail of
a heavy path, then position n remains empty. The embedding of C is greedy.

Proof. If C is a 2-cycle, then the embedding of C is greedy regardless of where the vertices are
embedded. Otherwise, consider each segment su 6= v0vk−1. The perpendicular bisector to su does
not intersect any of our embedded vertices. u is the neighbor of s that is closer to every vertex on
the u side of the perpendicular bisector. Since all such segments have this property, the embedding
of C is greedy.

Inductive Step: Suppose we have a greedy embedding all cycles in T ′ up to depth i, call this
induced subgraph G′i. We show that the embedding can be extended to a greedy embedding of
G′i+1. Our proof relies on two values derived from the embedding of G′i.

Definition 3. Let s, t be any two distinct vertices in G′i and fix ns,t to be a neighbor of s such that
d(s, t) > d(ns,t, t). We define δ(G′i) = mins,t{d(s, t)− d(ns,t, t)}.

We refer to the difference d(s, t)−d(ns,t, t) as the delta value for distance-decreasing paths from
s to t through ns,t.

Definition 4. Let β(G′i) to be the minimum (non-zero) angle that any two vertices in the embedding
of G′i form with the origin.

Since we do not specify exact placement of all vertices, we cannot compute δ(G′0) and β(G′0)
exactly. We instead compute positive underestimates, δ0 and β0, by considering hypothetical vertex
placements, and by invoking the following lemma.

Lemma 5. Let s and u be two neighboring vertices embedded in the plane. If there exists a vertex t
that is simultaneously closest to the perpendicular bisector of su (on the u side), and farthest from
the line su, then the delta value for s to t through u is the smallest for any choice of t.
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Applying the above lemma to all hypothetical s, u, and t placements for the embedding of G′0
leads to the underestimate δ0 = 2 −

√
2 + 2 cos π

2n+1 < d(s, t) − d(u, t) ≤ δ(G′0) where s, u, and t

are shown in Fig. 4. Trivially, β0 = π
2n+1 ≤ β(G′0).

We now show how to obtain a greedy embedding of G′i+1, given a greedy embedding of G′i and
values δi and βi.

Let εi = min{δi/3, Ri
1−cos 2

3
βi

6 }. Trace out a semi-circle of radius Ri+1 = Ri+ εi centered at the
origin. Each cycle at depth i+1 of T ′ has the form C = (v, x1, . . . , xm) where v, the primary node of
C, has already been embedded on the ith semi-circle. We embed vertices x1 to xm in two subphases:

Subphase 1 We first embed vertex x1 from each C. Choose an orientation for C so that x1 is
not a turnpike.1 We place x1 where the ray beginning at the origin and passing through v meets
semi-circle i + 1. We now show that distance decreasing paths exist between all pairs of vertices
embedded thus far.

Distance decreasing paths between vertices in G′i are preserved by the induction hypothesis.
For t placed during this subphase: t has a neighbor v embedded on semi-circle i. If s = v then s’s
neighbor t is strictly closer to t. Otherwise if s ∈ G′i then since t is within distance δi/3 of v, then
s’s neighbor u that is closer to v is also closer to t. By definition of δi, d(s, v) ≥ d(u, v) + δi.

Since t is in the δi/3-ball around v, d(s, t) ≥ d(s, v)− δi/3, and d(u, t) ≤ d(u, v) + δi/3.
Then,

d(s, t) ≥ d(s, v)− δi/3
≥ d(u, v) + δi − δi/3
≥ d(u, v)− δi/3 + δi − δi/3
= d(u, t) + δi/3
> d(u, t)

Therefore, s’s neighbor u that is closer to the primary node v is also closer to t. If s was placed

during this subphase then s is within distance Ri
1−cos 2

3
βi

6 from its neighbor v, and the perpendicular
bisector of sv contains s on one side and every other vertex placed on the other side. Therefore s’s
neighbor v is closer to t.

The next subphase requires new underestimates, which we call δ1i and β1
i . By construction,

β1
i = βi. No s–t paths within G′i decrease the delta value. Paths from s ∈ G′i to t placed in this

subphase have delta value at least δi/3 by design. This follows directly from the proof of greediness
of this subphase.For paths from s placed in this subphase, s’s neighbor v is the closest vertex to
the perpendicular bisector of sv on the v side. If we translate v along the perpendicular bisector
of sv to a distance of Ri+1 from sv, this hypothetical point allows us to invoke Lemma 5 to get an
underestimate for the delta value of all paths beginning with s. Therefore, our new underestimate
is: δ1i = min{δi/3,

√
R2
i+1 + ε2i −Ri+1}.

Subphase 2 We now finish embedding each cycle C = (v, x1, . . . xm). Let the value α = min{β1
i /3,

δ1i /(3Ri+1)}, s.t. sinα ≤ εi(1−cos 2
3
β1

i )

2(1+εi)
. Trace out an arc of length Ri+1α from the embedding of

1For the case where C is a 2-cycle and x1 is a turnpike we insert a temporary placeholder vertex p into C with
edges to v and x1, and treat p as the new x1. We can later remove this placeholder by transitivity.
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x1, clockwise along semi-circle i + 1. We evenly divide this arc into 2n + 1 positions, numbered 0
to 2n. Position 0 is already filled by x1. We embed vertices in clockwise order around the arc in
m− 1 distinct positions; reserving position n for C’s turnpike. If there is no such node, position n
remains empty.

This completes the embedding of G′i+1. We show that the embedding of G′i+1 is greedy. We
only need to consider distance decreasing paths that involve a vertex placed during this subphase.
For t placed during this subphase, t is within distance δ1i /3 from an x1, therefore, all previously
placed s 6= x1 have a neighbor u that is closer to t. If s = x1 the s’s neighbor closer to t is x2.
Finally, for s placed during this subphase, let the cycle that s is on be C = (v, x1, . . . , xm). For
s = xi 6= xm, since α ≤ β1

i /3, the interior of the sector formed by x1, xm and the origin is empty,
therefore t is either on the xi−1 side of the perpendicular bisector to xi−1xi or on the xi+1 side of
the perpendicular bisector to xixi+1. If s = xm If t is embedded to the left s, the closer neighbor

is xm−1. Otherwise, applying Lemma 2, our choice of sinα ≤ εi(1−cos 2
3
β1

i )

2(1+εi)
forces the perpendicular

bisector to sv to have s on one side, and all nodes to the right of s on the other side. All cases are
considered, so the embedding of G′i+1 is greedy.

To complete the inductive proof, we must compute δi+1 and βi+1. Trivially, βi+1 = α
2n ≤

β(G′i+1). Distance decreasing paths between vertices placed before this subphase will not update
the delta value. Therefore, we only evaluate paths with s or t embedded during this subphase. By
design, paths from s previously placed to t placed during this subphase have a delta value ≥ δ1i /3.
Distance-decreasing paths from s placed in this subphase to t ∈ G′i+1 take two different directions.
If s’s neighbor u which is closer to t is on semi-circle i + 1 then points that are closest to the
perpendicular bisector to su are along the perimeter of the sector formed by s, u, and the origin.
The point closest to the perpendicular bisector is where the first semi-circle intersects the sector.
We translate this point down Ri+1 + 2 units along the perpendicular bisector, and we have an
underestimate for the delta value for any path beginning with a left/right edge. If s’s neighbor that
is closer to t is on the ith semi-circle, then a down edge is followed. To finish, we evaluate down
edges su added during the second subphase. The closest vertex to the perpendicular bisector to su
on the u side is either u, or the vertex placed in the next clockwise position the i+ 1th semi-circle.
Translating this point 2Ri+1 units away from su along the perpendicular bisector gives us the an
underestimate for paths beginning with su.

This completes the proof for the greedy embedding of G′. We call the levels where the on-ramps
to heavy paths are embedded super levels, and all other levels are baby levels. There are n−1 baby
levels between consecutive super levels and, since any path from root to leaf in a depth tree travels
through O(log n) different heavy paths, there are O(log n) super levels.

4.5 Obtaining a Greedy Embedding of G

Let G′ be a modified Christmas cactus graph greedily embedded using the procedure discussed
above. We now show that collapsing the dummy edges leaves us with a graph G and a greedy
embedding of G.

Let C1, C2 be any two cycles with a path of dummy edges between them. We show that
collapsing this path down to a single vertex gives us new graph that is also greedily embedded.

Proof. Assume, without loss of generality, that C2 is a descendant of C1. Let P be the path of
dummy edges between C1 and C2. Let p1 be the vertex that cycle C1 shares with P , let p2 be the
vertex that cycle C2 shares with P .
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p1

p2

p1

(a) (b)

Figure 5: (a) Before removal of dummy nodes and (b) after removal.

Collapse the path P down to the vertex p1, call this new graph G′′. We assign vertices in G′′

the same coordinates in R2 that they are assigned in the embedding of G′. (See Fig. 5.) We show
that distance-decreasing paths exist between all pairs of vertices in the embedding of G′′, using the
greediness of the embedding of G′.

Consider any two vertices s and t in G′′. There are four cases:

1. If a distance-decreasing path from s to t in G′ involves both p1 and p2, then there is a
distance-decreasing path in G′′ by transitivity.

2. If a distance-decreasing path from s to t in G′ involves p1 and not p2, then the same distance-
decreasing path exists in G′′ since no vertices or edges on this path were modified.

3. If a distance-decreasing path from s to t in G′ involves p2 and not p1, then either s or t is not
in G′′. Therefore, this case is irrelevant.

4. If a distance-decreasing path from s to t in G′ involves neither p1 nor p2, then the same
distance-decreasing path exists in G′′ since no vertices or edges on this path were modified.

Therefore, since there are distance decreasing paths between all s and t in our embedding of G′,
there are distance-decreasing paths between all s and t in the embedding of our new graph as
well.

Furthermore, every distance-decreasing path in G′′ looks like the same path from G′, but with
vertices in P \ {p1} removed.

We apply the above modification algorithm to G′ repeatedly, until all dummy edges are removed.
After removing all of the dummy edges in this way, we have our original graph G and a greedy
embedding of G.

4.6 Our Coordinate System

Let v be a vertex in G. We define level(v) to be the number of baby levels between v and the
previous super level (zero if v is on a super level) and cycle(v) to be the position, 0 to 2n, where v
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is placed when its cycle is embedded. These values can be assigned to vertices without performing
the embedding procedure.

Let s be v’s ancestor on the first super level. The path from s to v passes through O(log(n))
heavy paths, entering each heavy path at an on-ramp, and leaving at an off-ramp. We define v’s
coordinate to be a O(log n)-tuple consisting of the collection of (level(·), cycle(·)) pairs for each off-
ramp where a change in heavy paths occurs on the path from s to v, and the pair (level(v), cycle(v)),
which is either an off-ramp or a turnpike. Using the coordinate for v and the parameter n, we can
compute the Euclidean coordinates for all the turnpikes and off-ramps where a change in heavy
path occurs on the path from s to v, including the coordinate for v. Thus, we have defined a
coordinate system for the Euclidean plane.

Using a straightforward encoding scheme, each level-cycle pair is encoded using O(log n) bits.
Since a coordinate contains O(log n) of these pairs, we encode each coordinate using O(log2 n) bits.

4.7 Greedy Routing with Coordinate Representations

Although contrived, it is possible to perform greedy geometric routing by converting our coordinates
to Euclidean points and using the Euclidean L2 metric whenever we need to make a comparison
along the greedy route. Alternatively, we can define a comparison rule, which can be used for
greedy routing in our coordinate system, and which evaluates consistently with the L2 metric for
all vertices on the path from start to goal.

By design, the routing scheme discussed in Sect. 3 is greedy for our embedding. We develop a
comparison rule using the potential number of edges that may be traversed on a specific path from
s to t.

Let si be the vertex between super levels i and i+ 1, whose level-cycle pair is in position i of s’s
coordinate. We define ti similarly. Let superlevel(s) be the position that contains the level-cycle
pair for s itself. Let h be the smallest integer such that sh and th differ. Using the level-cycle pairs
for sh and th, we can compute the level-cycle pair for the off-ramps on the least common ancestor C
that diverge toward s and t, which we call sC and tC . That is, if level(sh) = level(th) then sC = sh
and tC = th. Otherwise, assume without loss of generality that level(sh) < level(th), then sC ’s pair
is (level(sh), cycle(sh)) and tC is a turnpike with the pair (level(sh), n).

We define l, r, d, u be the potential number of left, right, down, and up edges that may be
traversed from s to t. Values d and u are simply the number of semi-circles passed through by
down and up hops, respectively. That is,

d = (superlevel(s) · n+ level(s))− (hn+ level(sC))

u = (superlevel(t) · n+ level(t))− (hn+ level(tC)).

If cycle(tC) < cycle(sC), then we count the maximum number left edges on the path from s to
tC , and the maximum number of right edges from tC to t. That is,

l =

{
cycle(s) + 2n(d− 1) + cycle(sC)− cycle(tC) if s 6= sC ,

cycle(sC)− cycle(tC) if s = sC .

r =

{
2n(u− 1) + cycle(t) if t 6= tC ,

0 if t = tC .
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If cycle(tC) ≥ cycle(sC), then we count the maximum number of right edges on the path from
s to tC , and the maximum number of right edges from tC to t. That is,

l = 0

r = r1 + r2, where

r1 =

{
2n− cycle(s) + 2n(d− 1) + cycle(tC)− cycle(sC) if s 6= sC ,

cycle(tC)− cycle(sC) if s = sC .

r2 =

{
2n(u− 1) + cycle(t) if t 6= tC ,

0 if t = tC .

Our comparison rule is:
D(s, t) = l + r + (2n+ 1)u+ d.

Following the routing scheme from Sect. 3, any move we make toward the goal will decrease
D(·, ·), and all other moves will will increase D(·, ·) or leave it unchanged. Therefore, we can use
this comparison rule to perform greedy routing in our embedding efficiently, and comparisons made
along the greedy route will evaluate consistently with the corresponding Euclidean coordinates
under the L2 metric.

5 An Optimal Succinct Greedy Embedding

Conceptually, the level(·) and cycle(·) values used in the previous section are encoded as integers
whose binary representation corresponds to a path from root to a leaf in a full binary tree with n
leaves. Instead of encoding with a static O(log n) bits per integer, we will modify our embedding
procedure so we can further exploit the heavy path decomposition of the dual tree T , using weight-
balanced binary trees [18, 27].

Definition 6. A weight-balanced binary tree is a binary tree which stores weighted items from
a total order in its leaves. If item i has weight wi, and all items have a combined weight of W then
item i is stored at depth O(logW/wi). An inorder listing of the leaves outputs the items in order.

By using appropriate weight functions with our weight-balanced binary trees, we will be able
to get telescoping sums for the lengths of the codes for the level(·) and cycle(·) values, giving us
O(log n) bits per coordinate, which is optimal.

5.1 Encoding the Level Values

As in the O(log2 n) embedding, we will lay the heavy paths between super levels. However, we
no longer require the on-ramps of heavy paths to be embedded on super levels, nor do we require
adjacent cycles on the same heavy path to be embedded on consecutive levels; instead, cycles will
be assigned to baby levels by an encoding derived from a weight-balanced binary tree.

We will have a different weight-balanced binary tree for each heavy path in our depth tree. The
items that we store in the tree are the cycles on the heavy path. The path in the weight-balanced
binary tree from the root to the leaf containing a cycle gives us an encoding for the level that the
cycle should be embedded on between super levels.
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Suppose we have a depth tree T for G, and a heavy path decomposition of T . Let C be a simple
cycle in G on some heavy path H and let Cnext be the next cycle on the heavy path H, if it exists.
Let n(C) be the number of vertex descendants of C in G. We define a weight function γ(·) on the
cycles in G as follows:

γ(C) =

{
n(C) if C = tail(H),
n(C)− n(Cnext) if C 6= tail(H).

That is, γ(C) is the number of descendants of cycle C in G excluding the descendants of the next
cycle on the heavy path with C.

For each heavy path H, create a weight-balanced binary tree BH containing each cycle C in H
as an item with weight γ(C), and impose a total order so that cycles are in their path order from
head(H) to tail(H).

Let v be a vertex whose coordinate we wish to encode, and suppose v is located between super
levels l and l + 1. Let vi be the vertex whose level-cycle pair is in position i of v’s coordinate. Let
vi be contained in cycle Ci (such that vi is not Ci’s primary node) on heavy path Hi. Then the
coordinate for v will contain the collection of level(·) values for each off-ramp vi on the path to v,
and the level(·) value for v itself. Let Ci be the cycle containing vertex vi, such that vi is not the
primary node for Ci ∈ Hi. The code for level(vi) is a bit-string representing the path from root
to the leaf for Ci in the weight-balanced binary tree BHi . Let Wi be the combined weight of the
items in BHi . Since Ci is at a depth of O(logWi/γ(Ci)), this is length of the code. Thus, the level
values in v’s coordinate are encoded with O(

∑
0≤i≤l logWi/γ(Ci)) bits total. We now show that

this is a telescoping sum, giving us O(log n) bits total. All descendants counted in Wi are counted
in γ(Ci−1), therefore, we have that γ(Ci−1) ≥Wi. By subtracting off descendants that are further
along the heavy path, we ensure that W0 = n. Thus,

∑
0≤i≤l logWi/γ(Ci) ≤ logW0/γ(Cl) ≤ log n.

5.2 Encoding the Cycle Values

For a node v in G we define a weight function µ(v) to be the number of descendants of v in G.
Let C = (p, x1, x2, . . . , xm) be a cycle in G, where p is the primary node of C. Let xh be the

turnpike that connects C to the next cycle on the heavy path, if it exists. Let xi have weight µ(xi)
and impose a total order so xj < xk if j < k. For each cycle C, we create a weight-balanced binary
tree BC containing nodes x1 to xm as follows. We first create two weight-balanced binary trees B1

C

and B2
C where B1

C contains xj for j < h and B2
C contains xk for k > h. If no such xh exists, then

choose an integer 1 ≤ k ≤ m and insert items xj for j < k into B1
C and insert the remaining items

into B2
C . We form our single weight-balanced binary tree BC in two steps: (1) create a tree B3

C

with B1
C as a left subtree and a node for xh as a right subtree, and (2) form BC with B3

C as a left
subtree and B2

C as a right subtree. We build BC in this way to ensure that every turnpike is given
the same path within its tree, and hence the same cycle code and value.

The code for cycle(vi) is a bit-string representing the path from root to the leaf for vi in the
weight-balanced binary tree BCi . Let Wi be the combined weight of the items in BCi . Since vi is
at a depth of O(logWi/µ(vi)), this is length of the code. Thus, the cycle values in v’s coordinate
are encoded with O(

∑
0≤i≤l logWi/µ(vi)) bits total. We now show that this is a telescoping sum,

giving us O(log n) bits total.
Every descendant counted in Wi is also counted in µ(ri−1), thus µ(ri−1) ≥ Wi. By design,

W0 = n. Hence
∑

0≤i≤l logWi/µ(ri) ≤ logW0/w(rl) ≤ log n.
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5.3 Interpreting the Codes

Let c be the smallest integer constant such that item i stored in the weight-balanced binary tree
is at depth ≤ c logW/wi. We can treat the position of i in the weight-balanced binary tree as a
position in a full binary tree of height c log n. We interpret this code to be the number of tree nodes
preceding i in an in-order traversal of the full binary tree. Using our codes as described, we require
2nc − 2 baby levels between each super level and 8nc − 1 cycle positions.

5.4 An Overview of the Optimal Embedding

Let T be the depth tree for our Christmas cactus graph G. We create weight-balanced binary trees
on the heavy paths in T and on each of the cycles in G, giving us the level and cycle codes for
every vertex. We adjust the graph modification procedure so that adjacent cycles on heavy paths
are spaced out according to the level codes. That is, adjacent cycles on the same heavy path have
heavy dummy edges (dummy edges that are considered to be on the heavy path) inserted between
them so that they are placed on the appropriate baby levels. For cycles on different heavy paths,
we insert dummy edges to pad out to the next superlevel, and heavy dummy edges to pad out to
the appropriate baby level.

We embed the modified graph analogously to our O(log2 n) embedding, except that the cycle
codes dictate vertex placements. We augment our coordinate system to store the level value for
elements on the root cycle, otherwise it is not possible to compute the corresponding Euclidean
point from our succinct representation. The same comparison rule applies to our new coordinate
system, with little change to account for the new range of level and cycle values. Using this
embedding scheme and coordinate system we achieve optimal O(log n) bits per coordinate.

6 Conclusion

We have provided a succinct coordinate-based representation for the vertices in 3-connected planar
graphs so as to support greedy routing in R2. Our method uses O(log n) bits per vertex and
allows greedy routing to proceed using only our representation, in a way that is consistent with
the Euclidean metric. For future work, it would be interesting to design an efficient distributed
algorithm to perform such embeddings.
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