
P-Complete Geometric Problems
(Preliminary Version)

Mikhail J . At allah’ Paul Callahant Michael T. Goodricht

Summary of Results

In this paper we show that it is impossible to solve a number of “natural” 2-dimensional
geometric problems in polylog time with a polynomial number of processors (unless P = NC).
Thus, we disprove a popular belief that there are no natural P-complete geometric problems in the
plane. The problems we address include instances of polygon triangulation, planar partitioning,
and geometric layering. Our results are based on non-trivial reductions from the monotone circuit
value and planar circuit value problems.

1 Introduction

In sequential c.omputation theory one of the primary
measures of a solution’s efficiency is that it run in
time that is proportional to a polynomial in the size
of the input. A problem solvable by such a sequential
algorithm is said to be in the class P [2, 201. An
analogous notion of efficiency in parallel computation
theory is that a solution run in polylog time using a
polynomial number of processors. A problem solvable
by such a parallel algorithm is said to be in the class
NC [21, 23, 25, 291. (Th e reader is referred to [23]
for other notions of efficiency and related complexity
c.lasses.)

It is a long-standing open question as to whether

all problems solvable in polynomial time sequentially
are solvable in polylog time using a polynomial num-
ber of processors, i.e., whether P = NC or not. It is
strongly believed, however, that P # NC, much as it
is strongly believed that P # NP. As in the theory of
NP-completeness, there is an analogous method for
proving that establishing the membership of a par-
ticular problem in NC is as hard as showing that
P = NC. This method is to show that each prob-
lem in P admits an NC-reduction to the problem

*This author’sresearchwas supportedby the Office of Naval
Research under Grants NO0014-84-K-0502 and N00014-86-K-
0689, and the National Science Foundation under Grant DCR-
8451393, and the National Library of Medicine under Grant
ROl-LM05118. Author’s address: Dept. of Computer Sciences,
Purdue Univ., W. Lafayette, IN 47907.

f This author’s research was supported by an Abel Wolman
Graduate Fellowship from the G.W.C. Whiting School of Engi-
neering at Johns Hopkins University. Author’s address: Dept.
of Computer Science, The Johns Hopkins Univ., Baltimore,
MD 21218.

tThis author’s research was supported by the National Sci-
ence Foundation under Grant CCR-8810568 and by the NSF
and DARPA under Grant CCR-8908092. Author’s address:
Dept. of Computer Science, The Johns Hopkins Univ., Balti-
more, MD 21218.

Permission to copy without fee all or part of this matertial is granted pro-
vided that the copies are not made or distributed for direct commercial
advantage, the ACM copyright notice and the title of the publication and
its date appear, and notice is given that copying is by permission of the
Association for Computing Machinery. To copy otherwise, or to republish,
requires a fee and/or specific permission.

at hand. Such problems are usually said to be P-
complete [21, 251. Most of the problems shown to
be P-complete to date are essentially c.ombinatorial
problems, dealing with problems defined on graphs
and algebras (see [21, 251, for example).

Geometric problems in the plane, as a rule, admit
more structure than purely combinatorial problems,
however. This structure usually allows one to ap-
ply parallel divide-and-conquer methods to show such
problems to be in NC. In fact, all the well-known 2-D
geometric structures, including convex hulls, Voronoi
diagrams, and line arrangements, can be constructed
in polylog time using a polynomial number of pro-
cessors [l, 3, 4, 5, 7, 13, 14, 151. Even the other-
wise P-complete problem of linear progralnlning is

in NC when restricted to the plane (see [lo, 111 for
the P-completeness result). In addition, using the al-
gebraic cell-decomposition framework of Kozen and
Yap [22, 321, tl lere are a host of less well-known geo-
metric problems in the plane that can also be shown
to be in NC. Because of this, a general belief seems
to have developed that “natural” geometric problems
in the plane tend to be in NC.

In this paper we show that a number of simple
geometric problems are in fact P-complete. Each of
these problems involves a collection of line segments
in the plane. The problems we address are as follows:

Plane-sweep triangulation. One is given a sim-
ple n-vertex polygon P (which may contain
holes) and asked to produce the triangulation
that would be constructed by the following se-
quential algorithm: sweep the plane from top
to bottom with a horizontal line L, such that
each time L encounters a vertex v of P one
draws from v all diagonals of P that do not
cross previously drawn diagonals. This prob-
lem is a special case of the well-known poly-
gon triangulation problem (see [12, 24, 301).
Contrast the P-completeness of this problem
with the fact that so many problems solvable
by plane-sweeping have recently been shown to
be in NC [l, 3, 5, 13, 15, 16, 171 (with solutions

0 1990 ACM 089791-370-l/90/0007/03 17 $1.50 317

that use a small number of processors).

l Weighted planar partitioning. One is given a
collection of n non-intersecting segments in the
plane, such that each segment s is given a dis-
tinct weight w(s), and asked to construct the
partitioning of the plane produced by extend-
ing the segments in order of their weights. The
extension of a segment “stops” at the first seg-
ment (or segment extension) that is “hit” by the
extension. This problem has applications to art
gallery problems [26], as was shown by Czyzow-
icz et al. [9]. We show it to be P-complete even
if there are only 3 possible orientations for the
line segments. It is straightforward to solve this
problem sequentially in O(nlog’ n) time (us-
ing the dynamic point-location data structure
of [31]), and in O(nlogn) time by a more so-
phisticated method [9].

l Visibility layers. One is given a collection of
n non-intersecting segments in the plane, and
asked to label each segment by its “depth” in
terms of the following layering process (which
starts with i = 1): compute the upper enve-
lope of the segments (i.e., those visible from
(0, +co))! label each segment with a piece in
this upper envelope as being at depth i, remove
each such segment, increment i, and repeat un-
til no segments are left. This is an example
of a class of problems in computational geom-
etry known &s layering problems or onion peel-
in.g problems [6, 24, 2’71, and we show it to be
P-complete even if all the segments are horizon-
tal. It can be solved in O(nlogn) time sequen-
tially [28]. (W h e ave recently learned that Her-
shberger [19] also has a P-completeness proof
for the visibility layers problem.)

Our methods are based on non-trivial reductions
from the monotone circuit value problem (MCVP)
and planar circuit value problem (PCVP), which are
known to be P-complete [18, 23, 251. The main dif-
ficulty in these reductions is showing how to use ge-
ometry to simulate a circuit just by using the relative
positions of objects in the plane. As is often the case
with completeness results, we expect the techniques
(and perhaps even the problems themselves) to be
useful in showing other geometric problems to be P-
complete.

In the sections that follow we outline our reduc-
tions for each of the above problems in turn. For
pedagogical reasons, we present our proofs as NC-
reductions, but we could have just as easily pre-
sented them as logspace-reductions (which is an al-
ternate framework for P-completeness proofs, e.g.,
see [21, 291).

2 A Framework For Geometric
Reductions

We show the first two problems to be P-complete us-
ing reductions from the planar circuit value problem
(PCVP). Because our co-nstructions are geometric,
particular care must be taken in the routing of values.
We will handle routing within a general framework in
which we insert our constructions as components.

We will assume an instance of PCVP is given as a
circuit composed of V gates and inverters that is em-
bedded in a grid. Inputs are placed at the top, and
the circuit is organized as an alternating sequence
of routing layers and logic layers. In each row, cer-
tain columns are assigned to the value of gates in
the circuit. One can easily show that PCVP remains
P-complete under these assumptions.

2.1 Routing

We describe the routing layer in terms of 4 compo-
nents: vertical wires, right, shifts, left shifts, and fan-
out gates. These components are shown below:

L&j Fllj

fan-out gate vertical wire

Each figure is simply a “wiring” diagram, and
when the wires of two figures are made adjacent, a
value is transmitted through each wire in the natu-
ral way. Values can only be transmitted down in the
vertical direction, though they may be transmitted
either left or right horizontally.

We construct a routing layer using a geometric
placement of these components in which their bound-
ing rectangles (shown dotted) do not overlap. This
restriction is significant, because the objects in our
geometric problems must not intersect. To formalize
the idea of routing, we define a column value assign-
ment, and a class of functions, called plan.ar routing
functions, which transform one column value assign-
ment to another.

Because we use a grid embedding we need to as-
sign boolean values to columns in the grid. To make
routing possible, we also need to leave some columns
empty. We give empty columns the value *. A col-
umn value assignment is an n-tuple (2~~~. . . , vn) E

318

0-4L*Y, where 0 and 1 represent boolean values,
and * stauds for “unassigned.”

A routing finction T is a function from column
value assignments to column value assignments (of
equal size) and is represented by an n-tuple C =

(Cl, * . .,cn) E {%..rn}n, with the following inter-
pretation.

Let (u’l,. . ., v’,) = T((w~, . . ., wn)). Then,
for all i,

V’i =
* if Ci = 0

21,; otherwise

Intuitively, such an T represents the interconnec-
tions from outputs on one level to inputs on the next
level. It is more general than a permutation, because
values can be duplicated, and not all coIumns need
to be c,onnected.

A planar routing function is a routing function
represented by C = (q, . . . , c,), such that for all 1 5
i < j 5 n, if ci,cj # 0 then ci 5 cj.

Lemma 2.1: Suppose T is a planar routing function
represented by C = (cl,. . . , c,), where I{i:ci = 011 >_
n/2. Then T can be realized using an n-column rout-
ing la.yer consisting of vertical wires, left shifts, right
shifts, and fan-out gates, such that the boundingrect-
angles of these components do not overlap.

Proof idea. The restriction I{i:ci = O}l 2 n/2 is
merely to insure that we have enough empty space to
fit our routiug components. We perform routing in a
naive manner, because we need ouly guarantee that
the size of the instance in the geometric framework
is a polynomial function of the size of the original
circuit instance.

We construct the routing layer in three phases.
For example, suppose we wish to route the function T,

where C = (1,3,0,3,0,0,3,6,0,0). First, we spread
values to allow enough room for fan-out gates:

1 2 3 4 5 6 7 8 9 10

I
I
I
1
I
I

-4

Second, we perform t.he fan-out:

1 2 3 4 5 6 7 8 9 10 , - - - - - - - - - - , P-w-3

7-Jl-l~~

L___T- -T_ -L-------+- -,
I I :- -:----- --- _*----

Finally, we place values in the appropriate columns:

1 2 3 4 5 6 7 8 9 10
,_____ -__---_ -r___C-*_.

:

I
:

--:-
I

rY.lx~~

-,---:- -r---+ -..- + -..-,

I I I I
I I I I

:
___--*_ -___-a C-*-I---d

It is easy to show that the problem of constructing
each of the above phases is in NC (Details are given
in final version). 0

2.2 Inputs and gates

We also introduce the folIowing components for in-
puts and gates:

r- --- -----7

K

v ;

L____ -_--- -1

; 1 I
,---:

r- ___--.

.+I L____.. -2
v gate inverter

We use input components to realize an initial col-
umn value assignment and gate components to realize
a logic layer function.

Definition. A logic layer function 1 is a func.tion
from column value assignments to column value as-
signments of equal size. It is represented by a co1utn.n

gate assdgnment, Q = (gl, . . .,gn) E {V, 7, *I’* where
each 7 is preceded by at least one *, and each V is
preceded by at least two s’s. Intuitively, this is to
make room for the input columns. It is interpretted
as follows.

Let (~‘1,. . ., v’~) = Z((V~, . . ., v,)). Then,
for all i,

Vi-2 V Vi-1 if gi = V
Vii zx -vi-1 if gi = 7

* otherwise

319

It follows immediately from the definition that we It is represented in the geometrir framework as:
may realize a logic layer function in terms of logic
components. It should also be clear that the problem
of constructing the input and logic layers is in NC.

2.3 Specifying an instance of PCVP

We will assume that an instance of PCVP is given
as an input assignment (211,. . ., vu,), an alternating
sequence (rl,ll,t mr Im) of planar routing functions
and logic layer functions, and a distinguished column
i, called the output. We may pose this instance as a
decision problem by asking the following question.

7

Let (~‘1,. . . , v’~) denote the result of

L(%l(. *.h(~l((Vl, * * *, %I)))))

Does v’i = l?

The PCVP has been shown to be P-complete for
the basis of boolean functions (V, -} [18], and it is
easy to see that an instance of PCVP specified in any :----zxrl-
“reasonable” format is NC reducible to an instance
in the above format. Using the framework developed above, we will

As an example of the reduction to the geometric now show our first two geometric problems to be P-

framework, consider the following instance of PCVP: complete. Our third problem will require some mod-
ifications to this framework, which we will develop
when needed.

8

1 1 0
Input: (U,*,*,O,*,*,*)
r, : (1,2,0,2,5,0,0,0)
I, : (*,*,v,*,*,v,*,*)
r2 : (00300600) ,,7,,9,
I,: (*,*,* ,7*,*7r*)
r-3 : (0,0,0,0,4,7,0,0)
13 : (*,*,*,*,*,*,v,*)
output: column 7

3 The Plane-Sweep Triangula-
tion Problem

We consider the problem of triangulating a simple
polygon, which may contain holes. The problem of
finding some arbitrary triangulation, is known to be
in NC (see [13, IS]). In this section, we prove the
following theorem.

Theorem 3.1: The plane sweep triangulation prob-
lem is P-complete.

Proof sketch. Given the observations of the pre-
ceding section, and Lemma 2.1, it is sufficient to con-
struct “gadgets” for each of the component,s needed
to embed a planar circuit. We present each gadget
as the object one would see within a rectangular win-
dow placed over part of the polygon. These gadgets
fit together in precisely the same manner as the com-
ponents in our geometric framework. We leave out
the details of construc.ting the resulting polygou in
some standard encoding scheme. (This will appear
in the final version.)

We encode each value in the circuit by the pres-
ence or absence of a corresponding edge in the tri-
angulation. The presence or absence of an edge will

320

represent 1 or 0, respectively. All edges that corre-
spond to a value will be vertical. The correspondence
between edges and column values follows from the ge-
ometry.

The gadgets for the left shift and right shift, re-
spectively, are:

:’ ‘. : : .: ‘_ I j,: .:’ ‘. i “.,j :. .,.’ ..f ‘. ,.‘. . .._ ._.’ ‘.,. : _:’

:I h:

: ,.: . i i _.’ . : .:I ‘..,j ;.

The gadget for the fan-out gate and vertical wire,
respectively, are: . . : . I ‘, ; ‘!._, ‘... . . ., :
~

‘..,j :.. : ‘.., : . . : ‘.., : . . ‘. : . n .-.!,
The gadgets for the V gate and inverter, respec-

tively, are:

., : ‘. i i .’ _:’
). j : .’
‘.. : _:’ : . . ‘5. . . ‘... ..“’

..,, i .._. ___: . _i, ._ ;
‘. i

-?‘r;: ~

. .._ i ‘, :.. ._ . . i
.,_ i

I. I__ ;, F 7. ‘... ‘..i,

The shapes of our constructions may appear mys-
terious at first, but the ideas governing them are quite
simple. We construct logic gates by making use of the
interaction between crossing pairs of line segments.
These interacting edges are shown as dotted lines.
Any polygon we form will introduce spurious edges
in the triangulation graph. We must be careful to
construct our gates to prevent these edges from al-
tering the meaning of edges that encode logic func-

tions. We show how this is done 11.y considering some

general features of gates.
In each construction we add several new vertices

to the polygon (shown with dots). These may be
considered 180’ corners. We will call these vertices
targets, because the output of each gate will be com-
puted by attempting to draw a line segment to each
target from some vertex above.

In every gate, the input edge is a vertical line seg-
ment passing through an opening made sufficiently
small to insure that only one vertex above the open-
ing is visible from the target directly below. This
opening can be made as small as necessary by the
placement of two reflex corners.

Functionally, most gadgets work in two phases
corresponding to “events” in the plane sweep. The
first phase corresponds to sweeping past the high-
est vertex and determining if its target is visible. It
will be visible unless some input edge is blocking it.
In this case, one would add the edge connecting the
highest vertex to its target. The second phase corre-
sponds to sweeping past the next highest vertex (or
vertices in the case of the fanout gate), and “attempt-
ing” to add a vertical edge from it to its target in
some gate below. This is possible iff the edge of the
first phase was not added. As one sweeps past the
rest of the construction, one may add other edges,
but these will not affect the output edges, since they
have already been added.

An exception to the above description is the in-
verter, which works in three phases. In each phase,
the edge interactions are the same as those above.
To invert a value we must use an odd number of such
interactions. After one interaction, we always change
the orientation of the edge encoding the value. Thus,
we need at least three interactions to invert a value
while maintaining the orientation of the edge encod-
ing it. The treatment of spurious edges is somewhat
more complicated in this gadget, but iLs operation is
easily verified.

We form inputs by closing off the openings of the
top row of gates with constructions that insure the
presence of an edge in the case of a 1, or the absence
in the case of a 0, as follows:

We close off the output of the circuit and add a
final target vertex. The vertical edge connecting to
this vertex will be in the triangulation iff the output
of the corresponding circuit is 1. 0

321

4 The Weighted Planar Parti-
tioning Problem

In this section we consider the weighted planar parti-
tioning problem, showing it to be P-complete. Intu-
itively, the gadgets we use are similar to those of the
preceding section.

We begin our discussion by noting that a line seg-
ment can only block another of unequal slope. Thus,
a natural restriction is to limit the number of possible
slopes of line segments to some constant k. We will
call this restricted problem the k-oriented weighted
planar partitioning problem.

Theorem 4.1: The 3-oriented weighted planar par-
titioning problem is P-complete.

Proof sketch. As in the proof of Theorem 3.1, we
construct components for routing and logic. These
gadgets work on principles similar to those of the
former problem, so we will not go into detail here
(We include the details in the final version, however).
Throughout our proof, only 3 distinct slopes are used.
In fact, with the exception of a single line segment
used in the construction of the inverter, only hori-
zontal and vertical line segments are used.

In this problem, unlike the preceding, the ordering
of the line segments does not depend on the geometry,
but is imposed separately by the weights. Thus, we
need to specify an ordering along with the line seg-
ments to make our construction work. Our figures
are not as self-explanatory as those of the preceding
section.

Each line segment in a figure is labelled with ei-
ther a number or co (dotted lines represent exten-
sions). The numbers indicate the order in which the
line segments fall with respect to the weights of other
line segments within a particular gadget. We order
gadgets in a manner corresponding to the sequential
evaluation of the instance of PCVP. One such order-
ing is row by row from the top, with an arbitrary or-
dering among elements in a row. We may then order
the complete list of numbered line segments by com-
bining these orderings, with the latter being the most
significant. We place line segments labelled co after
all other line segments in the final ordering. Their
order with respect to each other is arbitrary. Intu-
itively, line segments labelled with co are placed to
force numbered line segments to be extended in only
one direction, or to prevent a segment from being ex-
tended beyond the gate. We do not care how these
blocking line segments are extended.

The gadgets for the left shift and right shift, re-

spect,ively, are:

00
T

p /

+.I i.L.b
I l ea.-

i

The gadget for the fan-out gate is:

i

k
Co

There is no explicit gadget c.orresponding to a ver-
tical wire. A value is transmitted vertically as the
extension of a line segment within some gate. The
gadgets for the V gate and inverter, respectively, are:

‘. OD I

We assign inputs by using the following gadget, to
represent 1:

There is no explicit construction for 0, since it is
represented by the absence of an extension.

The constructions are easily verified, including the
fact that we may insert them into our general frame-

322

work, thus showing the weighted planar partitioning
problem to be P-complete. 0

5 The Visibility Layers Prob-
lem

In this section we will show that the visibility layers
problem is P-complete. As with the previous two con-
structions, the primary consideration is in the rout-
ing. However, in this case we will not be restricted
to planar routing functions. We introduce a more
powerful routing construction, which we call a cross-
ing fan-out gate. Th’ IS allows a very general fan-out
in which we may copy the value of any column i to
any subset of columns, including i. We allow this
gate to cross any number of columns without affect-
ing them. This permits the realization of arbitrary
routing functions. An example of such a gate is the
following:

a x b

X a X b X

Theorem 5.1: The visibility layers problem is P-
comyle t e.

Proof sketch. Our reduction is from the monotone
circuit value problem (MCVP).

As we did for PCVP, we assume that an instance
of MCVP is given as an input assignment (nr , . . . , ZIP),
an alternating sequence (rr, II, T,, Im) of routing
functions and logic layer functions, and a distin-
guished column i, called the output. In the case
of MCVP, however, we do not insist that the rout-
ing functions ri be planar. The logic layer functions
Zi are similar to those used for PCVP, except that
their column gate assignments are drawn from the
set {A, V, I, *), where I is the identity function.

For convenience, we assume that the value of
columns is never reassigned. Informally, this means
that the a column with value * may be given the value
0 or 1 at some level, but once a column value is set
in this way it cannot be subsequently changed (This
notion will be formalized in the final version).

It is easy to see that an instance of MCVP in any
“reasonable” form is NC-reducible to this form.

We will divide our construction into levels, so that
at each level i the values 0 and 1 are represented by
the layer numbers 4i and 4i + 1, respectively. Note
that the O-valued layer always comes before the l-
valued layer (this is crucial to the correctness of our
constructions). Intuitively, each level will consist of
4 visibility layers.

Our mechanism for assigning columns is capable
of changing a I to a 0, but not vice versa. Thus,
columns whose value is initially unassigned in our in-
put (based on our general framework) will be repre-
sented by 4i + 1, the same as 1.

Because our values must be synchronized pre-
cisely, we need to be especially careful about place-
ment. In order to determine the placement of our
gadgets, we will consider the plane to be a discrete
set of unit square cells, each centered at coordinates
(i, j). We interpret th ese coordinates so that i is the
row number, increasing from top to bottom, and j
is the column number, increasing from left to right.
Note that this not the standard interpretation of
Cartesian coordinates. It is more like the interpreta-
tion of matrix subscripts. The latter sc.heme is more
natural, since layer numbers roughly increase with
respect to row numbers.

In the two preceding sections, we could point to
specific geometric objects which represented a value
by their presence or absence. In this case, however,
our encoding scheme is more subtle. In particular,
there is no explicit object which transmits a value
vertically. Intuitively, information seems to travel
down the layers in a wave spread across the whole
set of line segments. It is somewhat surprising that
we can, in fact, produce the effect of a distinct value
propagating down each column.

For this purpose, we introduce a set of n + 1 block-
ers. Each blocker is a stack of line segments placed
above the grid (the set of cells containing routing and
logic) to insure that segments passing through each
grid cell are only visible through a narrow column
in the center. We will call this column the aperture.
There must be enough line segments in each blocker
to insure that this condition remains until all non-
blocker line segments have been given layer numbers.

For the purpose of evaluating the layer numbers
of non-blocker line segments, we need not concern
ourselves with those parts of line segments that pass
beneath the blockers. These will never be visible as
we evaluate the gadgets corresponding to our circuit.

We place the blockers as follows:

- - - - -
- - - - -

. - - - - -

I I 1 . . . 1 I
I I I I I
I I I I I

I I I I I
L-----l-----, L-----4

323

In order to form the routing component, we need
to construct a crossing fan-out gate. The gadget cor-
responding to the crossing fan-out gate shown earlier
is:

The gate will extend across an entire row of the
grid. Its main component is the con&it, which con-
sists of two long line segments, placed so that they
pass across the apertures of all cells in the row. The
idea is that as soon a line segment in the conduit be-
comes visible through the aperture of the input col-
umn, it is removed. The effect of this removal is then
transmitted to the output columns.

We construct the input and output columns of
a crossing fan-out gate by placing either taps or
crossovers in the appropriate cells. A tap consists of
two line segments below the conduit, entirely within
the cell, passing across the aperture. A crossover is
similar, but consists of four line segments above the
conduit. In general, if the ith column is the input
or one of the outputs, we place a tap in the ith cell.
Otherwise we place a crossover.

Intuitively, the purpose of a crossover is to pre-
vent the value above an aperture from affecting the
value of the conduit. By our encoding scheme, we are
guaranteed that at least one of the line segments in
a crossover will persist until after both line segments
of the conduit have been removed. Thus, a value en-
tering at a column with a crossover will not affect
the value of any of the outputs. A tap simply resyn-
chronizes the layer numbers to preserve our encoding
scheme by adding 2 to the layer number. Note that
the conduit also adds 2.

From this construction it may appear that we are
not distinguishing the input from outputs. However,
this distinction comes from the fact that we do not
reuse columns. The input will always be from a col-
umn whose value has already been assigned, and the
output will always be to a column that has not yet
been assigned. By our encoding scheme, the only
column that can possibly be 0 is the input column.
The operation of the crossing fan-out gate can eas-
ily be verified (we give the formal proofs in the final
version).

The gadget for the A gate is:

--- r - ipp”TI- - T - gput 3 T - - ----l
I I I I
I I I I
I I I I
I I I I
I I I output I
L-----l-----l,----,

and the gadget for the v gate is:

I- - i;;p”T1- - T - i;;p”rp- - -7 - - - - - -I
I I - 1 I
I I - I

I I I I
I -- I I

I -~ I OutpUt I
L-----l-----I-----J

The correctness of the A gate follows from the fact
that the output is the minimum of the two inputs
plus 4. The V gate is slightly more complicated, but
its correctness is easily verified. We assume that the
output column is unassigned above the gate, and we
declare the input co1umn.s to be unassigned below the
gate.

The construction for the identity function is the
same as the construction for the crossover in the
crossing fan-out gate. The only difference is that
there is no conduit which it must cross. Its only effect
is to add 4 to the layer number

We construct our input component above the
blockers, by placing a single line segment across the
aperture of a column to represent 1 or unassigned.
We represent 0 by the absence of such a line. It is
easy to see that this assigns appropriate initial values
to the layers immediately below.

We consider the output of the circuit to be the
bottom line segment in the output column designated
in the original instance of MCVP.

All of the steps in the preceding reduction can
clearly be done in NC. Therefore, the visibility lay-
ers problem is P-c.omplete, by an NC reduction from
MCVP. 0

6 Discussion and Open Prob-
lems

We have shown three simple geometric problems in
the plane to be P-complete. Thus, these problems
cannot be solved with a polynomial number of pro-
cessors in polylogarithmic time (unless P=NC). Two
of the problems were decomposition problems and the
third was a layering problem.

A important layering problem whose membership
in NC remains an open problem is the well-known
convexlayers problem1 [6]. This problem is analogous
to the visibility layers problem, but the input is a set
of points, and we remove the points of the convex hull
at each step of our iterative procedure.

Some other open problems in this domain include
the following:

‘The membership in NC of the convex layers problem WRS
posed as an open problem by Atallah at the 11th NYU Com-
putational Geometry Day and by Cheselle at the 1st DIMACS
Workshop on Geometric Complexity.

324

l Suppose: we restrict plane sweep triangulation
to polygons without holes. Does the problem
remain P-iomplete? We suspect that this re-
striction places the problem in NC.

l Consider a-oriented weighted planar partition-
ing. Is this problem P-complete? In fact, this
problem can be reduced to a case of MCVP with
a very restricted (though not planar) topology,
but it is not clear that this places it in NC.

l Suppose we restrict visibility layers to horizon-

tal line segments of unit width. This makes it
impossible to form crossovers. Does the prob-
lem remain P-complete? We suspect that it
does not, but so far no NC algorithm has been
found.

References

111

PI

131

[41

151

PI

A. Aggarwal,

B. Chazelle, L. Guibas, C. b’Dlinlaing, and C. Yap,
“Parallel Computational Geometry,” Algorithmica,
3(3),1988, 293-328.

A.V. Aho, J .E. Hopcroft, and J.D. Ullman, The
Design and Analysis of Computer Algorithms,
Addison- Wesley, 19 74.

M.J. Atallah, R. Cole, and M.T. Goodrich, “Cas-
cading Divide-and-Conquer: A Technique for De-
signing Parallel Algorithms,” SIAM Journcll on
Computing, Vol. 18, No. 3, June 1989, 499-532.

M.J. Atallah and M.T. Goodrich, “Efficient Par-
allel Solutions to Some Geometric Problems,” J. of
Paraltel an.d Dist. Comp., 3(4), Dec. 1986, 492-507.

S. Chandran, “Merging in Parallel Computational
Geometry,” Ph.D. thesis, Dept. of Computer Sci-
ence, Univ. of Maryland, CS-TR-2333, 1989.

B. Chazelle, “On the Convex Layers of a Planar
Set,” IEEE Trans. on Info. Theory, Vol. IT-31,
1985, 509-51’7.

A. Chow, “Parallel Algorithms for Geometric Prob-
lems,” Ph.D. thesis, Camp. Sci. Dept., Univ. of Illi-
nois, 1980.

R. Cole, “Parallel Merge Sort,” SIAM J. Comput-
ing, Vol. 17, No. 4, August 1988, 770-785.

J. Czyzowicz, I. Rival, and J. Urrutia, “Gal-
leries, Light Matchings and Visibility Graphs,” Lec-
ture Notes in CS: 382, PTOC. Workshop on Al-
gorithms and Data Structures (WADS), Springer-
Verlag, 1989, 316-324.

D. Dobkin, R.J. Lipton, and S. Reiss, “Linear Pro-
gramming is Log-space Hard for P,” Info. PTOC. Let-
ters, Vol. 9, 1979, 96-97.

D. Dobkin and S. Reiss, “The Complexity of Lin-
ear Programming,” Theoretical Computer Science,
Vol. 11, 1980, 1-18.

H. Edelsbrunner, Algorithms in Combinatorial Ge-
ometry, Springer-Verlag, NY, 1987.

325

P41

1151

WI

1171

1181

PI

PO1

PI

PI

1231

[241

[25l

1261

[271

[281

PI

1301

M.T. C,oodrirh, “Fffirirnt. Parnllrl Twhniqwn for
Computational Geometry,” Ph.D. thesis, Dept. of
Comp. Sci., Purdue Univ., August 1987.

M.T. Goodrich, “Finding the Convex Hull of a
Sorted Point Set in Parallel,” Information Process-
ing Letters, Vol. 26, Dec. 1987, 173-179.

M.T. Goodrich, “Intersecting Line Segments in Par-
allel with an Output-Sensitive Number of Proces-
sors ,” PTOC. 1989 ACM Symp. on Parallel Algo-
rithms and Architectures, 127-137.

M.T. Goodrich, “Triangulating a Polygon in Paral-
lel,” Journal of Algorithms, Vol. 10, 1989, 327-351.

M.T. Goodrich, M. Ghouse, J. Bright, “Generalized
Sweep Methods for Parallel Computational Geom-
etry,” manuscript, 1990.

L.M. Goldshlager, “The Monotone and Planar Cir-
cuit Value Problems are Log Space Complete for
P,” SIGACT News, Vol. 9, No. 2, 1977, 25-29.

J. Hershberger, personal communication, Novem-
ber 1989.

J.E. Hopcroft and J.D. Ullman, Zntroduction to
Automata Theory, Languages, and Computation,
Adison-Wesley, 1979.

R.M. Karp and V. Ramachandran, “A Survey of
Parallel Algorithms for Shared-Memory Machines,”
Report UCB/CSD 88/408, EECS Dept., Univ. of
California, Berkeley, 1988.

D. Kozen and C.K. Yap, “Algebraic Cell Decompo-
sition in NC,” PTOC. 26th IEEE Symp. on Founda-
tions of Computer Science, 1985, 515-521.

C.P. Kruskal, L. Rudolph, and M. Snir, “A Com-
plexity Theory of Efficient Parallel Algorithms,”
Lecture Notes in CS: 317, PTOC. 15th ZCALP,
Springer-Verlag, 1988, 333-346.

D.T. Lee and F.P. Preparata, “Computational
Geometry-A Survey,” ZEEE Trans. on Comput-
ers, Vol. C-33, No. 12, December 1984, pp. 872-
1101.

S. Miyano, S. Shiraishi,~ and T. Shoudai, “A List
of P-complete Problems,” Technical Report RIFIS-
TR-(X-17, Research Institute of Fundamental In-
formation Science, Kyushu University (Fukuaka
812, JAPAN), 1989.

J. O’Rourke, Art Gallery Th,eorema and Algo-
rithms, Oxford University Press, 1987.

J. O’Rourke, “Computational Geometry,” Ann.
Rev. Gomput. Sci., Vol. 3, 1988, 389-411.

M. Overmars, personal communication, October
1989.

I. Parberry, Parallel Complexity Theory, Pitman
Publishing, 1987.

F.P. Preparata and M.I. Shamos, Computational
Geometry: An Introduction, Springer-Verlag, New
York, NY, 1985.

[RI] F.P. Preparats and R. Tamassia, “Fully Dyn.amic
Techniqnes for Point Location and Transit,ive Clo-
sure in Planar Structures,” Proc. 29th ACM Symp.
on Theory of Computing, 1988, 558-567.

[32] C.K. Yap, “What can be Parallelized in Computa-
tional Geometry?,” manuscript, 1987.

326

