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Summary of Results 

In this paper we show that it is impossible to solve a number of “natural” 2-dimensional 
geometric problems in polylog time with a polynomial number of processors (unless P = NC). 
Thus, we disprove a popular belief that there are no natural P-complete geometric problems in the 
plane. The problems we address include instances of polygon triangulation, planar partitioning, 
and geometric layering. Our results are based on non-trivial reductions from the monotone circuit 
value and planar circuit value problems. 

1 Introduction 

In sequential c.omputation theory one of the primary 
measures of a solution’s efficiency is that it run in 
time that is proportional to a polynomial in the size 
of the input. A problem solvable by such a sequential 
algorithm is said to be in the class P [2, 201. An 
analogous notion of efficiency in parallel computation 
theory is that a solution run in polylog time using a 
polynomial number of processors. A problem solvable 
by such a parallel algorithm is said to be in the class 
NC [21, 23, 25, 291. (Th e reader is referred to [23] 
for other notions of efficiency and related complexity 
c.lasses.) 

It is a long-standing open question as to whether 

all problems solvable in polynomial time sequentially 
are solvable in polylog time using a polynomial num- 
ber of processors, i.e., whether P = NC or not. It is 
strongly believed, however, that P # NC, much as it 
is strongly believed that P # NP. As in the theory of 
NP-completeness, there is an analogous method for 
proving that establishing the membership of a par- 
ticular problem in NC is as hard as showing that 
P = NC. This method is to show that each prob- 
lem in P admits an NC-reduction to the problem 
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at hand. Such problems are usually said to be P- 
complete [21, 251. Most of the problems shown to 
be P-complete to date are essentially c.ombinatorial 
problems, dealing with problems defined on graphs 
and algebras (see [21, 251, for example). 

Geometric problems in the plane, as a rule, admit 
more structure than purely combinatorial problems, 
however. This structure usually allows one to ap- 
ply parallel divide-and-conquer methods to show such 
problems to be in NC. In fact, all the well-known 2-D 
geometric structures, including convex hulls, Voronoi 
diagrams, and line arrangements, can be constructed 
in polylog time using a polynomial number of pro- 
cessors [l, 3, 4, 5, 7, 13, 14, 151. Even the other- 
wise P-complete problem of linear progralnlning is 

in NC when restricted to the plane (see [lo, 111 for 
the P-completeness result). In addition, using the al- 
gebraic cell-decomposition framework of Kozen and 
Yap [22, 321, tl lere are a host of less well-known geo- 
metric problems in the plane that can also be shown 
to be in NC. Because of this, a general belief seems 
to have developed that “natural” geometric problems 
in the plane tend to be in NC. 

In this paper we show that a number of simple 
geometric problems are in fact P-complete. Each of 
these problems involves a collection of line segments 
in the plane. The problems we address are as follows: 

Plane-sweep triangulation. One is given a sim- 
ple n-vertex polygon P (which may contain 
holes) and asked to produce the triangulation 
that would be constructed by the following se- 
quential algorithm: sweep the plane from top 
to bottom with a horizontal line L, such that 
each time L encounters a vertex v of P one 
draws from v all diagonals of P that do not 
cross previously drawn diagonals. This prob- 
lem is a special case of the well-known poly- 
gon triangulation problem (see [12, 24, 301). 
Contrast the P-completeness of this problem 
with the fact that so many problems solvable 
by plane-sweeping have recently been shown to 
be in NC [l, 3, 5, 13, 15, 16, 171 (with solutions 
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that use a small number of processors). 

l Weighted planar partitioning. One is given a 
collection of n non-intersecting segments in the 
plane, such that each segment s is given a dis- 
tinct weight w(s), and asked to construct the 
partitioning of the plane produced by extend- 
ing the segments in order of their weights. The 
extension of a segment “stops” at the first seg- 
ment (or segment extension) that is “hit” by the 
extension. This problem has applications to art 
gallery problems [26], as was shown by Czyzow- 
icz et al. [9]. We show it to be P-complete even 
if there are only 3 possible orientations for the 
line segments. It is straightforward to solve this 
problem sequentially in O(nlog’ n) time (us- 
ing the dynamic point-location data structure 
of [31]), and in O(nlogn) time by a more so- 
phisticated method [9]. 

l Visibility layers. One is given a collection of 
n non-intersecting segments in the plane, and 
asked to label each segment by its “depth” in 
terms of the following layering process (which 
starts with i = 1): compute the upper enve- 
lope of the segments (i.e., those visible from 
(0, +co))! label each segment with a piece in 
this upper envelope as being at depth i, remove 
each such segment, increment i, and repeat un- 
til no segments are left. This is an example 
of a class of problems in computational geom- 
etry known &s layering problems or onion peel- 
in.g problems [6, 24, 2’71, and we show it to be 
P-complete even if all the segments are horizon- 
tal. It can be solved in O(nlogn) time sequen- 
tially [28]. (W h e ave recently learned that Her- 
shberger [19] also has a P-completeness proof 
for the visibility layers problem.) 

Our methods are based on non-trivial reductions 
from the monotone circuit value problem (MCVP) 
and planar circuit value problem (PCVP), which are 
known to be P-complete [18, 23, 251. The main dif- 
ficulty in these reductions is showing how to use ge- 
ometry to simulate a circuit just by using the relative 
positions of objects in the plane. As is often the case 
with completeness results, we expect the techniques 
(and perhaps even the problems themselves) to be 
useful in showing other geometric problems to be P- 
complete. 

In the sections that follow we outline our reduc- 
tions for each of the above problems in turn. For 
pedagogical reasons, we present our proofs as NC- 
reductions, but we could have just as easily pre- 
sented them as logspace-reductions (which is an al- 
ternate framework for P-completeness proofs, e.g., 
see [21, 291). 

2 A Framework For Geometric 
Reductions 

We show the first two problems to be P-complete us- 
ing reductions from the planar circuit value problem 
(PCVP). Because our co-nstructions are geometric, 
particular care must be taken in the routing of values. 
We will handle routing within a general framework in 
which we insert our constructions as components. 

We will assume an instance of PCVP is given as a 
circuit composed of V gates and inverters that is em- 
bedded in a grid. Inputs are placed at the top, and 
the circuit is organized as an alternating sequence 
of routing layers and logic layers. In each row, cer- 
tain columns are assigned to the value of gates in 
the circuit. One can easily show that PCVP remains 
P-complete under these assumptions. 

2.1 Routing 

We describe the routing layer in terms of 4 compo- 
nents: vertical wires, right, shifts, left shifts, and fan- 
out gates. These components are shown below: 

L&j Fllj 

fan-out gate vertical wire 

Each figure is simply a “wiring” diagram, and 
when the wires of two figures are made adjacent, a 
value is transmitted through each wire in the natu- 
ral way. Values can only be transmitted down in the 
vertical direction, though they may be transmitted 
either left or right horizontally. 

We construct a routing layer using a geometric 
placement of these components in which their bound- 
ing rectangles (shown dotted) do not overlap. This 
restriction is significant, because the objects in our 
geometric problems must not intersect. To formalize 
the idea of routing, we define a column value assign- 
ment, and a class of functions, called plan.ar routing 
functions, which transform one column value assign- 
ment to another. 

Because we use a grid embedding we need to as- 
sign boolean values to columns in the grid. To make 
routing possible, we also need to leave some columns 
empty. We give empty columns the value *. A col- 
umn value assignment is an n-tuple (2~~~. . . , vn) E 
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0-4L*Y, where 0 and 1 represent boolean values, 
and * stauds for “unassigned.” 

A routing finction T is a function from column 
value assignments to column value assignments (of 
equal size) and is represented by an n-tuple C = 

(Cl, * . .,cn) E {%..rn}n, with the following inter- 
pretation. 

Let (u’l,. . ., v’,) = T((w~, . . ., wn)). Then, 
for all i, 

V’i = 
* if Ci = 0 

21,; otherwise 

Intuitively, such an T represents the interconnec- 
tions from outputs on one level to inputs on the next 
level. It is more general than a permutation, because 
values can be duplicated, and not all coIumns need 
to be c,onnected. 

A planar routing function is a routing function 
represented by C = (q, . . . , c,), such that for all 1 5 
i < j 5 n, if ci,cj # 0 then ci 5 cj. 

Lemma 2.1: Suppose T is a planar routing function 
represented by C = (cl,. . . , c,), where I{i:ci = 011 >_ 
n/2. Then T can be realized using an n-column rout- 
ing la.yer consisting of vertical wires, left shifts, right 
shifts, and fan-out gates, such that the boundingrect- 
angles of these components do not overlap. 

Proof idea. The restriction I{i:ci = O}l 2 n/2 is 
merely to insure that we have enough empty space to 
fit our routiug components. We perform routing in a 
naive manner, because we need ouly guarantee that 
the size of the instance in the geometric framework 
is a polynomial function of the size of the original 
circuit instance. 

We construct the routing layer in three phases. 
For example, suppose we wish to route the function T, 

where C = (1,3,0,3,0,0,3,6,0,0). First, we spread 
values to allow enough room for fan-out gates: 

1 2 3 4 5 6 7 8 9 10 

I 
I 
I 
1 
I 
I 

-4 

Second, we perform t.he fan-out: 

1 2 3 4 5 6 7 8 9 10 , - - - - - - - - - - , P-w-3 

7-Jl-l~~ 

L___T- -T_ -L-------+- -, 
I I :- -:----- --- _*---- 

Finally, we place values in the appropriate columns: 

1 2 3 4 5 6 7 8 9 10 
,_____ -__---_ -r___C-*_. 

: 

I 
: 

--:- 
I 

rY.lx~~ 

-,---:- -r---+ -..- + -..-, 

I I I I 
I I I I 

: 
___--*_ -___-a C-*-I---d 

It is easy to show that the problem of constructing 
each of the above phases is in NC (Details are given 
in final version). 0 

2.2 Inputs and gates 

We also introduce the folIowing components for in- 
puts and gates: 

r- --- -----7 

K 

v ; 

L____ -_--- -1 

; 1 I 
,---: 

r- ___--. 

.+I L____.. -2 
v gate inverter 

We use input components to realize an initial col- 
umn value assignment and gate components to realize 
a logic layer function. 

Definition. A logic layer function 1 is a func.tion 
from column value assignments to column value as- 
signments of equal size. It is represented by a co1utn.n 

gate assdgnment, Q = (gl, . . .,gn) E {V, 7, *I’* where 
each 7 is preceded by at least one *, and each V is 
preceded by at least two s’s. Intuitively, this is to 
make room for the input columns. It is interpretted 
as follows. 

Let (~‘1,. . ., v’~) = Z((V~, . . ., v,)). Then, 
for all i, 

Vi-2 V Vi-1 if gi = V 
Vii zx -vi-1 if gi = 7 

* otherwise 
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It follows immediately from the definition that we It is represented in the geometrir framework as: 
may realize a logic layer function in terms of logic 
components. It should also be clear that the problem 
of constructing the input and logic layers is in NC. 

2.3 Specifying an instance of PCVP 

We will assume that an instance of PCVP is given 
as an input assignment (211,. . ., vu,), an alternating 
sequence (rl,ll, . . ..t mr Im) of planar routing functions 
and logic layer functions, and a distinguished column 
i, called the output. We may pose this instance as a 
decision problem by asking the following question. 

7 

Let (~‘1,. . . , v’~) denote the result of 

L(%l(. *.h(~l((Vl, * * *, %I))))) 

Does v’i = l? 

The PCVP has been shown to be P-complete for 
the basis of boolean functions (V, -} [18], and it is 
easy to see that an instance of PCVP specified in any :----zxrl- 
“reasonable” format is NC reducible to an instance 
in the above format. Using the framework developed above, we will 

As an example of the reduction to the geometric now show our first two geometric problems to be P- 

framework, consider the following instance of PCVP: complete. Our third problem will require some mod- 
ifications to this framework, which we will develop 
when needed. 

8 

1 1 0 
Input: (U,*,*,O,*,*,*) 
r, : (1,2,0,2,5,0,0,0) 
I, : (*,*,v,*,*,v,*,*) 
r2 : (00300600) ,,7,,9, 
I,: ( *,*,* ,7*,*7r*) 
r-3 : (0,0,0,0,4,7,0,0) 
13 : (*,*,*,*,*,*,v,*) 
output: column 7 

3 The Plane-Sweep Triangula- 
tion Problem 

We consider the problem of triangulating a simple 
polygon, which may contain holes. The problem of 
finding some arbitrary triangulation, is known to be 
in NC (see [13, IS]). In this section, we prove the 
following theorem. 

Theorem 3.1: The plane sweep triangulation prob- 
lem is P-complete. 

Proof sketch. Given the observations of the pre- 
ceding section, and Lemma 2.1, it is sufficient to con- 
struct “gadgets” for each of the component,s needed 
to embed a planar circuit. We present each gadget 
as the object one would see within a rectangular win- 
dow placed over part of the polygon. These gadgets 
fit together in precisely the same manner as the com- 
ponents in our geometric framework. We leave out 
the details of construc.ting the resulting polygou in 
some standard encoding scheme. (This will appear 
in the final version.) 

We encode each value in the circuit by the pres- 
ence or absence of a corresponding edge in the tri- 
angulation. The presence or absence of an edge will 
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represent 1 or 0, respectively. All edges that corre- 
spond to a value will be vertical. The correspondence 
between edges and column values follows from the ge- 
ometry. 

The gadgets for the left shift and right shift, re- 
spectively, are: 

_:’ ‘. : : ._: ‘_ I j,: .:’ ‘. i “.,j :. .,.’ ..f ‘. ,.‘. . .._ ._.’ ‘.,. : _:’ 

:I h: 

: ,.: . i i _.’ . : .:I ‘..,j ;. 

The gadget for the fan-out gate and vertical wire, 
respectively, are: . . : . I ‘, ; ‘!._, ‘... . . ., : 
~ 

‘..,j :.. : ‘.., : . . : ‘.., : . . ‘. : . n .-.!, 
The gadgets for the V gate and inverter, respec- 

tively, are: 

., : ‘. i i .’ _:’ 
). j : .’ 
‘.. : _:’ : . . ‘5. . . ‘... ..“’ 

..,, i .._. ___: . _i, ._ ; 
‘. i 

-?‘r;: ~ 

. .._ i ‘, :.. ._ . . i 
.,_ i 

I. I__ ; . . . . ., F 7. ‘... ‘..i, 

The shapes of our constructions may appear mys- 
terious at first, but the ideas governing them are quite 
simple. We construct logic gates by making use of the 
interaction between crossing pairs of line segments. 
These interacting edges are shown as dotted lines. 
Any polygon we form will introduce spurious edges 
in the triangulation graph. We must be careful to 
construct our gates to prevent these edges from al- 
tering the meaning of edges that encode logic func- 

tions. We show how this is done 11.y considering some 

general features of gates. 
In each construction we add several new vertices 

to the polygon (shown with dots). These may be 
considered 180’ corners. We will call these vertices 
targets, because the output of each gate will be com- 
puted by attempting to draw a line segment to each 
target from some vertex above. 

In every gate, the input edge is a vertical line seg- 
ment passing through an opening made sufficiently 
small to insure that only one vertex above the open- 
ing is visible from the target directly below. This 
opening can be made as small as necessary by the 
placement of two reflex corners. 

Functionally, most gadgets work in two phases 
corresponding to “events” in the plane sweep. The 
first phase corresponds to sweeping past the high- 
est vertex and determining if its target is visible. It 
will be visible unless some input edge is blocking it. 
In this case, one would add the edge connecting the 
highest vertex to its target. The second phase corre- 
sponds to sweeping past the next highest vertex (or 
vertices in the case of the fanout gate), and “attempt- 
ing” to add a vertical edge from it to its target in 
some gate below. This is possible iff the edge of the 
first phase was not added. As one sweeps past the 
rest of the construction, one may add other edges, 
but these will not affect the output edges, since they 
have already been added. 

An exception to the above description is the in- 
verter, which works in three phases. In each phase, 
the edge interactions are the same as those above. 
To invert a value we must use an odd number of such 
interactions. After one interaction, we always change 
the orientation of the edge encoding the value. Thus, 
we need at least three interactions to invert a value 
while maintaining the orientation of the edge encod- 
ing it. The treatment of spurious edges is somewhat 
more complicated in this gadget, but iLs operation is 
easily verified. 

We form inputs by closing off the openings of the 
top row of gates with constructions that insure the 
presence of an edge in the case of a 1, or the absence 
in the case of a 0, as follows: 

We close off the output of the circuit and add a 
final target vertex. The vertical edge connecting to 
this vertex will be in the triangulation iff the output 
of the corresponding circuit is 1. 0 
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4 The Weighted Planar Parti- 
tioning Problem 

In this section we consider the weighted planar parti- 
tioning problem, showing it to be P-complete. Intu- 
itively, the gadgets we use are similar to those of the 
preceding section. 

We begin our discussion by noting that a line seg- 
ment can only block another of unequal slope. Thus, 
a natural restriction is to limit the number of possible 
slopes of line segments to some constant k. We will 
call this restricted problem the k-oriented weighted 
planar partitioning problem. 

Theorem 4.1: The 3-oriented weighted planar par- 
titioning problem is P-complete. 

Proof sketch. As in the proof of Theorem 3.1, we 
construct components for routing and logic. These 
gadgets work on principles similar to those of the 
former problem, so we will not go into detail here 
(We include the details in the final version, however). 
Throughout our proof, only 3 distinct slopes are used. 
In fact, with the exception of a single line segment 
used in the construction of the inverter, only hori- 
zontal and vertical line segments are used. 

In this problem, unlike the preceding, the ordering 
of the line segments does not depend on the geometry, 
but is imposed separately by the weights. Thus, we 
need to specify an ordering along with the line seg- 
ments to make our construction work. Our figures 
are not as self-explanatory as those of the preceding 
section. 

Each line segment in a figure is labelled with ei- 
ther a number or co (dotted lines represent exten- 
sions). The numbers indicate the order in which the 
line segments fall with respect to the weights of other 
line segments within a particular gadget. We order 
gadgets in a manner corresponding to the sequential 
evaluation of the instance of PCVP. One such order- 
ing is row by row from the top, with an arbitrary or- 
dering among elements in a row. We may then order 
the complete list of numbered line segments by com- 
bining these orderings, with the latter being the most 
significant. We place line segments labelled co after 
all other line segments in the final ordering. Their 
order with respect to each other is arbitrary. Intu- 
itively, line segments labelled with co are placed to 
force numbered line segments to be extended in only 
one direction, or to prevent a segment from being ex- 
tended beyond the gate. We do not care how these 
blocking line segments are extended. 

The gadgets for the left shift and right shift, re- 

spect,ively, are: 

00 
T 

p / 

+.I . . . . . . . . . . . . . . . . . . i.L.b 
I l ea.- 

i 

The gadget for the fan-out gate is: 

i 

k 
Co 

There is no explicit gadget c.orresponding to a ver- 
tical wire. A value is transmitted vertically as the 
extension of a line segment within some gate. The 
gadgets for the V gate and inverter, respectively, are: 

‘. OD I 

We assign inputs by using the following gadget, to 
represent 1: 

There is no explicit construction for 0, since it is 
represented by the absence of an extension. 

The constructions are easily verified, including the 
fact that we may insert them into our general frame- 
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work, thus showing the weighted planar partitioning 
problem to be P-complete. 0 

5 The Visibility Layers Prob- 
lem 

In this section we will show that the visibility layers 
problem is P-complete. As with the previous two con- 
structions, the primary consideration is in the rout- 
ing. However, in this case we will not be restricted 
to planar routing functions. We introduce a more 
powerful routing construction, which we call a cross- 
ing fan-out gate. Th’ IS allows a very general fan-out 
in which we may copy the value of any column i to 
any subset of columns, including i. We allow this 
gate to cross any number of columns without affect- 
ing them. This permits the realization of arbitrary 
routing functions. An example of such a gate is the 
following: 

a x b 

X a X b X 

Theorem 5.1: The visibility layers problem is P- 
comyle t e. 

Proof sketch. Our reduction is from the monotone 
circuit value problem (MCVP). 

As we did for PCVP, we assume that an instance 
of MCVP is given as an input assignment (nr , . . . , ZIP), 
an alternating sequence (rr, II, . . . . T,, Im) of routing 
functions and logic layer functions, and a distin- 
guished column i, called the output. In the case 
of MCVP, however, we do not insist that the rout- 
ing functions ri be planar. The logic layer functions 
Zi are similar to those used for PCVP, except that 
their column gate assignments are drawn from the 
set {A, V, I, *), where I is the identity function. 

For convenience, we assume that the value of 
columns is never reassigned. Informally, this means 
that the a column with value * may be given the value 
0 or 1 at some level, but once a column value is set 
in this way it cannot be subsequently changed (This 
notion will be formalized in the final version). 

It is easy to see that an instance of MCVP in any 
“reasonable” form is NC-reducible to this form. 

We will divide our construction into levels, so that 
at each level i the values 0 and 1 are represented by 
the layer numbers 4i and 4i + 1, respectively. Note 
that the O-valued layer always comes before the l- 
valued layer (this is crucial to the correctness of our 
constructions). Intuitively, each level will consist of 
4 visibility layers. 

Our mechanism for assigning columns is capable 
of changing a I to a 0, but not vice versa. Thus, 
columns whose value is initially unassigned in our in- 
put (based on our general framework) will be repre- 
sented by 4i + 1, the same as 1. 

Because our values must be synchronized pre- 
cisely, we need to be especially careful about place- 
ment. In order to determine the placement of our 
gadgets, we will consider the plane to be a discrete 
set of unit square cells, each centered at coordinates 
(i, j). We interpret th ese coordinates so that i is the 
row number, increasing from top to bottom, and j 
is the column number, increasing from left to right. 
Note that this not the standard interpretation of 
Cartesian coordinates. It is more like the interpreta- 
tion of matrix subscripts. The latter sc.heme is more 
natural, since layer numbers roughly increase with 
respect to row numbers. 

In the two preceding sections, we could point to 
specific geometric objects which represented a value 
by their presence or absence. In this case, however, 
our encoding scheme is more subtle. In particular, 
there is no explicit object which transmits a value 
vertically. Intuitively, information seems to travel 
down the layers in a wave spread across the whole 
set of line segments. It is somewhat surprising that 
we can, in fact, produce the effect of a distinct value 
propagating down each column. 

For this purpose, we introduce a set of n + 1 block- 
ers. Each blocker is a stack of line segments placed 
above the grid (the set of cells containing routing and 
logic) to insure that segments passing through each 
grid cell are only visible through a narrow column 
in the center. We will call this column the aperture. 
There must be enough line segments in each blocker 
to insure that this condition remains until all non- 
blocker line segments have been given layer numbers. 

For the purpose of evaluating the layer numbers 
of non-blocker line segments, we need not concern 
ourselves with those parts of line segments that pass 
beneath the blockers. These will never be visible as 
we evaluate the gadgets corresponding to our circuit. 

We place the blockers as follows: 

- - - - - 
- - - - - 

. . . . . . . . . . . . . . . - - - - - 

I I 1 . . . 1 I 
I I I I I 
I I I I I 

I I I I I 
L-----l-----, L-----4 
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In order to form the routing component, we need 
to construct a crossing fan-out gate. The gadget cor- 
responding to the crossing fan-out gate shown earlier 
is: 

The gate will extend across an entire row of the 
grid. Its main component is the con&it, which con- 
sists of two long line segments, placed so that they 
pass across the apertures of all cells in the row. The 
idea is that as soon a line segment in the conduit be- 
comes visible through the aperture of the input col- 
umn, it is removed. The effect of this removal is then 
transmitted to the output columns. 

We construct the input and output columns of 
a crossing fan-out gate by placing either taps or 
crossovers in the appropriate cells. A tap consists of 
two line segments below the conduit, entirely within 
the cell, passing across the aperture. A crossover is 
similar, but consists of four line segments above the 
conduit. In general, if the ith column is the input 
or one of the outputs, we place a tap in the ith cell. 
Otherwise we place a crossover. 

Intuitively, the purpose of a crossover is to pre- 
vent the value above an aperture from affecting the 
value of the conduit. By our encoding scheme, we are 
guaranteed that at least one of the line segments in 
a crossover will persist until after both line segments 
of the conduit have been removed. Thus, a value en- 
tering at a column with a crossover will not affect 
the value of any of the outputs. A tap simply resyn- 
chronizes the layer numbers to preserve our encoding 
scheme by adding 2 to the layer number. Note that 
the conduit also adds 2. 

From this construction it may appear that we are 
not distinguishing the input from outputs. However, 
this distinction comes from the fact that we do not 
reuse columns. The input will always be from a col- 
umn whose value has already been assigned, and the 
output will always be to a column that has not yet 
been assigned. By our encoding scheme, the only 
column that can possibly be 0 is the input column. 
The operation of the crossing fan-out gate can eas- 
ily be verified ( we give the formal proofs in the final 
version). 

The gadget for the A gate is: 

--- r - ipp”TI- - T - gput 3 T - - ----l 
I I I I 
I I I I 
I I I I 
I I I I 
I I I output I 
L-----l-----l,----, 

and the gadget for the v gate is: 

I- - i;;p”T1- - T - i;;p”rp- - -7 - - - - - -I 
I I - 1 I 
I I - I 

I I I I 
I -- I I 

I -~ I OutpUt I 
L-----l-----I-----J 

The correctness of the A gate follows from the fact 
that the output is the minimum of the two inputs 
plus 4. The V gate is slightly more complicated, but 
its correctness is easily verified. We assume that the 
output column is unassigned above the gate, and we 
declare the input co1umn.s to be unassigned below the 
gate. 

The construction for the identity function is the 
same as the construction for the crossover in the 
crossing fan-out gate. The only difference is that 
there is no conduit which it must cross. Its only effect 
is to add 4 to the layer number 

We construct our input component above the 
blockers, by placing a single line segment across the 
aperture of a column to represent 1 or unassigned. 
We represent 0 by the absence of such a line. It is 
easy to see that this assigns appropriate initial values 
to the layers immediately below. 

We consider the output of the circuit to be the 
bottom line segment in the output column designated 
in the original instance of MCVP. 

All of the steps in the preceding reduction can 
clearly be done in NC. Therefore, the visibility lay- 
ers problem is P-c.omplete, by an NC reduction from 
MCVP. 0 

6 Discussion and Open Prob- 
lems 

We have shown three simple geometric problems in 
the plane to be P-complete. Thus, these problems 
cannot be solved with a polynomial number of pro- 
cessors in polylogarithmic time (unless P=NC). Two 
of the problems were decomposition problems and the 
third was a layering problem. 

A important layering problem whose membership 
in NC remains an open problem is the well-known 
convexlayers problem1 [6]. This problem is analogous 
to the visibility layers problem, but the input is a set 
of points, and we remove the points of the convex hull 
at each step of our iterative procedure. 

Some other open problems in this domain include 
the following: 

‘The membership in NC of the convex layers problem WRS 
posed as an open problem by Atallah at the 11th NYU Com- 
putational Geometry Day and by Cheselle at the 1st DIMACS 
Workshop on Geometric Complexity. 
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l Suppose: we restrict plane sweep triangulation 
to polygons without holes. Does the problem 
remain P-iomplete? We suspect that this re- 
striction places the problem in NC. 

l Consider a-oriented weighted planar partition- 
ing. Is this problem P-complete? In fact, this 
problem can be reduced to a case of MCVP with 
a very restricted (though not planar) topology, 
but it is not clear that this places it in NC. 

l Suppose we restrict visibility layers to horizon- 

tal line segments of unit width. This makes it 
impossible to form crossovers. Does the prob- 
lem remain P-complete? We suspect that it 
does not, but so far no NC algorithm has been 
found. 
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