
Round-Trip Voronoi Diagrams and

Doubling Density in Geographic Networks

Matthew T. Dickerson
Middlebury College

Middlebury, VT, USA
Email: dickerso@middlebury.edu

Michael T. Goodrich
Univ. of California, Irvine

Irvine, CA, USA
Email: goodrich@ics.uci.edu

Thomas D. Dickerson
St. Michael’s College
Colchester, VT, USA

Email: tdickerson@smcvt.edu

Abstract

The round-trip distance function on a geographic network (such as a
road network, flight network, or utility distribution grid) defines the “dis-
tance” from a single vertex to a pair of vertices as the minimum length
tour visiting all three vertices and ending at the starting vertex. Given a
geographic network and a subset of its vertices called sites (for example a
road network with a list of grocery stores), a two-site round-trip Voronoi
diagram labels each vertex in the network with the pair of sites that min-
imizes the round-trip distance from that vertex. Alternatively, given a
geographic network and two sets of sites of different types (for example
grocery stores and coffee shops), a two-color round-trip Voronoi diagram
labels each vertex with the pair of sites of different types minimizing the
round-trip distance. In this paper, we prove several new properties of two-
site and two-color round-trip Voronoi diagrams in a geographic network,
including a relationship between the doubling density of sites and an upper
bound on the number of non-empty Voronoi regions. We show how those
lemmas can be used in new algorithms asymptotically more efficient than
previous known algorithms when the networks have reasonable distribu-
tion properties related to doubling density, and we provide experimental
data suggesting that road networks with standard point-of-interest sites
have these properties.

1 Introduction

A geographic network is a graph G = (V,E) that represents a transportation or
flow network, where commodities or people are constrained to travel along the
edges of that graph. Examples include road, flight, and railroad networks, utility

1

ar
X

iv
:1

00
5.

10
53

v1
 [

cs
.D

S]
 6

 M
ay

 2
01

0

distribution grids, and sewer lines. We assume that the edges of a geographic
network are assigned weights, which represent the cost, distance, or penalty of
moving along that edge, or some combination of these and other factors, such
as scenic or ecological value. The only requirement we make with respect to
these weights is that they be non-negative. In this paper, we also restrict our
attention to undirected geographic networks.

Since all our edge weights are non-negative, and the edges are undirected, a
shortest path exists between each pair of vertices in G. The distance, d(v, w)
for v, w ∈ G, is defined as the length of a shortest (i.e., minimum weight) path
between v and w. This distance function, d, is well-defined, and d(v, w) =
d(w, v). The triangle inequality holds for this path distance d.

This observation allows us to define the Voronoi diagram of a geographic
network. Formally, we define a geographic network, G = (V,E), to be a set V
of vertices, a set E of edges (which are unordered pairs of distinct vertices), and
a weight function mapping E to non-negative real numbers. In a road network,
this weight function could represent either distance along a road (that is, the
Euclidean length of an edge) or the travel time. In the Voronoi diagram problem,
we are also given a subset K ⊂ V of special vertices called sites. These are the
“post offices” in Knuth’s post office problem, but of course they could also be
any points of interest (or POIs) such as a schools, hospitals, fire stations, or
grocery stores. Each site v ∈ K is uniquely labeled with a natural number n(v)
from 0 to |K| − 1, so that we can refer to sites by number. The numbering is
also used to resolve ties so that the ordering of sites by distance can be uniquely
defined.

The standard first-order graph-theoretic Voronoi diagram [14] of G is a la-
beling of each vertex w in V with the number, n(v), of the vertex v in K that
is closest to w. All the vertices with the same label, n(v), are said to be in the
Voronoi region for v. Intuitively, if a site v in K is considered a post office, then
the Voronoi region for v consists of all the homes that ought to be in v’s zip
code. (See Fig. 1.)

37

22

48

40

24
30

29

17

41

34

37

24 46

26

23

A

B

D

C

Figure 1: An example graph-theoretic Voronoi diagram with sites A,B,C,D.

Mehlhorn [14] shows that the graph-theoretic Voronoi diagram of a graph
G, having n vertices and m edges, can be constructed in O(n log n+m) time. A
similar algorithm is given by Erwig [10]. At a high level, these algorithms per-
form n simultaneous runs of Dijkstra’s single-source shortest-path algorithm [9]

2

(see also [6, 11]). In this paper, however, we are not interested in these types of
single-site Voronoi diagrams.

1.1 Round-Trip Distance

In a number of applications, we may be interested in labeling the vertices of
a geographic network, G, with more information than just their single nearest
neighbor from the set of sites, K. We may wish, for instance, to label each
vertex v in G with the names of the C closest sites in K, for some C ≤ |K|.
For example, the sites in K may be fire stations, and we may wish to know the
three closest fire stations for each house in our network, just in case there is a
three-alarm fire at that location.

For many applications, “closest” among a set of neighbors should instead
be defined by the round-trip or tour distance. (For C = 2, and for point sites
on the Euclidean plane, this distance was referred to in [4] as the “perimeter”
distance, in reference to the perimeter of a triangle, since shortest paths are
straight edges. In this paper, although we also focus on the case c = 2, we
will refer to this function as the “round-trip” distance in reference both to road
networks and to the more general case of C ≥ 2.) In this notion of distance,
we want to take a single trip, starting and ending at our “home” location and
visiting two (or more) distinguished sites. Such distances correspond to the
work that would need to be done, for example, by someone who needs to leave
their house, visit multiple sites to run a number of errands, and then return
home. Some motivating examples include the following:

• Some legal documents require the signatures of multiple witnesses and/or
notaries in order to be executed, so we may need to travel to multiple
locations to get them all.

• Some grocery stores place a limit on the amount of special “loss leader”
sale items one can purchase in a single visit, so we may need to visit
multiple stores to get enough of such items needed for a big party.

• A celebrity just out of rehab may wish to get multiple community service
credits in a single trip, for instance, by tutoring students at an educational
institution and speaking at an alcohoics anonymous meeting at a religious
institution, all on the same day.

In each case, we are likely to want to optimize our travel time to visit all the
sites of interest as quickly as possible. Thus, we focus in this paper on the
construction of multi-site Voronoi diagrams for round-trip distance functions.
(See Fig. 2.)

Alternatively, we may have a number of different kinds of sites, such as gas
stations, grocery stores, and coffee houses, and we are interested in the three
that are closest to each house, in terms of how one could visit all three types
of sites in a single trip from home. Thus we are also interested in multi-color
Voronoi diagrams, where each type of site (such as coffee houses and grocery
stores) is represented with a different color.

3

37

22

48

40

24
30

29

17

41

34

37

24 46

26

23

A

B

D

C

V(B,D)

V(C,D)

V(B,C)

V(A,B)

(a)

37

22

48

40

24
30

29

17

41

34

37

24 46

26

23

A

B

D

C

V(B,D)

V(B,C)

V(A,B)

(b)

Figure 2: (a) An example graph-theoretic two-site sum function Voronoi dia-
gram of the same graph from Fig. 1. (b) An example graph-theoretic two-site
round-trip function Voronoi diagram of the same graph as in Fig. 1.

1.2 Related Prior Work

Unlike prior work on graph-theoretic Voronoi diagrams, there is a abundance of
prior work for geometric Voronoi diagrams. It is beyond the scope of this paper
to review all this work and its applications. We refer the interested reader to
any excellent survey on the subject (e.g., see [1]) and we focus here on previous
work on multi-site geometric Voronoi diagrams and on graph-theoretic Voronoi
diagrams.

Lee [13] studies k-nearest neighbor Voronoi diagrams in the plane, which are
also known as “order-C Voronoi diagrams.” These structures define each region,
for a site p, to be labeled with the C nearest sites to p. These structures can be
constructed for a set of n points in the plane in O(n2+C(n−C) log2 n) time [5].
Due to their computational complexity, however, order-C Voronoi diagrams
have not been accepted as practical solutions to C-nearest neighbor queries.
Patroumpas et al. [15] study methods for performing C-nearest neighbor queries
using an approximate order-C network Voronoi diagram of points in the plane,
which has better performance than its exact counterpart.

Two-site distance functions and their corresponding Voronoi diagrams were

4

introduced by Barequet, Dickerson, and Drysdale [4]. A two-site distance func-
tion is measured from a point to a pair of points. In Euclidean space, it is a
function Df : R2 × (R2 × R2) → R mapping a point p and a pair of points
(v, w) to a non-negative real number. The sum function, DS , results in the
same Voronoi diagram as the 2-nearest neighbor (order-2) Voronoi diagram, but
the authors considered a number of other combination rules as well including
area and product. The complexity of the round-trip two-site distance function
Voronoi diagram was left by [4] as an open problem, and remains open.

As we mentioned above, single-site graph-theoretic Voronoi diagrams were
considered by Mehlhorn [14], who presented an algorithm running in O(n log n+
m) time. Bae and Chwa [2, 3] study hybrid schemes where distance is defined
by a graph embedded in the plane and distance is defined by edge lengths.

As far as multi-site queries are concerned, Safar [16] studies k-nearest neigh-
bor searching in road networks, but he does so using the first-order Voronoi
diagram, rather than considering a multi-site Voronoi diagram for geographic
networks. Likewise, Kolahdouzan and Shahabi [12] also take the approach of
constructing a first-order Voronoi diagram and searching it to perform C-nearest
neighbor queries. Instead, de Almeida and Güting [7] compute C-nearest neigh-
bors on the fly using Dijkstra’s algorithm. None of these methods actually
construct a multi-site or multi-color graph-theoretic Voronoi diagram, however,
and, to the the best of our knowledge, there is no previous paper that explicitly
studies multi-site or multi-color Voronoi diagrams on graphs. In [8], Dickerson
and Goodrich study two-site Voronoi diagrams in graphs, but without employing
any techniques that could improve running times beyond repeated Dijkstra-like
algorithms.

1.3 Our Results

In this paper, we focus on two-site and two-color Voronoi diagrams on graphs
using the round-trip function DP for defining these concepts, although we also
discuss the sum distance function, DS , as well. In particular, for a vertex p or
a point p on an edge e and a pair of sites v, w, our two-site distance functions
are defined as follows:

DS(p, (v, w)) = d(p, v) + d(p, w)

DP (p, (v, w)) = d(p, v) + d(p, w) + d(v, w)

The sum function can easily be extended from 2 to k sites: DS(p, (v1, . . . , vk)) =∑
1≤i≤k d(p, vi). Note that with k-site distance functions, we also have a similar

rule for breaking ties in distances.
We prove several new properties of two-site round-trip distance function

Voronoi diagrams on geographic networks, and make use of these properties to
provide a new family of algorithms for computing these diagrams. We extend
our proofs for the two-color variant, which is arguably more applicable than the
one-color variant. (Though as noted above, there are cases when one might wish
to visit several grocery stores on one trip, it is easier to imagine a case where
we want the shortest tour visiting both a grocery store and a post office.)

5

One property we explore relates to the doubling densities of various types
of POI sites on a geographic networks. The doubling density of a class of sites
from a vertex v is the number of sites of that type within twice the distance from
v as the closest site to v of that type. The run-times of our algorithms depend
in part on the average doubling density of various sites from other sites. They
also depend on the related density of the total number of edges within twice
the distance from one site to the nearest other site of that type. (This latter
property could be thought of as a different kind of doubling density.) We will
prove a property that allows us to prune our search based on doubling distances,
and will also provide experimental results about the doubling densities of various
POIs on a set of states.

The algorithms have run times whose expected case is asymptotically faster
than the algorithm of [8] under realistic assumptions of how sites are distributed
in the network. Finally, we show how to extend two-site Voronoi diagrams to
multi-site and multi-color diagrams, under the sum function, while only in-
creasing the running time by a factor of C, where C is the multiplicity we are
interested in.

2 Constructing Graph-Theoretic Voronoi Dia-
grams

In this section, we review the approach of Mehlhorn [14] and Erwig [10] for con-
structing a (single-site) graph-theoretic Voronoi diagram of a graph G, having n
vertices and m edges, which runs in O(n log n+m) time, and, for completeness,
we also review the two-site sum function algorithm of [8], but with one minor
correction.

Given a geographic network, G = (V,E), together with a set of sites, K ⊆ V ,
and a non-negative distance function on the edges in E, the main idea for con-
structing a graph-theoretic Voronoi diagram for G is to conceptually create a
new vertex, a, called the apex, which was originally not in V , and connect a
to every site in K by a zero-weight edge. We then perform a single-source,
shortest-path (SSSP) algorithm from a to every vertex in G, using an efficient
implementation of Dijkstra’s algorithm. Intuitively, this algorithm grows the
Voronoi region for each site out from its center, with the growth for all the
sites occurring in parallel. Moreover, since all the Voronoi regions grow simul-
taneously and each region is contiguous and connected by a subgraph of the
shortest-path tree from a, we can label vertices with the name of their Voronoi
region as we go.

In more detail, the algorithm begins by labeling each vertex v in K with
correct distance D[v] = 0 and every other vertex v in V with tentative distance
D[v] = +∞, and we add all these vertices to a priority queue, Q, using their
D labels as their keys. In addition, for each vertex v in K, we label v with the
name of its Voronoi region, R(v), which in each case is clearly R(v) = n(v).
In each iteration, the algorithm removes a vertex v from Q with minimum D

6

value, confirming its D label and R label as being correct. It then performs a
relaxation for each edge (v, u), incident to v, by testing if D[v]+w(v, u) < D[u].
If this condition is true, then we set D[u] = D[v]+w(v, u), updating this key for
u in Q, and we set R(u) = R(v), to indicate (tentatively) that, based on what
we know so far, u and v should belong to the same Voronoi region. When the
algorithm completes, each vertex will have its Voronoi region name confirmed,
as well as the distance to the site for this region. Since each vertex is removed
exactly once from Q and each key is decreased at most O(m) times, the running
time of this algorithm is O(n log n + m) if Q is implemented as a Fibonacci
heap. In addition, note that this algorithm “grows” out the Voronoi regions in
increasing order by distance from the apex, a, and it automatically stops the
growing of each Voronoi region as soon as it touches another region, since the
vertices in an already completed region are (by induction) closer to the apex
than the region we are growing.

2.1 Two-site Distance Functions on Graphs

As mentioned above, the two-site sum function Voronoi diagram is equivalent
to the second order two-nearest neighbor Voronoi diagram, which identifies for
each vertex v in our graph, G, the two nearest sites to v. It follows that the two-
site Voronoi diagram is equivalent to the two-nearest neighbor Voronoi diagram
for a set of points in the plane or a graph.

Intuitively, the algorithm of [8] for constructing a two-site Voronoi diagram
under the sum function is to perform a Dijkstra single-source shortest-path
(SSSP) algorithm from each site, in parallel, but visit each vertex twice—once
for each of the two closest sites to that vertex.

More specifically, we begin by labeling each vertex v in K with correct
first-neighbor distance D1[v] = 0 and every other vertex v in V with tentative
first-neighbor distance D1[v] = +∞, and we add all these vertices to a priority
queue, Q, using their D1 labels as their keys. We also assign each vertex v ∈ V
(including each site in K) its tentative second-neighbor distance, D2[v] = +∞,
but we don’t yet use these values as keys for vertices in Q. In addition, for each
vertex v in K, we label v with the name of its first-order Voronoi region, R1(v),
which in each case is clearly R1(v) = n(v). In each iteration, the algorithm
removes a vertex v from Q with minimum key. How we then do relaxations
depends on whether this key is a D1 or D2 value.

• Case 1: The key for v is a D1 value. In this case we confirm the D1 and
R1 values for v, and we add v back into Q, but this time we use D2[v] as
v’s key. We then perform a relaxation for each edge (v, u), incident to v,
according to the following test:

Relaxation(v, u):

if u has had its R2 label confirmed then
Return (for we are done with u).

else if u has had its R1 label confirmed then

7

if R1(v) 6= R1(u) and D1[v] + w(v, u) < D2[u] then
Set D2[u] = D1[v] + w(v, u)
Set R2(u) = R1(v)

if D2[v] + w(v, u) < D2[u] then
Set D2[u] = D2[v] + w(v, u)
Set R2(u) = R2(v).

else
if D1[v] + w(v, u) < D1[u] then

Set D1[u] = D1[v] + w(v, u)
Set R1(u) = R1(v).

In addition, if the D1 or D2 label for u changes, then we update this key
for u in Q. Moreover, since we are confirming the D1 and R1 labels for v,
in this case, we also do a reverse relaxation for each edge incident to v by
calling Relaxation(u, v) on each one.

• Case 2: The key for v is a D2 value. In this case we confirm the D2 and
R2 values for v, and we do a relaxation for each edge (v, u), incident to v,
as above (but with no reverse relaxations).

When the algorithm completes, each vertex will have its two-site Voronoi region
names confirmed, as well as the distance to each of its two-nearest sites for this
region. For the analysis of this algorithm, first note that no vertex will be visited
more than twice, since each vertex is added to the queue, Q, twice—once for
its first-order nearest neighbor and once for its second-order nearest neighbor.
Moreover, once a vertex is added to Q, its key value is only decreased until
it is removed from Q. Thus, this algorithm requires O(n log n + m) time in
the worst cast when Q is implemented using a Fibonacci heap, where n is the
number of vertices in G and m is the number of edges. By the same reasoning,
the priority queue Q won’t grow larger than O(n) during the algorithm, so the
space required is O(n).

3 Properties of Round-Trip Voronoi Diagrams
on Graphs

Using the sum distance function for a two-site graph-theoretic Voronoi diagram
allows us to label each vertex in G with its two nearest neighbors. Such a
labeling is appropriate, for example, for fire stations or police stations, where
we might want agents from both locations to travel to our home, or if we need to
take separate trips to different sites. If instead we want to leave our home, travel
to two nearby sites on the same trip, and return home, then we will need to use
the round-trip function. Before presenting a new algorithm for this function,
we first prove several properties of the round-trip distance function diagram on
graphs.

Our first lemma is relatively straightforward, but provides an important
property for pruning searches in our algorithms.

8

Lemma 1 Let v be any vertex in a geographic network G, (s, t) a pair of sites
in G minimizing the round-trip distance function DP from v. Then for any
sites p, q in G:

d(v, s) ≤ (d(v, p) + d(v, q) + d(p, q))/2

d(v, t) ≤ (d(v, p) + d(v, q) + d(p, q))/2

Proof of Lemma 1: By assumption, DP (v, (s, t)) ≤ DP (v, (p, q)). By
the triangle inequality, 2d(v, s) ≤ d(v, s) + d(v, t) + d(s, t)) = DP (v, (s, t)).
Combining these, we get, d(v, s) ≤ 1

2DP (v, (p, q)) = 1
2 (d(v, p)+d(v, q)+d(p, q)).

The argument for d(v, t) is symmetric. End Proof.
What this means is that if we know of some tour from vertex v through sites

p and q—that is, we have a candidate pair (p, q) to minimize the round-trip
distance from v— then our algorithms can safely ignore any other site s that
is further from v than 1

2DP (v, (p, q)) because s cannot be a part of a pair that
minimizes the round-trip distance from v.

This lemma combined with the triangle inequality d(p, q) ≤ d(v, p) + d(v, q)
leads to the following corollary, which is a weaker condition, but one easily
implementable as a pruning technique on a SSSP search.

Corollary 2 Let p, q be the two sites closest to some vertex v under normal
graph distance, and (s, t) the pair of sites minimizing the round-trip function
DP from v. Then d(v, s) ≤ d(v, p) + d(v, q) and d(v, t) ≤ d(v, p) + d(v, q).

The following double distance lemma provides a similar but less obvious
condition that can also be used for pruning.

Lemma 3 (Doubling Distance Property) For any pair of sites s, t in a ge-
ographic network G, if there exists any other sites p, q ∈ G such that d(s, t) >
2d(s, p) and d(s, t) > 2d(t, q)), then (s, t) cannot minimize the round-trip dis-
tance function for any vertex v ∈ G.

Proof of Lemma 3 (by contradiction): (See Figure 3.) Assume that
there is some vertex v such that (s, t) is the closest pair of sites in the round-
trip distance—that is, v is in the Voronoi region for (s, t). Assume also that
there are sites p, q ∈ G such that d(s, t) > 2d(s, p) and d(s, t) > 2d(t, q)).
Without loss of generality, let d(v, s) ≤ d(v, t). (Otherwise reverse the role
of s and t.) We now consider the round-trip distance DP (v, (s, p)). Applying
the triangle inequality, we get: DP (v, (s, p)) = d(v, s) + d(s, p) + d(p, v) ≤
d(v, s) + d(s, p) + (d(v, s) + d(s, p)). By assumption, 2d(s, p) < d(s, t) and
d(v, s) ≤ d(v, t) and thus: DP (v, (s, p)) < d(v, s)+d(v, t)+d(s, t) = DP (v, (s, t)),
contradiction our assumption that (s, t) is the closest pair to v. End Proof

Note that Lemma 3 holds even if if s and t both meet the condition of
Lemma 1—that is, even if for some vertex v, s and t are both closer to v than
1
2DP (v, (p, q)) for all sites p, q, the pair (s, t) cannot minimize the round-trip
distance from v. Thus if the conditions of Lemma 3 hold, it follows immediately
that the Voronoi region for (s, t) is empty in the two-site round-trip distance
function Voronoi diagram.

9

Ct

Cs

s t

v

p

Figure 3: Illustrating the proof of Lemma 3. The edges represent shortest paths,
not single edges.

We now state a final property of round-trip function Voronoi diagrams on
graphs.

Lemma 4 Let s be any site in a geographic network G, and v, w any vertices
in G such that a shortest path from s to v goes through w. If there exist any
sites p, q ∈ G such that d(w, s) > 1

2 (d(w, p) + d(w, q) + d(p, q)) then s cannot be
part of a nearest round-trip pair to v.

Proof of Lemma 4: (See Figure 4.) For any t we know the following by
the triangle inequality and the fact that w is on the shortest path from s to v:

d(v, t) + d(t, s) ≥ d(v, w) + d(w, s) (1)

Also by assumption

2d(w, s) > d(w, p) + d(w, q) + d(p, q). (2)

Using Equations 1 and 2, we now show that DP (v, (p, q)) < DP (v, (s, t)) for s
and any other site t.

DP (v, (p, q)) = d(v, p) + d(v, q) + d(p, q)

DP (v, (p, q)) ≤ [d(v, w) + d(w, p)] + [d(v, w) + d(w, q)] + d(p, q)

DP (v, (p, q)) ≤ 2d(v, w) + d(w, p) + d(w, q) + d(p, q)

DP (v, (p, q)) < 2d(v, w) + 2d(w, s)

DP (v, (p, q)) < 2d(v, t) + 2d(t, s)

DP (v, (p, q)) < d(v, t) + d(t, s) + d(v, s)

DP (v, (p, q)) < DP (v, (s, t))

10

(d(w,p)+d(w,q)+d(p,q))/2

s

w

v

p

q

t

Figure 4: Illustrating the proof of Lemma 4. The edges represent shortest paths
in the graph, and not single edges. The edges (s, w) and (w, v) represent (by
assumption) the shortest path from s to v.

End Proof.
We could rephrase this in the contrapositive, in a form similar to that of

Lemma 1. Let v be any vertex in a geographic network G, (s, t) a pair of sites
in G minimizing the round-trip distance function DP from v, w a vertex on a
shortest path from s to v, and p, q any sites in G, then d(w, s) ≤ (d(w, p) +
d(w, q) + d(p, q))/2. What this Lemma means is that even if the pair of sites
(s, t) meet the condition of Lemma 1 for some vertex v—that is, s is a candidate
site to be part of the closest pair to v—if the shortest path from s to v goes
through some vertex w for which s does not meet that condition, then not only
is s not part of a closest pair for w, s also cannot be part of a closest round-trip
pair to v. Together, these three lemmas are sufficient to prove the correctness
of the algorithms in the following section.

3.1 Two-Color Variants

These lemmas can all be extended to apply to the two-color variant. The two
color versions are given below. In the follow lemmas, we let G = (V,E, S, T)
be a geographic network, with S ⊂ V and T ⊂ V two disjoint sets of sites (of
different colors). The two-color round-trip distance is from a vertex in V to a
pair of sites (s, t) with s ∈ S and t ∈ T . The proofs of these lemmas are directly
analogous to the proofs above.

Lemma 5 Let v be any vertex in G. Let s ∈ S and t ∈ T be a pair of sites such
that (s, t) minimizes the two-color round-trip distance function DP from v. Let

11

p ∈ S and q ∈ T be sites in G. Then:

d(v, s) ≤ (d(v, p) + d(v, q) + d(p, q))/2

d(v, t) ≤ (d(v, p) + d(v, q) + d(p, q))/2

Corollary 6 Let p ∈ S and q ∈ T be the sites in S and T respectively that are
closest to some vertex v under normal graph distance, and let (s, t) (with s ∈ S
and t ∈ T) be the pair of sites minimizing the two-color round-trip function DP

from v. Then d(v, s) ≤ d(v, p) + d(v, q) and d(v, t) ≤ d(v, p) + d(v, q).

Lemma 7 For any pair of sites s ∈ S and t ∈ T in a geographic network G,
if there exists any other sites p ∈ T and q ∈ S such that d(s, t) > 2d(s, p) and
d(s, t) > 2d(t, q)), then (s, t) cannot minimize the round-trip distance function
for any vertex v ∈ G.

Lemma 8 Let s be any site in a geographic network G, and v, w any vertices
in G such that a shortest path from s to v goes through w. If there exist any
sites p ∈ S and q ∈ T such that d(w, s) > 1

2 (d(w, p) + d(w, q) + d(p, q)) then s
cannot be part of a nearest round-trip pair to v.

4 Round-Trip Voronoi Diagram Algorithms

We now provide algorithms to compute the round-trip function Voronoi dia-
gram for a geographic network and set of sites G = (V,K,E). Specifically, the
algorithm labels each vertex v ∈ V with a pair of sites in K minimizing the
two-site round-trip distance function from v.

4.1 A Brute Force Algorithm

An algorithm for this problem was first presented in [8]. The algorithm, in Step
1, performs a complete SSSP algorithm on G from each of the k sites in K.
(Unlike in the Sum function algorithm above, these searches do not need to be
interleaved—that is, performed in parallel—as the algorithm searches the entire
graph from each site.) It records the distances from v to every site in K, and
then creates a table of distances between all pairs of sites (p, q) ∈ K, allowing
constant time access to d(p, q). Then, in Step 2, for each vertex v ∈ V and
each pair of sites (p, q) ∈ S, the algorithm explicitly computes the round-trip
distance

DP (v, (p, q)) = d(v, p) + d(v, q) + d(p, q)

and labels each v with pair (p, q) minimizing this function.
This brute force approach uses the SSSP algorithm to efficiently compute all

distances between pairs of vertices, and then explicitly compares all round-trip
distances. The algorithm requires O(k2n+km+kn log n) time and O(nk) space
when we implement it using Fibonacci heaps as discussed above.

12

4.2 Improving the Brute Force Method: a Revised Algo-
rithm

We now show how the properties of the previous section can be used to prune
the search depth of the brute force algorithm of [8]. Our new algorithm has
three steps, or phases.

Step 1 corresponds to Step 1 of the brute force approach above, except that
we interleave the SSSP searches (as is done with the sum function) and we bound
the number of sites that visit each vertex using some value B. In practice, this
bounds the SSSP search outward from each site in K. The specific value of
B–possibly determined as a function of n,m, k –will be described in the next
section; the algorithm is correct regardless of the value of B, but its run time
will depend on B. Ideally, the SSSP of Step 1 provides enough information
for most (or all) of the vertices to determine the pair of sites minimizing the
round-trip distiance. However the pruning may result in some vertices having
incomplete information.

In Step 2, we need to complete information for each of these vertices that still
have incomplete information by preforming an addition SSSP search outward
from that vertex until it reaches all the sites satisfying Lemma 1. In particular,
the smaller the value of B, the less work is done in Step 1, but the more potential
work will need to be done in Step 2.

By Step 3, we have all the distance information needed to compute DP (v, (s, t))
for all pairs of sites (s, t) satisfying Corollary 2, and Lemmas 3 and 4. We need
only explicitly compute these distances from the information computed in Steps
1 and 2. Note that the pruning of Step 1 reduces not only the time required by
each SSSP search, but also the number of explicit distances computed.

We start with the basic three-phase revised algorithm to compute the round-
trip distance function two-site Voronoi diagram on a graph G = (V,K,E).

• Step 1: Perform parallel Dijkstra SSSP algorithm from each site p ∈ K.
For each vertex v ∈ V , record the distances from the first B+1 sites whose
SSSP search visits v. Any subsequent search (after the B + 1st) visiting v
is not recorded and the search is terminated. (As we will show, the result
of Step 1 is that for each vertex, we have a list of the B + 1 closest sites
in sorted order.

• Step 2: For each vertex v ∈ V , let p, q be two closest sites in K, and
compute dv = d(v, p) + d(v, q). By Corollary 2, no site further than
dv from v is a candidate to be part of a pair minimizing the round-trip
distance from v. So we consider two cases:

case i: If the final site p on the sorted list of B + 1 closest sites to v is
further from v than dv, then we have found all sites closer to v than dv
and no work needs to be done on vertex v in this Step; the list of sites at
v contains all possible candidate sites that could be part of a closest pair
in the round-trip function.

13

case ii: If the final site on the sorted list for v is not further than dv,
then we cannot guarantee that v was visited by all the candidate sites. In
this case, we perform a SSSP algorithm from v and halt when we reach
any vertex further from v than dv. (Note that this is done also for those
vertices that are also sites in K. Since dv is at least as great as twice the
distance from v to its nearest site, we will compute distances between all
pairs of sites satisfying Lemma 3.)

• Step 3: For each vertex v ∈ V , compute DP (v, (s, t)) = d(v, s) +d(v, t) +
d(s, t) for all sites s, t for which d(v, s) and d(v, t) are stored at v and
d(s, t) is stored at either s or t. (If d(s, t) was not computed, then (s, t)
is not a candidate pair and may be ignored.) Store at v the pair (s, t)
minimizing DP (v, (s, t)).

4.2.1 Correctness

Since the first B + 1 SSSP searches that reach any vertex will continue through
the vertex, by induction each vertex is guaranteed to be reached by the SSSP
from at least its closest B + 1 sites in Step 1. In Step 2, therefore, by looking
at the first two and the last site in the list for each vertex v, we can determine
if all sites meeting Corollary 2 have visited v. If not, then an SSSP from v (in
case ii) will reach those sites. So by Corollary 2 and Lemma 4, any sites s, t
for which the algorithm does not explicitly computer DP (v, (s, t)) cannot be a
candidate to minimize the round-trip distance from v.

4.2.2 Worst Case Analysis

We now analyze the algorithm. In Step 1, we visit each vertex B + 1 times.
(If a search arrives at a vertex v that has already been visited B + 1 times, we
count that work to the edge along which the SSSP came to v.) An edge can be
traversed at most B+1 times from the vertices on each end, for a total of O(B)
visits. So Step 1 requires O(Bm+Bn log n) time because we are overlapping B
SSSP searches. We are storing B + 1 sites and distances at each vertex, as well
as a list of O(k2) distances between each pair of sites, so the space required is
O(Bn + m + k2).

In step 2, we need to store distances between pairs of sites s, t that are
candidates to minimize round-trip distance for some vertex. If we use a table,
we need worst case O(k2) space with O(1) time access for any pair (s, t). We
also store distances between vertex v and its candidate sites in sorted order;
there are at most B sites per list in Step 1, and though in Step 2 the lists can
grow to size O(k) we only need to store one list at a time, and so space required
is O(Bn + m + k2).

In step 2, if for a vertex v, the B + 1 vertices on its list includes all the
sites within distance dv, then we are in case i, and the total amount of work
for that vertex in step 2 is O(1) and in step 3 is O(B2) to explicitly compute
all possible round-trip distances of candidate pairs (since for each pair of sites

14

(s, t) the distance d(s, t) has already been computed and can be retrieved in
O(1) time.) The total run time for these sites is thus O(B2n).

For the rest of the vertices v, those in case ii, we must do a new SSSP from
v. This requires O(m + n log n) time per vertex for the search and O(k2) time
per vertex to look at all pairs of sites. Let A be the number of sites processed
in case ii. The run time for all of them is O(Am + An log n + Ak2).

The overall run time is thus O((A + B)(m + n log n) + B2n + Ak2) and the
space required is O(nB + m + k2).

In the next section, we formalize this and also provide some experimental
data on values of A and B. First, however, we provide a further revision showing
how for many real world networks such as road networks, we can make fuller
use of Lemma 1 for an algorithm whose run time is significantly better.

4.3 Further Revisions: a Dynamic Variation

It is possible that we can further reduce the depth of our SSSP searches, and
thus the number of candidate pairs examined in our algorithm. Lemma 1 gives
a stronger condition than Corollary 2 that must be met by any site that is a
candidate to minimize the round-trip distance from a vertex v.

Specifically, instead of using a static bound that prunes the depth of our
searches in Step 1, and then simply computing the distance from vertex v to its
two nearest sites, we would like to keep an updated minimal value of DP (v, (s, t))
for all sites s, t whose SSSP searches have visited v. By Lemmas 1 and 4, we
can then prune any search that reaches v from any site further away than the
minimum value of 1

2DP (v, (s, t)).
Unfortunately, using this stronger condition requires that we dynamically

update the minimum value of DP (v, (s, t)) which in turn requires that we pre-
compute or preprocess the values of d(s, t) for all pairs of sites meeting the
condition of Lemma 3. This leads to the following two-step algorithm.

• Step 1: Perform a SSSP algorithm from each site p ∈ K, terminating the
search at the first vertex whose distance from p is greater than 2d(p, q)
where q is the closest other site to p (discovered in the SSSP). Store the
values of d(p, q) for all pairs of sites reached in all of the searches.

• Step 2: Perform interleaved SSSP searches from each site p ∈ K, as in
Step 1 of the previous algorithm. At each vertex v, store the sites s whose
searches reach v along with the distance d(v, s). Using this information
and the table from Step 1, once a second site search has visited v, also
compute and maintain the distance DP (v, (s, t)) = d(v, s)+d(v, t)+d(s, t)
that minimizes this function among all pairs of sites s, t which have visited
v (as well as the pair (s, t) minimizing that distance). Terminate the search
from any site farther from v than 1

2DP (v, (s, t)) for the minimum value of
DP (v, (s, t)) seen so far.

15

4.3.1 Worst Case Analysis

In the worst case, Step 1 will require O(m + n log n) time and O(n + m) space
for each SSSP for a total of O(km+kn log n) time, plus an extra O(k2) space to
store the table of distances between pairs of sites, for a total of O(k2 + m + n)
space.

Similarly, in the worst case in Step 2, each of the k SSSP algorithm may
require O(m+n log n) time, but since the searches are interleaved we may need
extra O(nk) space to have k searches active at once. We also need to compute
O(k2) distances at each vertex in the worst case, but k ≤ n and so we have a
total of O(km + kn log n) time and O(nk + m) space.

As we will see in the following section, however, road networks and many
types of POI sites have properties that result in a much more efficient algorithm.

4.4 The Two-Color Variant

The algorithms of the previous section can be extended to the two-color variant,
where for each vertex v we want to find the pair of sites (or POIs) of two different
types–say a grocery store and a post office–that minimize the distance of the
shortest round-trip from v. The same basic approaches of both the revised
algorithm and the dynamic variant of the revised algorithm work for the two-
color version. Lemmas 5, 7, and 8 suffice as proof.

Other than the obvious change that the two-color versions of the algorithms
compute and minimize the round-trip distances to pairs of sites of different
types, there are only two other primary changes that are necessary. In the first
stage, we still perform the interleaved SSSP algorithms from all sites (of both
types). However at each vertex v we store separate lists of the sites of the two
different types that visit v. This doubles the worst-case memory requirement.

Second, the application of Lemma 7 two-color variant is slightly different
than that of Lemma 3 to the standard round-trip distance function. In the
dynamic version we need to pre-compute only the distances from sites of one
type to sites of the other. In particular, if our two sets of sites are S and T ,
we need to compute the distance from each t ∈ T to all the sites in S no more
than twice the distance of the closest site in S to t, and symmetrically from
each s ∈ S to all the sites in T no more than twice the distance of the closest
site in T to s.

In terms of run-times, what this means for the two-color variant of the round-
trip distance function Voronoi diagram is that we care about the doubling density
of sites in T with respect to sites in S and vice versa–rather than the doubling
density of sites in one set to other sites in the same set, as is the case with the
standard round-trip two-site distance function.

16

5 Empirical Analysis on Doubling Density and
Dynamic Pruning on Road Networks

For the two-color version of the problem we ran experiments on road networks
from 14 different U.S. states: CT, HI, IL, IN, LA, MA, MD, ME, NH, NJ, NY,
OH, TN, and VT. The state road networks ranged in size from Hawaii, with
only 64892 vertices and 76809 edges to New York, with 716215 vertices and
897451 edges. They also varied greatly in terrain, urban areas, and presence of
large areas of wilderness with sparse roads. Multiple POIs of the same type at
the same address were combined into one site. However POIs in close proximity
but at different vertices were treated separately.

For our two “colors” of sites, we report on experiments using educational
institutions and religious institutions accessed from a publicly available collec-
tion of POIs. The number of sites in a file ranged from a minimum of 144
(educational institutions in HI) to a maximum of 7640 (educational institutions
in TN). In addition to being publicly available POIs, these also made a good
choice because they are intuitively distributed in a way that could lead to poor
performance. Educational institutions—unlike, for example, post offices or fire
stations—are unevenly distributed; a large campus for a single institution may
contribute to the POI file numerous buildings in close proximity but with dif-
ferent addresses.

We report first on the doubling densities of these POIs on road networks
with respect to teach other, and on then the depths to which the SSSP searches
need to go before they can be pruned by Lemmas 4 and 8.

5.1 Doubling Density

As noted above, the preprocessing in Step 1 of the dynamic variant of the
algorithm must compute a table of distances between pairs of sites that define
potential Voronoi regions. In the worst case, this may take O(km + kn log n)
time to compute and additional O(k2) space to store the table, where k is the
number of sites. However by Lemmas 3 and 7, we only need to store pairs of
sites (s, t) if s is no more than twice as far from t as the nearest other site to t,
or vice versa. This improved efficiency for Step 1 thus depends on a property we
call the doubling density, which is defined as follows: for a given vertex v and
set of sites S, the doubling density of v is the number of sites in S no further
from v than twice the distance to the nearest other site to v (not counting v if
v ∈ S.)

We computed the average doubling density from religious institutions to ed-
ucational institutions, and vice versa, as well as the number of times edges were
visited on all of these searches. We report here on the key factors, which are the
total number of two-color pairs of candidate sites generated by both searches—
that is, the number of possibly pairs that could have non-empty Voronoi regions
and are stored in the table in Step 1—and also the total number of times edges
were visited in both sets of searches to compute this table

17

Figure 5: Values of c/k (candidate pairs divided by number of sites) as a function
of k (number of sites) for fourteen states.

Let c be the total double density—that is, the number of “candidate pairs”
of sites that might have non-empty Voronoi regions. In the worst case, c could
be Ω(k2) where k is the number of sites. However empirical results for these
POIs on fourteen states shows that c is O(k). In particular, the ratio c/k of
the total number of candidate pairs to the total number of sites (of both types)
ranged from 2.92 to 5.06. A graph of all fourteen states is shown in Figure 5.

Figure 6: Based on the doubling density, the average number of times each
edge is visited (in the search for candidate pairs) visited as a function of n (for
fourteen states.)

Furthermore, closely related to this the doubling density, the average number
of times each edge is visited in computing this table, in the total of both types
of searches, was less than 22 in all trials. See Figure 6. Thus empirical results
suggest a constant average doubling density, a table of candidate pairs that is

18

Figure 7: The average number of candidate pairs of sites per vertex (for fourteen
states.)

linear in the number of input sites, and a total run time of O(m + n log n) and
total space of O(n + m) for all the SSSP searches to compute this information.

5.2 Dynamic Pruning on Road Networks

Results on the level of pruning are equally promising, though less immediately
so; an amortized approach is required to see the efficiency. In particular, when
sites of one type are much denser than sites of another—as is the case, for
example, when there is a large educational campus that contributes numerous
entries to a POI file in a small area—then the number of pairs of sites satisfying
Lemma 1 and 5 may be large, prohibiting an early pruning of the searches and
requiring distance calculations for numerous pairs of sites.

However in the two-color variant, there is no second phase of the algorithm
when we must perform a SSSP search from each vertex with incomplete infor-
mation. Instead, the SSSP searches from the original sites continue until all of
them have been pruned. So we can bound the overall run time of these searches
simply by the total number of times that a search continues through a vertex—
or, equivalently, by the average number of times that each vertex is visited. In
all trials except Hawaii, the average number of such vertex visits was less than
10 per vertex, which is linear on the size of the graph. (For Hawaii, which had
the smallest graph, the number was 16.) That is, each vertex was visited an
average of O(c) SSSP searches for a total of O(n) vertex visits, before further
searches are dynamically pruned by Lemma 8.

Equally importantly for the efficiency of the algorithm, the number of pairs
of sites of different colors that are are tested for each vertex empirically appears
to converge to 10 as the number n of vertices grows, as shown in Figure 7.
Thus, empirically the total number of distances explicitly computed to find the
minimum was O(n).

This immediately implies that the space complexity of all the SSSPs never

19

exceeds O(n). So empirical data suggests that Step 2 also requires O(m+n log n)
time and O(n + m) space.

References

[1] F. Aurenhammer. Voronoi diagrams: A survey of a fundamental geometric
data structure. ACM Comput. Surv., 23(3):345–405, Sept. 1991.

[2] S. W. Bae and K.-Y. Chwa. Voronoi diagrams with a transportation net-
work on the euclidean plane. In Proc. Int. Symp. on Algorithms and Com-
putation (ISAAC), volume 3341 of LNCS, pages 101–112. Springer, 2004.

[3] S. W. Bae and K.-Y. Chwa. Shortest paths and Voronoi diagrams with
transportation networks under general distances. In Proc. Int. Symp. on
Algorithms and Computation (ISAAC), volume 3827 of LNCS, pages 1007–
1018. Springer, 2005.

[4] G. Barequet, M. T. Dickerson, and R. L. S. Drysdale. 2-point site Voronoi
diagrams. Discrete Appl. Math., 122(1-3):37–54, 2002.

[5] B. Chazelle and H. Edelsbrunner. An improved algorithm for constructing
kth-order Voronoi diagrams. IEEE Trans. Comput., C-36:1349–1354, 1987.

[6] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to
Algorithms. MIT Press, Cambridge, MA, 2nd edition, 2001.

[7] V. T. de Almeida and R. H. Güting. Using Dijkstra’s algorithm to incre-
mentally find the k-nearest neighbors in spatial network databases. In SAC
’06: Proceedings of the 2006 ACM symposium on Applied computing, pages
58–62, New York, NY, USA, 2006. ACM.

[8] M. T. Dickerson and M. T. Goodrich. Two-site voronoi diagrams in geo-
graphic networks. In GIS ’08: Proceedings of the 16th ACM SIGSPATIAL
international conference on Advances in geographic information systems,
pages 1–4, New York, NY, USA, 2008. ACM.

[9] E. W. Dijkstra. A note on two problems in connexion with graphs. Nu-
merische Mathematik, 1:269–271, 1959.

[10] M. Erwig. The graph Voronoi diagram with applications. Networks,
36(3):156–163, 2000.

[11] M. T. Goodrich and R. Tamassia. Algorithm Design: Foundations, Analy-
sis, and Internet Examples. John Wiley & Sons, New York, NY, 2002.

[12] M. Kolahdouzan and C. Shahabi. Voronoi-based k nearest neighbor search
for spatial network databases. In VLDB ’04: Proceedings of the Thirtieth
international conference on Very large data bases, pages 840–851. VLDB
Endowment, 2004.

20

[13] D. T. Lee. On k-nearest neighbor Voronoi diagrams in the plane. IEEE
Trans. Comput., C-31:478–487, 1982.

[14] K. Mehlhorn. A faster approximation algorithm for the Steiner problem in
graphs. Information Processing Letters, 27:125–128, 1988.

[15] K. Patroumpas, T. Minogiannis, and T. Sellis. Approximate order-k
Voronoi cells over positional streams. In GIS ’07: Proceedings of the 15th
annual ACM international symposium on Advances in geographic informa-
tion systems, pages 1–8, New York, NY, USA, 2007. ACM.

[16] M. Safar. K nearest neighbor search in navigation systems. Mob. Inf. Syst.,
1(3):207–224, 2005.

21

	1 Introduction
	1.1 Round-Trip Distance
	1.2 Related Prior Work
	1.3 Our Results

	2 Constructing Graph-Theoretic Voronoi Diagrams
	2.1 Two-site Distance Functions on Graphs

	3 Properties of Round-Trip Voronoi Diagrams on Graphs
	3.1 Two-Color Variants

	4 Round-Trip Voronoi Diagram Algorithms
	4.1 A Brute Force Algorithm
	4.2 Improving the Brute Force Method: a Revised Algorithm
	4.2.1 Correctness
	4.2.2 Worst Case Analysis

	4.3 Further Revisions: a Dynamic Variation
	4.3.1 Worst Case Analysis

	4.4 The Two-Color Variant

	5 Empirical Analysis on Doubling Density and Dynamic Pruning on Road Networks
	5.1 Doubling Density
	5.2 Dynamic Pruning on Road Networks

