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Abstract. We study methods for drawing trees with perfect angular resolution,
i.e., with angles at each vertex, v, equal to 2π/d(v). We show:

1. Any unordered tree has a crossing-free straight-line drawing with perfect
angular resolution and polynomial area.

2. There are ordered trees that require exponential area for any crossing-free
straight-line drawing having perfect angular resolution.

3. Any ordered tree has a crossing-free Lombardi-style drawing (where each
edge is represented by a circular arc) with perfect angular resolution and
polynomial area.

Thus, our results explore what is achievable with straight-line drawings and what
more is achievable with Lombardi-style drawings, with respect to drawings of
trees with perfect angular resolution.

1 Introduction

Most methods for visualizing trees aim to produce drawings that meet as many of the
following aesthetic constraints as possible:

1. straight-line edges,
2. crossing-free edges,
3. polynomial area, and
4. perfect angular resolution around each vertex.

These constraints are all well-motivated, in that we desire edges that are easy to follow,
do not confuse viewers with edge crossings, are drawable using limited real estate, and
avoid congested incidences at vertices. Nevertheless, previous tree drawing algorithms
have made various compromises with respect to this set of constraints; we are not aware
of any previous tree-drawing algorithm that can achieve all these goals simultaneously.
Our goal in this paper is to show what is actually possible with respect to this set of
constraints and to expand it further with a richer notion of edges that are easy to fol-
low. In particular, we desire tree-drawing algorithms that satisfy all of these constraints
simultaneously. If this is provably not possible, we desire an augmentation that avoids
compromise and instead meets the spirit of all of these goals in a new way, which, in
the case of this paper, is inspired by the work of artist Mark Lombardi [17].
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Problem Statement. The art of Mark Lombardi involves drawings of social networks,
typically using circular arcs and good angular resolution. Figure 1 shows such a work of
Lombardi that is crossing-free and almost a tree. Note that it makes use of both circular
arcs and straight-line edges. Inspired by this work, let us define a set of problems that
explore what is achievable for drawings of trees with respect to the constraints listed
above but that, like Lombardi’s drawings, also allow curved as well as straight edges.

Fig. 1: Mark Lombardi, Pat Robertson, Beurt Servaas, and the UPI Takeover Battle,
ca. 1985-91, 2000 [17].

Given a graph G = (V,E), let d(u) denote the degree of a vertex u, i.e., the number
of edges incident to u in G. For any drawing of G, the angular resolution at a vertex u
is the minimum angle between two edges incident to u. A vertex has perfect angular
resolution if its minimum angle is 2π/d(u), and a drawing has perfect angular resolu-
tion if every vertex does. Drawings with perfect angular resolution cannot be placed on
an integer grid unless the degrees of the vertices are constrained, so we do not require
vertices to have integer coordinates. We define the area of a drawing to be the ratio of
the area of a smallest enclosing circle around the drawing to the square of the distance
between its two closest vertices.

Suppose that our input graph, G, is a rooted tree T . We say that T is ordered if
an ordering of the edges incident upon each vertex in T is specified. Otherwise, T
is unordered. If all the edges of a drawing of T are straight-line segments, then the
drawing of T is a straight-line drawing. We define a Lombardi drawing of a graph G
as a drawing of G with perfect angular resolution such that each edge is drawn as a
circular arc. When measuring the angle formed by two circular arcs incident to a vertex
v, we use the angle formed by the tangents of the two arcs at v. Circular arcs are strictly
more general than straight-line segments, since straight-line segments can be viewed as
circular arcs with infinite radius. Figure 2 shows an example of a straight-line drawing
and a Lombardi drawing for the same tree. Thus, we can define our problems as follows:

1. Is it always possible to produce a straight-line drawing of an unordered tree with
perfect angular resolution and polynomial area?

2. Is it always possible to produce a straight-line drawing of an ordered tree with
perfect angular resolution and polynomial area?

3. Is it always possible to produce a Lombardi drawing of an ordered tree with perfect
angular resolution and polynomial area?
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(a) Straight-line drawing for an unordered tree (b) Lombardi drawing for an ordered tree

Fig. 2: Two drawings of a tree T with perfect angular resolution and polynomial area as
produced by our algorithms. Bold edges are heavy edges, gray disks are heavy nodes,
and white disks are light children. The root of T is in the center of the leftmost disk.

Related Work. Tree drawings have interested researchers for many decades: e.g., hierar-
chical drawings of binary trees date to the 1970’s [23]. Many improvements have been
proposed since this early work, using space efficiently and generalizing to non-binary
trees [2, 5, 12–14, 20–22]. These drawings do not achieve all the constraints mentioned
above, however, especially the constraint on angular resolution.

Alternatively, several methods strive to optimize angular resolution of trees. Radial
drawings of trees place nodes at the same distance from the root on a circle around the
root node [10]. Circular tree drawings are made of recursive radial-type layouts [19].
Bubble drawings [15] draw trees recursively with each subtree contained within a circle
disjoint from its siblings but within the circle of its parent. Balloon drawings [18] take
a similar approach and heuristically attempt to optimize space utilization and the ratio
between the longest and shortest edges in the tree. Convex drawings [4] partition the
plane into unbounded convex polygons with their boundaries formed by tree edges.
Although these methods provide several benefits, none of these methods guarantees
that they satisfy all of the aforementioned constraints.

The notion of drawing graphs with edges that are circular arcs or other nonlinear
curves is certainly not new to graph drawing. For instance, Cheng et al. [6] used circle
arcs to draw planar graphs in an O(n)×O(n) grid while maintaining bounded (but
not perfect) angular resolution. Similarly, Dickerson et al. [7] use circle-arc polylines
to produce planar confluent drawings of non-planar graphs, Duncan et al. [8] draw
graphs with fat edges that include circular arcs, and Cappos et al. [3] study simultaneous
embeddings of planar graphs using circular arcs. Finkel and Tamassia [11] use a force-
directed method for producing curvilinear drawings, and Brandes and Wagner [1] use
energy minimization methods to place Bézier splines that represent express connections
in a train network. In a separate paper [9] we study Lombardi drawings for classes of
graphs other than trees.

Our Contributions. In this paper we present the first algorithm for producing straight-
line, crossing-free drawings of unordered trees that ensures perfect angular resolution
and polynomial area. In addition we show, in Section 3, that if the tree is ordered (i.e.,
given with a fixed combinatorial embedding) then it is not always possible to maintain
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perfect angular resolution and polynomial drawing area when using straight lines for
edges. Nevertheless, in Section 4, we show that crossing-free polynomial-area Lom-
bardi drawings of ordered trees are possible. That is, we show that the answers to the
questions posed above are “yes,” “no,” and “yes,” respectively.

2 Straight-line drawings for unordered trees

Let T be an unordered tree with n nodes. We wish to construct a straight-line drawing
of T with perfect angular resolution and polynomial area.

The main idea of our algorithm is, similarly to the common bubble and balloon tree
constructions [15, 18], to draw the children of each node of the given tree in a disk
centered at that node; however, our algorithm differs in several key respects in order to
achieve the desired area bounds and perfect angular resolution.

2.1 Heavy Path Decomposition

The initial step before drawing the tree T is to create a heavy path decomposition [16]
of T . To make the analysis simpler, we assume T is rooted at some arbitrary node r.
We let Tu represent the subtree of T rooted at u, and |Tu| the number of nodes in Tu. A
node c is the heavy child of u if |Tc| ≥ |Tv| for all children v of u. In the case of a tie, we
arbitrarily designate one node as the heavy child. We refer to the non-heavy children as
light and let L(u) denote the set of all light children of u. The light subtrees of u are the
subtrees of all light children of u. We define l(u) = 1+∑v∈L(u) |Tv| to be the light size
of u. An edge is called a heavy edge if it connects a heavy child to its parent; otherwise
it is a light edge. The set of all heavy edges creates the heavy-path decomposition of
T , a disjoint set of (heavy) paths where every node in T belongs to exactly one path,
see Figure 3. The heavy path decomposition has the following interesting property. If
we treat each heavy path as a node, and each light edge as connecting two heavy-path
nodes, we obtain a tree H(T ). This tree has height h(T )≤ log2 n since the size of each
light child is less than half the size of its parent. We refer to the level of a heavy path as
the depth of the corresponding node in the decomposition tree, where the root has depth
0. We extend this notion to nodes, i.e., the level of a node v is the level of the heavy path
to which v belongs.

2.2 Drawing Algorithm

Our algorithm draws T incrementally in the order of a depth-first traversal of the corre-
sponding heavy-path decomposition tree H(T ), i.e., given drawings of the lower-level
heavy paths (the light children and their descendents) connected to a heavy path P in
H(T ) we construct a drawing of P and its subtrees. Let P = (v1, . . . ,vk) be a heavy path.
Then we draw each node vi of P in the center of a disk Di and place smaller disks con-
taining the drawings of the light children of vi and their descendents around vi in two
concentric annuli of Di. We guarantee perfect angular resolution at vi by connecting
the centers of the child disks with appropriately spaced straight-line edges to vi. Next,
we create the drawing of P and its descendents within a disk D by placing D1 in the
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Fig. 3: The tree T on the left highlights its heavy edges. The corresponding heavy-path
decomposition tree H(T ) on the right has each heavy path represented by a single node.

center of D and D2, . . . ,Dk on concentric circles around D1. We show that the radius of
D is linear in the number n(P) of nodes descending from P and exponential in the level
of P. In this way, at each step downwards in the heavy path decomposition, the total
radius of the disks at that level shrinks by a constant factor, allowing room for disks at
lower levels to be placed within the higher-level disks. Figure 2a shows a drawing of an
unordered tree according to our method.

Before we can describe the details of our construction we require the following
simple geometric property. We define an (R,δ )-wedge, δ ≤ π as a sector of angle δ of
a radius-R disk, see Figure 4.

Lemma 2.1. The largest disk that fits inside an (R,δ )-wedge has radius r =R sin(δ/2)
1+sin(δ/2) .

Proof. The largest disk inside the (R,δ )-wedge touches the circular arc and both radii
of the wedge. Thus we immediately obtain a right triangle formed by the apex of the
wedge, the center of the disk we want to fit, and one of its tangency points with the
two radii of the wedge, see Figure 4. This triangle has one side of length r and the
hypothenuse of length R− r. From sin(δ/2) = r

R−r we obtain r = R sin(δ/2)
1+sin(δ/2) . ut

R

δ

r

Fig. 4: An (R,δ )-wedge and the largest disk that can be placed inside it.

In the next lemma we show how to draw a single node v of a heavy path P given
drawings of all its light subtrees.
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Lemma 2.2. Let v be a node of T at level j of H(T ) with degree d(v) ≥ 2 and two
incident heavy edges. For each light child u ∈ L(v) assume there is a disk Du of radius
ru = 2 ·8h(T )− j−1|Tu| that contains a fixed drawing of Tu with perfect angular resolution
and such that u is in the center of Du. Then we can construct a drawing of v and its light
subtrees inside a disk D such that the following properties hold:

1. the edge between v and any light child u ∈ L(v) is a straight-line segment that does
not intersect any disk other than Du;

2. the heavy edges do not intersect any disk Du;
3. any two disks Du and Du′ for u 6= u′ are disjoint;
4. the angular resolution of v is 2π/d(v);
5. the angle between the two heavy edges is at least 2π/3 and at most 4π/3;
6. the disk D has radius rv = 8h(T )− jl(v).

Proof. We assume that the heavy edge to the parent of v is directed horizontally to the
left. We draw a disk D with radius rv centered at v and create d(v) spokes, i.e., rays
extending from v including the fixed heavy edge and being equally spaced by an angle
of 2π/d(v). Obviously, every neighbor of v must be placed on a distinct spoke in order
to satisfy properties 3 and 4. The main difficulty is that there can be child disks that are
too large to place without overlap on adjacent spokes inside D.

Let Dmax be the largest disk Du of any u ∈ L(v) and let rmax be its radius. We
split D into an outer annulus A and an inner disk B by a concentric circle of radius
R = rv−2rmax, see Figure 5. We define a child u ∈ L(v) to be a small child, if its radius
ru ≤ R sin(π/d(v))

1+sin(π/d(v)) , and to be a large child otherwise. We further say Du is a small
(large) disk if u is a small (large) child. We denote the number of small children as ns
and the number of large children as nl . By Lemma 2.1 we know that any small disk Du
can be placed inside an (R,2π/d(v))-wedge. This means that we can place all ns small
disks on any subset of ns spokes inside B without violating property 3. So once we have
placed all large disks correctly then we can always distribute the small children on the
unused spokes.

We place all large disks in the outer annulus A. Observe that

4 ∑
u∈L(v)

ru = 4 ∑
u∈L(v)

2 ·8h(T )− j−1|Tu|= 8h(T )− j
∑

u∈L(v)
|Tu|< 8h(T )− jl(v) = rv,

i.e., we can place all light children on the diameter of a disk of radius at most rv/4. If
we order all light children along that diameter by their size we can split them into one
disk containing the large disks and one containing the small disks, see Figure 5a.

Assume that the large disks are arranged on the horizontal diameter of their disk
and that this disk is placed vertically above v and tangent to D as shown in Figure 5a.
Since that disk has radius at most rv/4 we can use Lemma 2.1 to show that it always fits
inside an (rv,π/4)-wedge. If we now translate the large disks vertically upward onto a
circle centered at v with radius rv− rmax then they are still disjoint and they all lie in
the intersection of A and the (rv,π/4)-wedge. We now rotate them counterclockwise
around v until the leftmost disk Dmax touches the horizontal heavy edge. Thus all large
disks are placed disjointly inside a π/4-sector of A. However, they are not centered on
the spokes yet.
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(a) All light children fit into a disk of radius
rv/4 and are split into small and large disks.

(b) Large disks are placed in the outer an-
nulus and small disks in the inner disk.

Fig. 5: Drawing a node v and its light children L(v).

Beginning from the leftmost large disk, we rotate each large disk Du and all its right
neighbors clockwise around v until Du snaps to the next available spoke. Clearly, in
each of the nl steps we rotate by at most 2π/d(v) in order to reach the next spoke.

We now bound the number nl of large children. By definition a child is large if ru =

2 ·8h(T )− j−1|Tu|> (rv−2rmax)
sin(π/d(v))

1+sin(π/d(v)) . We also have rv≥ 8h(T )− j
∑u∈L(v) |Tu|. Let w

be the light child of v with maximum disk radius rw = rmax. Then rw = 2 ·8h(T )− j−1|Tw|
and hence rv− 2rmax ≥ 4 · 8h(T )− j−1(2∑u∈L(v) |Tu| − |Tw|). So for a light child u to be

large its subtree Tu has to contain |Tu|> 2 ·(2∑u∈L(v) |Tu|−|Tw|) sin(π/d(v))
1+sin(π/d(v)) nodes. This

yields

nl < 1+
∑u∈L(v) |Tu|− |Tw|

2 · (2∑u∈L(v) |Tu|− |Tw|) sin(π/d(v))
1+sin(π/d(v))

< 1+
1+ sin(π/d(v))
4sin(π/d(v))

.

From this we obtain that for d(v) ≥ 5 we have nl < 3d(v)/8. So for d(v) ≥ 5 we
can always place all large disks correctly on spokes inside at most half of the outer
annulus A since we initially place all large disks in a π/4-wedge and then enlarge that
wedge by at most 3d(v)/8 · 2π/d(v) = 3π/4 radians. For d(v) = 2 there are no light
children, for d(v) = 3 we immediately place the single light child on its spoke without
intersecting the two heavy edges, and for d(v) = 4 we place the two light children on
opposite vertical spokes separated by the two heavy edges, which does not produce any
intersections either.

Since we require at most half of A to place all large children, we can assign the
remaining heavy edge to the spoke exactly opposite of the first heavy edge if d(v) is
even. If d(v) is odd, we choose one of the two spokes whose angle with the fixed heavy
edge is closest to π . Finally, we arbitrarily assign the ns small children to the remaining
free spokes inside the inner disk B.

By construction the drawing for v and its light subtrees obtained in this way satisfies
properties 1–6. ut
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v1

v2

v3

v4

S2 S3 S4

(a) Placing disks in vertical strips.

v1

v2

v3

v4

A2 A3 A4

(b) Final transformation of the drawing.

Fig. 6: Constructing the heavy path drawing by appending drawings of its heavy nodes.

Lemma 2.2 shows how to draw a single heavy node v and its light subtrees. It also
applies to the root of T if we ignore the incoming heavy edge, and to the root node v1
of a heavy path P = (v1, . . . ,vk) at level l ≥ 1 if we consider the light edge uv1 to its
parent u as a heavy edge for v1. We note that the last node vk of P is always a leaf that
is trivial to draw. For drawing an entire heavy path P = (v1, . . . ,vk) we need to link the
drawings of the heavy nodes into a path.

Lemma 2.3. Given a heavy path P = (v1, . . . ,vk) and a drawing for each vi and its
light subtrees inside a disk Di of radius ri, we can draw P and all its descendents inside
a disk D such that the following properties hold:

1. the heavy edge vivi+1 is a straight-line segment that does not intersect any disk
other than Di and Di+1;

2. the light edge connecting v1 and its parent does not intersect the drawing of P;
3. any two disks Di and D j for i 6= j are disjoint;
4. the drawing has perfect angular resolution;
5. the radius r of D is r = 2∑

k
i=1 ri.

Proof. Let v1 be the root of P and let u be the parent of v1 (unless P is the heavy
path at level 0). We place the disk D1 at the center of D and assume that the edge uv1
extends horizontally to the left. We create k−1 vertical strips S2, . . . ,Sk to the right of
D1, each Si of width 2ri, see Figure 6a. Each disk Di will be placed inside its strip Si.
So from v1 we extend the ray induced by the stub reserved for the heavy edge v1v2
until it intersects the vertical line bisecting S2. We place v2 at this intersection point. By
property 5 of Lemma 2.2 we know that the angle between the two heavy edges incident
to a heavy node is between 2π/3 and 4π/3. Thus v2 is inside a right-open 2π/3-wedge
W that is symmetric to the x-axis. Now for i = 2, . . . ,k we extend from vi the stub of
the heavy edge vivi+1 into a ray and place vi+1 at the intersection of that ray and the
bisector of Si+1. Since at each vi we can either place Di or its mirror image we know
that one of the two possible rays stays within W .

Since each disk Di is placed in its own strip Si no two disks intersect (property 3)
and since heavy edges are straight-line segments within two adjacent strips they do not
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intersect any non-incident disks (property 1). The light edge uv1 is completely to the left
of all strips and thus does not intersect the drawing of P (property 2). Since we were
using the existing drawings (or their mirror images) of all heavy nodes, their perfect
angular resolution is preserved (property 4).

The current drawing has a width that is equal to the sum of the diameters of the disks
D1, . . . ,Dk. However, it does not yet necessarily fit into a disk D centered at v1 whose
radius equals that sum of the diameters. To achieve this we create k−1 annuli A2, . . . ,Ak
centered around v1, each Ai of width 2ri. Then from i = 2, . . . ,k we either shorten or
extend the edge vi−1vi until Di is contained in its annulus Ai, see Figure 6b. At each
step i we treat the remaining path (vi, . . . ,vk) and its disks Di, . . . ,Dk as a rigid structure
that is translated as a whole, see the translation vectors indicated in Figure 6b. In the
end, each disk Di is contained in its own annulus Ai and thus all disks are still pairwise
disjoint. Since we only stretch or shrink edges of an x-monotone path but do not change
any edge directions, the whole transformation preserves the previous properties of the
drawing. Clearly, all disks now lie inside a disk D of radius r = r1+2∑

k
i=2 ri ≤ 2∑

k
i=1 ri

(property 5). ut

Combining Lemmas 2.2 and 2.3 we now obtain the following theorem:

Theorem 2.4. Given an unordered tree T with n nodes we can find a crossing-free
straight-line drawing of T with perfect angular resolution that fits inside a disk D of
radius 2 ·8h(T )n, where h(T ) is the height of the heavy-path decomposition of T . Since
h(T )≤ log2 n the radius of D is no more than 2n4.

Proof. From Lemma 2.2 we know that for each node v of a heavy path P at level j
the radius of the disk D containing v and all its light subtrees is rv = 8h(T )− jl(v). So
if P = (v1, . . . ,vk) Lemma 2.3 yields that P and all its descendents can be drawn in a
disk of radius r = 2∑

k
i=1 rvi = 2 ·8h(T )− j

∑
k
i=1 l(vi) = 2 ·8h(T )− jn(P), where n(P) is the

number of nodes of P and its descendents. This holds, in particular, for the heavy path
P̂ at the root of H(T ), which proves the theorem. ut

3 Straight-line drawings for ordered trees

In many cases, the ordering of the children around each vertex of a tree is given; that
is, the tree is ordered (or has a fixed combinatorial embedding). In the previous section
we rely on the freedom to order subtrees as needed to achieve a polynomial area bound.
Hence that algorithm cannot be applied to ordered trees with fixed embeddings. As we
now show, there are ordered trees that have no straight-line crossing-free drawings with
polynomial area and perfect angular resolution.

Specifically we present a class of ordered trees for which any straight-line crossing-
free drawing of the tree with perfect angular resolution requires exponential area. Fig-
ure 7a shows a caterpillar tree, which we call the Fibonacci caterpillar because of its
simple behavior when required to have perfect angular resolution. This tree has as its
spine a k-vertex path, each vertex of which has 3 additional leaf nodes embedded on
the same side of the spine. When drawn with straight-line edges, no crossings, and with
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(a)

(b) (c)

Fig. 7: (a) A Fibonacci caterpillar; (b) Lombardi drawing; (c) Straight-line drawing with
perfect angular resolution and exponential area.

perfect angular resolution, the caterpillar is forced to spiral (a single or a double spi-
ral). The best drawing area, exponential in the number of vertices in the caterpillar, is
achieved when the caterpillar forms a symmetric double spiral; see Figure 7c.

The Fibonacci caterpillar shows that we cannot maintain all constraints (straight-
line edges, crossing-free, perfect angular resolution, polynomial area) for ordered trees.
However, as we show next, using circular arcs instead of straight-line edges allows us
to respect the remaining three constraints. See, for example, Figure 7b.

4 Lombardi drawings for ordered trees

In this section, let T be an ordered tree with n nodes. As we have seen in Section 3, we
cannot find polynomial area drawings for all ordered trees using straight-line edges. An
augmentation of the straight-line edge requirement is the use of circular arcs as edges.
Circular arcs are curves that are not only still easy to follow visually but they also let
us achieve all remaining three constraints, i.e., we can find crossing-free circular arc
drawings with perfect angular resolution and polynomial area. We call a drawing with
circular arcs and perfect angular resolution a Lombardi drawing, so in other words we
aim for crossing-free Lombardi drawings with polynomial area.

The flavor of the algorithm for Lombardi tree drawings is similar to our straight-
line tree drawing algorithm of Section 2: We first compute a heavy-path decomposition
H(T ) for T . Then we recursively draw all heavy paths within disks of polynomial area.
Unlike before, we need to construct the drawing in a top-down fashion since the place-
ment of the light children of a node v now depends on the curvature of the two heavy
edges incident to v.

Our construction in this section uses the invariant that a heavy path P at level j is
drawn inside a disk D of radius 2 ·4h(T )− jn(P), where n(P) = |Tv| for the root v of P.

4.1 Drawing heavy paths

Let P = (v1, . . . ,vk) be a heavy path at level j of the heavy-path decomposition that is
rooted at the last node vk. We denote each edge vivi+1 by ei. Recall that the angle in an
intersection point of two circular arcs is measured as the angle between the tangents to
the arcs at that point. We define the angle α(vi) for 2≤ i≤ k−1 to be the angle between
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ei−1 and ei in node vi (measured counter-clockwise). The angle α(vk) is defined as the
angle in vk between ek−1 and the light edge e = vku connecting the root vk of P to its
parent u. Due to the perfect angular resolution requirement for each node vi, the angle
α(vi) is obtained directly from the number of edges between ei−1 and ei and the degree
d(vi).

Lemma 4.1. Given a heavy path P = (v1, . . . ,vk) and a disk Di of radius ri for the
drawing of each vi and its light subtrees, we can draw P with each vi in the center of its
disk Di inside a large disk D such that the following properties hold:

1. each heavy edge ei is a circular arc that does not intersect any disk other than Di
and Di+1;

2. there is a stub edge incident to vk that is reserved for the light edge connecting vk
and its parent;

3. any two disks Di and D j for i 6= j are disjoint;
4. the angle between any two consecutive heavy edges ei−1 and ei is α(vi);
5. the radius r of D is r = 2∑

k
i=1 ri.

Proof. We draw P incrementally starting from the leaf v1 by placing D1 in the center
M of the disk D of radius r = 2∑

k
i=1 ri. We may assume that D1 is rotated such that the

edge e1 is tangent to a horizontal line at v1 and that it leaves v1 to the right. All disks
D2, . . . ,Dk will be placed with their centers v2, . . . ,vk on concentric circles C2, . . . ,Ck
around M. The radius of Ci is r1 + 2∑

i−1
j=2 r j + ri so that Di−1 and Di are placed in

disjoint annuli and hence by construction no two disks intersect (property 3). Each disk
Di will be rotated around its center such that the tangent to Ci at vi is the bisector of the
angle α(vi).

We now describe one step in the iterative drawing procedure that draws edge ei and
disk Di+1 given a drawing of D1, . . . ,Di. Disk Di is placed such that Ci bisects the angle
α(vi) and hence we know the tangent of ei at vi. This defines a family Fi of circular
arcs emitted from vi that intersect the circle Ci+1, see Figure 8. We consider all arcs
from vi until their first intersection point with Ci+1. Observe that the intersection angles
of Fi and Ci+1 bijectively cover the full interval [0,π], i.e., for any angle α ∈ [0,π]
there is a unique arc in Fi that has intersection angle α with Ci+1. Hence we choose
for ei the unique circular arc that realizes the angle α(vi+1)/2 and place the center vi+1
of Di+1 at the endpoint of ei. We continue this process until the last disk Dk is placed.
This drawing of P realizes the angle α(vi) between any two heavy edges ei−1 and ei
(property 4). Note that for the edge from vk to its parent we can only reserve a stub
whose tangent at vk has a fixed slope (property 2). Figure 10 shows an example.

Note that each edge ei is contained in the annulus between Ci and Ci+1 and thus
does not intersect any other edge of the heavy path or any disk other than Di and Di+1
(property 1). Furthermore, the disk D with radius r = 2∑

k
i=1 ri indeed contains all the

disks D1, . . . ,Dk (property 5). ut

Lemma 4.1 shows how to draw a heavy path P with prescribed angles between the
heavy edges and an edge stub to connect it to its parent. Since each heavy path P (except
the path at the root of H(T )) is the light child of a node on the previous level of H(T )
that light edge is actually drawn when placing the light children of a node, which we
describe next.
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Di

D′D′ei

ei+1

vi

Fig. 8: Any angle α ∈ [0,π] can be real-
ized.

Fig. 9: Placing a single disk D′ in the ex-
tended small zone of Di (shaded gray).

C2

C3

C4 C5 C6 C7

v1

v2

v4

v3

v5 v6 v7

Fig. 10: Drawing a heavy path P on concentric circles with circular-arc edges. The an-
gles α(vi) are marked in gray; the edge stub to connect v7 to its parent is dotted.

4.2 Drawing light children

Once the heavy path P is drawn as described above, it remains to place the light children
of each node vi of P. For each node vi the two heavy edges incident to it partition the
disk Di into two regions. We call the region that contains the larger conjugate angle the
large zone of vi and the region that contains the smaller conjugate angle the small zone.
If both angles equal π , then we can consider both regions small zones.

For a node vi at level j of H(T ) we define the radius ri of Di as ri = 4h(T )− j(1+
∑u∈L(vi) |Tu|) = 4h(T )− jl(vi). All light children of vi are at level j+1 of H(T ) and thus
by our invariant every light child u of vi is drawn in a disk of radius ru = 2 ·4h(T )− j−1|Tu|.
Thus we know that ru ≤ ri/2; in fact, we even have ∑u∈L(vi) ru ≤ ri/2.

Light children in the small zone. Depending on the angle α(vi), the small zone of a disk
Di might actually be too narrow to directly place the light children in it. Fortunately, we
can always place another disk D′ of radius at most ri/2 in an extension of the small zone
along the annulus of Di in the drawing of P such that D′ touches ei−1 and ei and does
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(a) (b) (c)

D′

D′1

D′′

D′

D′1

D′′

a1

p1 Ĉ

p2

a2

D′D′1D′2D′3
D′4

ei

ei−1

ei

ei−1

ei

ei−1

Fig. 11: Placing disks D′1 and D′′ inside the disk D′.

not intersect any other previously placed disk, see Figure 9. If there is a single child u
in the small zone then D′ = Du and we are done. The next lemma shows how to place
more than one child.

Lemma 4.2. If a single disk D′ of radius r′ can be placed in the possibly extended small
zone of the disk Di, then we can correctly place any sequence of l disks D′1, . . . ,D

′
l with

radii r′1, . . . ,r
′
l and ∑

l
i=1 r′i = r′ in the (extended) small zone of Di.

Proof. The idea of the algorithm for placing the l disks is to first place the disk D′ in
the small zone as before. The disks D′1, . . . ,D

′
l will then be placed within D′ so that no

additional space is required.
In the first step of the recursive placement algorithm we either place D′1 or D′l

(whichever has smaller radius) and a disk D′′ containing the remaining sequence of
disks D′2, . . . ,D

′
l or D′1, . . . ,D

′
l−1, respectively. Without loss of generality, let r′1 ≤ r′l

and thus in particular r′1 ≤ r′/2. In order to fit inside D′ the disks D′1 and D′′ must be
placed with their centers on a diameter of D′, see Figure 11a. The degree of freedom
that we have is the rotation of that diameter around the center of D′. Then the locus of
the tangent point of D′1 and D′′ is a circle Ĉ of radius r′− 2r′1 around the center of D′,
see Figure 11b. There are exactly two circular arcs a1 and a2 tangent to Ĉ that are also
tangent to vi with the slope required for the edge to D′1. Let the two points of tangency
on Ĉ be p1 and p2. Now we rotate D′1 and D′′ such that their point of tangency coincides
with either p1 or p2 depending on which of them yields the correct embedding order
of D′1 and D′′ around vi. Clearly, a1 or a2 are also tangent to D′1 and D′′ now. Assume
we choose p1 and the corresponding arc a1 as in Figure 11b. Then we can connect any
point in D′1 to vi with the unique circular arc of the required slope in vi. We will describe
the exact placement of that arc later. Any such edge clearly stays inside the horn-shaped
region that encloses D′1 and is formed by a boundary arc of the small zone and a1. Since
a1 separates D′1 from D′′, neither the new edge nor D′1 can interfere with any of the
disks D′2, . . . ,D

′
l and their respective edges as long as they stay inside D′′ or connect to

points in D′′.
For placing D′2, . . . ,D

′
l we recursively apply the same procedure again, now using

D′′ as the disk D′ and a1 as one of the boundary arcs. Then after l steps, we have
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disjointly placed all disks D′1, . . . ,D
′
l inside the disk D′ such that their order respects the

given tree order and no two edges intersect. Figure 11c gives an example.
Note that we require that the edges ei−1 and ei are tangent to D′, which is possible

only for an opening angle α of the small zone of at most π . For any angle α ≤ π the arcs
a1 and a2 always stay within the extended small zone and form at most a semi-circle.
This does not hold for α > π . ut

Light children in the large zone. Placing the light children of a vertex vi in the large
zone of Di must be done slightly different from the algorithm for the small zone since
Lemma 4.2 holds only for opening angles of at most π . On the other hand, the large
zone does not become too narrow and there is no need to extend it beyond Di. Our
approach splits the large zone into two parts that again have an opening angle of at
most π so that we can apply Lemma 4.2 and draw all children accordingly.

Let l be the number of light children in the large zone of Di. We first place a disk
D′ of radius at most ri/2 such that it touches vi and such that its center lies on the line
bisecting the opening angle of the large zone. The disk D′ is large enough to contain
the disjoint disks D′1, . . . ,D

′
l for the light children of vi along its diameter. We need to

distinguish whether l is even or odd. For even l we create a container disk D′′1 for disks
D′1, . . . ,D

′
l/2 and a container disk D′′2 for D′l/2+1, . . . ,D

′
l . Now D′′1 and D′′2 can be tightly

packed on the diameter of D′. Using a similar argument as in Lemma 4.2 we separate
the two disks by a circular arc through vi that is tangent to the bisector of α(vi) in vi.
Since D′ is centered on the bisector this is possible even though the actual opening angle
of the large zone is larger than π . If l is odd, we create a container disk D′′1 for disks
D′1, . . . ,D

′
bl/2c and a container disk D′′2 for D′dl/2e+1, . . . ,D

′
l . The median disk D′dl/2e is

not included in any container. Then we apply Lemma 4.2 to D′ and the three disks
D′′1 ,D

′
dl/2e,D

′′
2 along the diameter of D′, see Figure 12a. The separating circular arcs in

vi are again tangent to the bisector of α(vi), which is, since l is odd, also the correct
slope for the circular arc connecting vi to the median disk D′dl/2e.

In both cases we split the large zone and the sequence of light children to be placed
into two parts that each have an opening angle at vi of at most π between a separating
circular arc and the edge ei−1 or ei, respectively. Next, we move D′′1 and D′′2 along the
separating circular arcs keeping their tangencies until they also touch the edge ei−1 or
ei, respectively. Then we can apply Lemma 4.2 to both container disks and thus place
all light children in the large zone, see Figure 12b.

Drawing light edges The final missing step is how to actually connect a heavy node vi
to its light children given a position of vi and positions of all disks containing its light
subtrees. Let u be a light child of vi and let Du be the disk containing the drawing of Tu.
When placing the disk Du in the small or large zone of vi we made sure that a circular
arc from vi with the tangent required for perfect angular resolution at vi can reach any
point inside Du without intersecting any other edge or disk.

On the other side, we know by Lemma 4.1 that u is placed in the outermost annulus
of Du and that it has a stub for the edge e = uvi. This stub is the required tangent for e
in order to obtain perfect angular resolution in u. Let Cu be the circle that is the locus of
u if we rotate Du and the drawing of Tu around the center of Du.
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vi
ei−1 ei

vi
ei−1 ei

(a) (b)

D′D′′1

D′′2D′dl/2e D′′1
D′′2

D′dl/2e

Fig. 12: Placing light children in the large zone by first splitting it into two parts (a) and
then applying the algorithm for small zones to each part (b).

There is again a family F of circular arcs with the correct tangent in u that lead
towards Du and intersect the circle Cu. As observed in Lemma 4.1 the intersection angles
formed between F and Cu bijectively cover the full interval [0,π], i.e., for any angle
α ∈ [0,π] there is a unique circular arc in F that has an intersection angle of α with
Cu. In order to correctly attach u to vi we first choose the arc a in F that realizes an
intersection angle of α(u)/2 with Cu, where α(u) is the angle between e and the heavy
edge from u to its heavy child that is required for perfect angular resolution in u. Let p
be the intersection point of that arc with Cu. Then we rotate Du and the drawing of Tu
around the center of Du until u is placed at p, see node v7 in Figure 10. Since the stub
of u for e also has an angle of α(u)/2 with Cu, the arc a indeed realizes the edge e with
the angles in both u and vi required for perfect angular resolution. Furthermore, a does
not enter the disk bounded by Cu and hence it does not intersect any part of the drawing
of Tu other than u.

We can summarize our results for drawing the light children of a node as follows:

Lemma 4.3. Let v be a node of T at level j of H(T ) with two incident heavy edges.
For every light child u ∈ L(v) assume there is a disk Du of radius ru = 2 ·4h(T )− j−1|Tu|
that contains a fixed drawing of Tu with perfect angular resolution and such that u is
exposed in the outer annulus of Du. Then we can construct a drawing of v and its light
subtrees inside a disk D, potentially with an extended small zone, such that the following
properties hold:

1. the edge between v and any light child u ∈ L(v) is a circular arc that does not
intersect any disk other than Du;

2. the heavy edges do not intersect any disk Du;
3. any two disks Du and Du′ for u 6= u′ are disjoint;
4. the angular resolution of v is 2π/d(v);
5. the disk D has radius rv = 4h(T )− jl(v).

By combining Lemmas 4.1 and 4.3 we obtain the following theorem:

Theorem 4.4. Given an ordered tree T with n nodes we can find a crossing-free Lom-
bardi drawing of T that preserves the embedding of T and fits inside a disk D of ra-
dius 2 · 4h(T )n, where h(T ) is the height of the heavy-path decomposition of T . Since
h(T )≤ log2 n the radius of D is no more than 2n3.
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Figure 2b shows a drawing of an ordered tree according to our method. We note
that instead of asking for perfect angular resolution, the same algorithm can be used
to construct a circular-arc drawing of an ordered tree with any assignment of angles
between consecutive edges around each node that add up to 2π . The drawing remains
crossing-free and fits inside a disk of radius O(n3).

5 Conclusion and Closing Remarks

We have shown that straight-line drawings of trees can be performed with perfect an-
gular resolution and polynomial area, by carefully ordering the children of each vertex
and by using a style similar to balloon drawings in which the children of any vertex
are placed on two concentric circles rather than on a single circle. However, using our
Fibonacci caterpillar example we showed that this combination of straight lines, perfect
angular resolution, and polynomial area could no longer be achieved if the children of
each vertex may not be reordered. For trees with a fixed embedding, Lombardi drawings
in which edges are drawn as circular arcs allow us to retain the other desirable quali-
ties of polynomial area and perfect angular resolution. In the appendix we report on
a basic implementation and some practical improvements of the straight-line drawing
algorithm.

Our work opens up new problems in the study of Lombardi drawings of trees, but
much remains to be done in this direction. In particular, our polynomial area bounds
seem unlikely to be tight, and our method is impractically complex. It would be of
interest to find simpler Lombardi drawing algorithms that achieve perfect angular reso-
lution for more limited classes of trees, such as binary trees, with better area bounds.
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(a) The unmodified straight-line tree drawing
algorithm. Though the area is bounded it is not
quite desirable.

(b) A space-optimized drawing that
still maintains the stated guarantees.

Fig. 13: A partial snapshot of a tree drawing.

A Implementation Details

Although theoretically interesting, tree drawings with perfect angular resolution are
also of practical importance. To that end, we have implemented a basic version of our
straight-line drawing algorithm. The algorithm, though polynomially bounded, from a
practical viewpoint is still far from desirable. In particular, as Figure 13a illustrates,
there is significant space left between sibling nodes as our algorithm essentially fo-
cuses on providing a guaranteed bound. As Fig 13b demonstrates, with some simple
heuristical refinements, however, far better use of space can be achieved.

We highlight three key improvements that we made to the algorithm that do not
affect the overall layout and so still provide the same guaranteed bound as in the regular
algorithm with additional quite simple improvements in space efficiency.

– In the construction, only large nodes are placed on the outer region. The remaining
small nodes are placed inside the inner annulus. There is no reason not to place
further small nodes in the outer region as well. As a result, we continue with the
greedy approach and repeatedly insert the next largest in the outer region, skip-
ping the spoke associated with the heavy edge, until no more nodes fit. We fill the
remaining spokes with the smaller children. We also note that in many cases, all
children fit inside the outer region, as the largest light child nodes are often small
enough to fit in one wedge region. Figure 14 illustrates the improvement.

– The radii for the light subtrees are increased to allow the disk to fit maximally
within its wedge region. To ensure that the subtrees are still constrained initially to
the primary layout algorithm, we defer the scaling of the nodes until after the layout
has completed. This has the effect of using considerably more of the allocated space
as demonstrated again by Figure 14.
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(a) A portion of an unmodified straight-line
tree drawing algorithm that only placed large
nodes on the outside annulus.

(b) The same tree but with space-filling
optimization in place.

Fig. 14: A partial snapshot of a tree drawing demonstrating filling the disk associated
with the light subtree.

– The heavy path does not completely fill the disk associated with its head node. As
a result, we also increase this radius as a constant factor after having laid out the
main drawing, see Figure 15.

– There were other improvements possible as well. One notable intentional omission
was to use the heavy path breakdown for a subtree only if the entire subtree could
not fit within the nodes’ light-children radius. In many cases, the heavy path is
small enough to still fit within this radius. We kept the path present to highlight the
key feature in our algorithm that allows for the bounded area construction. The path
itself could also be designed to use more of its underlying region, however, we do
not see any easy way to do this effectively and avoid intersecting the path at a later
point. Nonetheless, it is a promising area for space improvement.



20 Duncan, Eppstein, Goodrich, Kobourov, and Nöllenburg

(a) A portion of an unmodified straight-line
tree drawing of a caterpillar-like tree.

(b) The same tree but with space-filling
optimization in place.

Fig. 15: A partial snapshot demonstrating expanding the heavy path to fit outer disk.

(a) The Fibonacci caterpillar drawn as an un-
ordered tree.

(b) A 5-ary tree with different weight
distributions per child.

Fig. 16: Example illustrations.
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