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ABSTRACT

We study methods for attacking the privacy of social networking
sites, collaborative filtering sites, databases of genetic signatures,
and other data sets that can be represented as vectors of binary re-
lationships. Our methods are based on reductions to nonadaptive
group testing, which implies that our methods can exploit a min-
imal amount of privacy leakage, such as contained in a single bit
that indicates if two people in a social network have a friend in
common or not. We analyze our methods for turning such privacy
leaks into floods using theoretical characterizations as well as ex-
perimental tests. Our empirical analyses are based on experiments
involving privacy attacks on the social networking sites Facebook
and LiveJournal, a database of mitochondrial DNA, a power grid
network, and the movie-ratings database released as a part of the
Netflix Prize contest. For instance, with respect to Facebook, our
analysis shows that it is effectively possible to break the privacy of
members who restrict their friends lists to friends-of-friends.

Categories and Subject Descriptors

F.2.2 [Analysis of Algorithms and Problem Complexity]: Non-
numerical Algorithms and Problems; K.4.1 [Computers and So-

ciety]: Public Policy Issues—Privacy

General Terms

Security

Keywords

Social networks, privacy leaks, genetic signatures, binary attribute
vectors, combinatorial group testing

1. INTRODUCTION
Each time a website answers a query or displays information re-

lated to its users, it leaks a little piece of itself in its response. Such
a privacy leak could be as small as a single bit, which might at first
not be cause for much concern, or a complete disclosure about one
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of the users of that website. For instance, any social networking site
interested in growing its user base will likely supply some method
for identifying mutual friends between two individuals, which, for
the sake of this paper, we are willing to reduce to a single bit that in-
dicates whether two individuals have a mutual friend in common or
not. This is arguably the minimal amount of mutual friendship in-
formation that any commercially-successful social network would
ever leak (and most leak much more than this amount). Unfortu-
nately, as we show in this paper, this minimal amount of privacy
leakage is enough to allow for the revelation of all the information
a site is trying to protect by limiting such query responses. Using
both theoretical and empirical analyses, we demonstrate that non-
adaptive attacks are able to clone real-world databases in a very
efficient manner by exploiting the sparsity in the data.

1.1 Binary Attribute Vectors
We focus on information representable as binary attribute vec-

tors. Such a vector, e.g., v = (0, 0, 0, 1, 0, 1, 1, . . . , 0), reflects the
presence or absence of each of a large number of possible charac-
teristics, with each bit representing a single potential binary rela-
tionship. Examples of such vectors include the following:

• Each row in an adjacency matrix for part of a social network,
such as Facebook, is a binary vector that encodes friendships
for an individual in that subnetwork. (See Figure 1.)

• In a genetic signature vector, a binary vector can be defined
from the presence or absence of mutations in a DNA string.

• In a collaborative filtering ratings vector, as used by com-
panies such as Amazon and Netflix, a binary vector can be
defined so that each position represents a product, and the
corresponding bit is 1 if and only if the associated person
rated that product above some threshold.
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1 2 3 4 5

1 0 1 1 0 0
2 1 0 1 1 0
3 1 1 0 1 0
4 0 1 1 0 1
5 0 0 0 1 0

Figure 1: An example graph and its adjacency matrix.

In the context of online data, binary attribute vectors have ob-
vious privacy considerations. For instance, Bob’s genetic signa-
ture could be used by an unethical employer or insurance company
to discriminate against him based on his risks for future diseases.
Also, it is possible using a genetic signature derived from a short
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string of Bob’s mitochondrial DNA to trace his maternal lineage to
an ancestral location [6, 31], which is information that could then
be used for ethnic discrimination [21]. Likewise, Bob’s movie rat-
ings could be used to infer personal information, such as political
or religious orientation. In addition, knowing Alice’s set of friends
is a gateway privacy leak, for friendship overlaps have been shown
to be sufficient to de-anonymize individuals across multiple social
networking sites [30] and has even been identified as a possible in-
dicator of sexual orientation [22]. Alice might not be worried about
showing her true identity in Facebook, where her status updates are
always about songs and videos, but she might have concerns if her
true identity in a pro-democracy social networking site is discov-
ered by the repressive regime that runs her country.

1.2 The Group-Testing Attack
Group testingwas introduced by Dorfman [9], duringWorldWar

II, to test blood samples. The problem he addressed was to design
an efficient way to detect the few thousand blood samples that were
contaminated with syphilis out of the millions that were collected.
His idea was to pool drops of blood from multiple samples and
test each pool for the syphilis antigen. By carefully arranging the
group tests and then discovering which groups tested positive and
which ones tested negative he could then identify the contaminated
samples using a small number of group tests (much smaller than
the number needed to explicitly test each individual blood sample),
thereby sparing thousands of G.I.’s from needless disease exposure.
In this paper, we show that Dorfman’s humanitarian discovery has
an unfortunate dark side when it comes to privacy protection, for it
enables something we are calling the group-testing attack.
Formally, in a group testing scenario [10], one is given a set S

of n items, at most d of which are “defective,” for some parameter
d ≤ n, and one is interested in exactly determining which of the
items in S are defective. One can form a test query from any subset
T of S and, in a single test, determine if T contains any defective
items or not. A group testing regimen is a set, M , of tests and
an algorithm for determining the identities of the defective items
based on the outcomes of the tests in M .
In a group-testing attack, a querier, Bob, is allowed certain types

of queries to a collection, X = (X1, X2, . . . , Xg), of binary at-
tribute vectors. Bob’s goal is to efficiently replicate as many vectors
in X as possible through a small number of queries. With respect
to the types of queries Bob is allowed, we assume that the col-
lection supports intersection queries from Bob. In an intersection
query, Bob provides a single string or vector Q and inX ’s response
he receives a binary response vector R = (r1, r2, . . . , rg), where
each ri is 1 if and only if there is a bit position that is 1 in both
Xi and Q, i.e., ri = 0 only if Xi ∧ Q = ~0, where ∧ denotes
bitwise AND. Moreover, we assume that Bob learns nothing more
than this, either because the website for X provides only this infor-
mation or because Bob and X ’s owner engaged in an Secure Multi-
party Computation (SMC) protocol (e.g., see [1,16,18,34,37–39])
to determine R so that no other information is revealed.
If, in practice, Bob learns more than the information contained

in R, that only strengthens his attack. The point of this paper is
that even with just the information leaked in R, Bob can construct
a small number of query vectors, Q1, Q2, . . ., Qk, that are suffi-
cient to learn all or a sizeable fraction of the vectors in X , which
amounts to a flood of information. Moreover, our group-testing at-
tack is oblivious (that is, nonadaptive), in that Bob can construct all
his query vectors in advance, so that the format of no query depends
on the outcome of another. We describe a randomized construction
for Bob’s query vectors, which allows the attack to be fairly surrep-
titious, in that each query looks random (because it is random).

1.3 Attack Scenarios
We have deliberately described the group-testing attack in fairly

abstract terms, so as to show how it applies to a wide variety of
attack scenarios. We outline three such attack scenarios below.

1.3.1 Social Networking Sites

Suppose the vectors in X represent the rows of the adjacency
matrix defined by the friendship ties for a social networking site,
like Facebook, possibly restricted to the population in a specific
city, college, high school, or large corporation. In this scenario,
Bob wants to learn the friendship relationships of as many people
as possible. For instance, he may wish to do racial profiling [27]
or do a cross-networking identification attack [30], since 89% of
Facebook users use their real names [20]. In this case, Bob’s query
vectors correspond to a relatively small number of pseudonyms that
Bob creates in the social network and for which he defines a cer-
tain number of random friendship ties. For instance, he could cre-
ate such ties using automated social engineering techniques (e.g.,
using the name of an affiliated city, college, etc.) as well as the
property that a fairly large percentage of social networking users
are likely to accept random friendship requests from people in their
community (roughly 10 to 25 percent of student Facebook users
accept random friendship requests from people who say they are in
the same university [35]). Given his set of pseudonyms, Bob em-
ploys the group-testing attack by having each of his pseudonyms
ask the social networking site if this pseudonym shares any friends
with the people in Bob’s population of interest. Note that he will
receive a useful response vector from everyone that has privacy set-
tings that allow for testing for mutual friends in common. That
is, even if someone chooses to share friendship information only
with “friends of friends,” which is one of the more restrictive stan-
dard privacy settings in Facebook, Bob can still get valid responses
for his queries with respect to such people. Moreover, if Bob em-
ploys an oblivious group-testing attack, he can use the same set
of pseudonyms for everyone whose privacy he is attacking. Thus,
once he has set up his pseudonyms, he can target the privacy of any
user in the online social network at will.

1.3.2 Collaborative Filtering Sites

Suppose the vectors in X represent the preferences of people in
a site, such as Amazon or Netflix, that employs collaborative filter-
ing to support product recommendations. Specifically, we assume
in this scenario that products are numbered 1 to k and each vector
Xi in X has a 1 in position j if and only if person i rates product
j above some minimum threshold. Bob’s goal in this scenario is to
discover as many vectors in X as reasonably possible and in so do-
ing discover the product preferences of a large number of targeted
people. His motivation could, for instance, be economic, in that he
may want to open an online store that caters to a specific demo-
graphic; hence, we may want to learn the product preferences for a
known population of people in this group. In terms of information
leakage, all that is needed in order to allow for Bob’s group-testing
attack to work is for the collaborative filtering site have a way for
him to create pseudonyms, have these pseudonyms rate products,
and allow for these pseudonyms to test if they share any ratings in
common with users in the target population. So long as the collab-
orative filtering web site allows for users to check for overlapping
scores with other users, Bob can employ the group-testing attack.

1.3.3 Genetic Signatures

Suppose the vectors inX represent the genetic signatures of peo-
ple in some population, such as a high school, college, or corpora-
tion. That is, we number all the known genetic mutations with

22



respect to a reference DNA string, R, and each vector Xi is asso-
ciated with an individual, who we will call Alice, such that there is
a 1 in position j of Xi if and only if Alice’s DNA has mutation j
with respect to R. For example, in mitochondrial DNA, the refer-
ence R is roughly 16,500 base pairs long, but has only about 4,000
known mutations [7, 32]. Bob’s goal in this group-testing attack is
to learn the genetic signatures for as many people in his popula-
tion of interest as is reasonably possible. He can employ his attack
so long as there is a website for X that allows him to test a query
vector Q against the vectors in X to determine which ones share a
mutation with Q. For example, Bob could be posing as a medical
researcher and claim that his vectors are testing for combinations
of genetic markers for disease. Alternatively he could claim to be
a forensic analyst with DNA from a crime scene, which he wants
to test against members of X (in this case, he is likely to receive a
similarity score between his query Q and the vectors in X , which
he can easily convert into an overlap-detection bit). In either case,
a minimum amount of overlap information can allow him to learn
the entire genetic signatures of a large number of members of X .
Realistic attacks can also be constructed in other domains. Sensi-

tive image data, such as captured by biometric devices, may be rep-
resented as sparse binary vectors, making it susceptible to a group-
testing attack, especially when efficient tools exist for comparing a
query (e.g. a fingerprint or an iris scan) to the entire database.

1.4 Exploiting Sparsity
The above set of attack scenarios are illustrative of the risks to

privacy that the group-testing attack provides, in that it can greatly
amplify the information gained from just a relatively small number
of single-bit privacy leaks. The risk to the group-testing attack can
therefore be characterized in terms of the number of queries and
how much processing time is needed so that Bob can replicate all
of X or a large portion of X . The critical factor here is thus a
parameter, d, which, in the group testing context, refers to the small
number of “defective” items in the large group, such as the few
thousands of syphilis-infected blood samples out of the millions
donated during World War II.
Interestingly, each of the attack scenarios mentioned above pos-

sess such a parameter, allowing for Bob to employ efficient group-
testing attacks with a relatively small number of queries. For exam-
ple, most people in social networking sites, such as Facebook, have
less than a few hundred friends (as we show below), which implies
that the degree distributions of friendship in such networks don’t
closely follow a power law. Likewise, most collaborative filtering
preference vectors, such as in the Netflix Prize contest, have ratings
for at most a few hundred items. Similarly, an individual’s genetic
signature will typically have a relatively small number of indicators
for mutations with respect to a reference DNA string, R. For ex-
ample, with mitochondrial DNA, most people have fewer than 100
mutations with respect to a commonly-used reference string. Thus,
there are several modern contexts that have all the pieces in place
to allow for the group-testing attack to be used.

1.5 Related Work
Following a framework by Bancilhon and Spyratos [5], Deutsch

and Papakonstantinou [8] and Miklau and Suciu [28] give related
models for characterizing privacy loss in information releases from
a database, which they call query-view security. In this framework,
there is a specific secret, S, that the data owner, Alice, is trying to
protect. Attackers are allowed to form legal queries and ask them
of the database, while Alice tries to protect the information that
these queries leak about the secret S. Note that this framework is
related to the group-testing attack, but these two are not identical,

since in the group-testing attack there is no specifically sensitive
part of the data. Instead, Bob has a quantitative goal of learning
as much of the database X as possible. Similarly, Kantarcioǧlu et

al. [25] study models that quantify the degree to which data min-
ing searches expose private information, but this model is also not
directly applicable to the group-testing attack.

We allow for the queries Bob asks to be answered using SMC
protocols, which reveal no additional information between the query
string Q and each database string Xi other than the response. Such
protocols have been developed for comparisons done with genomic
sequences (e.g., see [2, 12, 16]). In particular, Atallah et al. [2] and
Atallah and Li [3] studied privacy-preserving protocols for edit-
distance sequence comparisons. Troncoso-Pastoriza et al. [37] de-
scribed a privacy-preserving protocol for regular-expression search-
ing in a DNA sequence. Jha et al. [23] give privacy-preserving pro-
tocols for computing edit distance and Smith-Waterman similarity
scores between two genomic sequences. Aligned matching results
between two binary vectors can be done in a privacy-preserving
manner, as well, using privacy-preserving set intersection proto-
cols (e.g., see [1, 16, 34, 38]). Du and Atallah [11] study an SMC
protocol for querying a string Q in a database of strings, X , as
in our framework, where comparisons are based on approximate
matching. Their SMC protocols for performing such queries pro-
vide a best match, not a score for each string in the database. Thus,
their scheme would not be applicable in the attack framework we
consider in this paper. The SMC method of Jiang et al. [24], on
the other hand, is directly applicable. It provides a vector of scores
comparing a vector Q to a sequence of vectors, as we require in this
paper. Thus, the group-testing attack can be viewed as an attack on
repeated use of the SMC protocol of Jiang et al.

Goodrich [19] studies the problem of discovering a single DNA
string from a series of genomic comparison queries. All of his
methods are sequential and adaptive, however, so they are not ap-
plicable to group-testing attack scenarios, as outlined in this paper,
that require oblivious, nonadaptive sets of queries. Others have in-
vestigated de-anonymization techniques on social networks [4] and
Netflix data [29]; these works are complementary to our goal of
cloning the databases. Dwork et al. [14] studied the task of recover-
ing statistical databases using sum queries and LP decoding. While
these techniques can be potentially useful to our cause, we consider
the more restrictive case of receiving only binary responses, and
we show that these bit-sized privacy leaks are enough to efficiently
clone a variety of real-world databases.

1.6 Our Results
We present a number of algorithms for performing group-testing

attacks on an entire database, X = (X1, X2, . . . , Xg), of binary
attribute vectors, so as to replicate all or a large portion ofX . All of
our methods assume only a minimal amount of information leakage
per query, where a querier, Bob, issues a binary query vector, Q,
and receives a vector of responses (r1, r2, . . . , rg), where each ri

is a single bit indicating if Q and Xi share a 1 in the same position
or not. We assume that all the strings in X are the same length,
since we can view smaller strings as being padded with zeroes.
Specifically, we show the following:

• Suppose X contains g binary vectors, each of length n, with
at least g′ ≤ g of these vectors having at most d < n differ-
ences from a public reference vector. Then, with high prob-
ability, at least g′ of the vectors in X can be completely de-
termined using a number of queries that is at most

4d log n + 2min{d log g, d2 log(en/d)}.
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The efficient attack algorithms based on the proof of this fact use
sparsity to exploit the property that binary attribute vectors in many
real-world scenarios can be characterized in terms of a small num-
ber of differences with a reference string, R. Thus, our main contri-
bution is the development of an efficient privacy attack that is based
on randomized nonadaptive group-testing (which uses only binary
responses) and that is applicable to many real-world databases.
Our randomized construction provides surreptitious queries, and
our use of nonadaptive techniques allows for queries to be run in
parallel on large databases.
Another contribution of this paper is an empirical analysis of our

proposed attack on various real-world databases, as well as algo-
rithmic heuristics for further exploiting sparsity. We provide exper-
imental results showing that nonadaptive group-testing attacks can
work effectively in various contexts, as we apply it to friendship
discovery in subsets of the Facebook and LiveJournal networks,
a database of mitochondrial DNA (mtDNA) strings, a power grid
network, and the database of movie-ratings vectors provided for
the Netflix Prize contest. In each case, our experiments show that
large portions of these data sets can be replicated using a number of
queries that is much smaller than the length of the vectors in these
databases. We also demonstrate how to take further advantage of

the sparsity of the data by empirically using a parameter d̂ in our
algorithms that is much smaller than d. For instance, using a small

d̂, we are able to clone half of the LiveJournal database (where each
vector has 5 million entries), in as few as 300 queries.

2. NONADAPTIVE GROUP TESTING
As mentioned above, in the combinatorial group testing problem

(e.g., see Du and Hwang [10]), one is given a set S of n items, at
most d of which are “defective,” for some parameter d ≤ n, and
one is interested in exactly determining which of the items in S are
defective. One can form a test from any subset T of S and in a
single step determine if T contains any defective items or not. If
one can use information from the result of a test in formulating the
tests to make in the future, then the method is said to be adaptive.
If, on the other hand, one cannot use the results from one test to
determine the makeup of any future test, then the method is said to
be oblivious or nonadaptive. For the application to group-testing
attacks, we are interested in nonadaptive methods.
There are several existing nonadaptive group testing methods

(e.g., see Du and Hwang [10]), but these approaches are meant for
a more general context than applies in the group-testing attack. In
particular, these methods are designed to work for any set of items
having d defective members. In our case, we are instead interested
in specific sets of items that are derived from the vectors we are
interested in determining. Because of this, we can, in fact, derive
improved bounds than would be implied by existing combinatorial
group-testing methods.
Suppose, then, we are given a collection, C, of sets,

C = {S1, S2, . . . , Sg},

which are not necessarily distinct, such that each set Si contains
n items, at most d of which are “defective.” We want to design
a nonadaptive group testing scheme that can exactly identify the
subset, Di, of at most d defective items in each set Si in C. Our
approach to solving this problem is an adaptation of a randomized
approach used by Eppstein et al. [15].
A nonadaptive group testing algorithm can actually be viewed as

a t × n 0-1 matrix, M . Each of the n columns of M corresponds
to one of the n items and each of the t rows of M represents a test.
If M [i, j] = 1, then item j is included in test i, and if M [i, j] = 0,

then item j is not included in test i. Since this is a nonadaptive
testing scheme, we assume that no test depends on the results of
any other. That is, every row of the matrix M is defined in advance
of any test outcomes. The analysis question, then, is to determine
how large t must be for the results of these tests to provide useful
results.

Let C denote the set of columns of M . Given a subset D of
d columns in M , and a specific column j in C but not in D, we
say that j is distinguishable from D if there is a row i of M such
that M [i, j] = 1 but i contains a 0 in each of the columns in D.
If each column of M that is in C and not in D is distinguishable
from D, then we say that M is D-distinguishing. Furthermore, we
generalize this definition, so that ifM isDi-distinguishing for each
subset, Di, in a collection,D = {D1, D2, . . . , Dg}, of columns in
C, then we say that M is D-distinguished. Finally, we say that the
matrix M is d-disjunct (e.g., see Du and Hwang [10], p. 165) if it
isD-distinguished for the collection,D, of all of the

`

n
d

´

subsets of
size d of C.

Note that if M is D-distinguishing, then it leads to a simple test-
ing algorithm with respect to D. In particular, suppose D is the
set of defective items and we perform all the tests in M . Note that,
since M is D-distinguishing, if an item j is not in D, then there is a
test inM that will determine the item j is not defective, for j would
belong to a test that must necessarily have no defective items. So
we can identify D in this case—the set D consists of all items that
have no test determining them to be nondefective.

Of course, if M is d-disjunct, then this simple detection algo-
rithm works for any set D of up to d defective items in C. Unfor-
tunately, building such a matrix M that is d-disjunct requires M
to have Ω(d2 log n/ log d) rows [10, 33]. So we will instead build
a matrix that is D-distinguished for the collection, D, of defective
subsets determined by the sets of items in C, with high probability.

Given a parameter t, which is a multiple of d, we construct a
2t × n matrix M as follows. For each column j of M , we choose
t/d rows uniformly at random and we set the values of these entries
to 1, with the other entries in column j being set to 0. Note, then,
that for any set D of up to d defective items, there are at most t
tests that will have positive outcomes (detecting defectives) and,
therefore, at least t tests that will have negative outcomes. Our
desire, of course, is for columns that correspond to samples that are
distinguishable from the defectives ones should belong to at least
one negative-outcome test. So, let us focus on bounds for t that
allow for such a matrix M to be chosen with high probability.

Let C be a set of (column) items having a fixed subset D of d
defective items. For each (column) item j in C but not in D, let Yj

denote the 0-1 random variable that is 1 if j is falsely identified as
a defective item by M (that is, j is not included in a test of items
distinguished from those in D). Let Yj be 0 otherwise. Observe
that the Yj’s are independent, since Yj depends only on whether
the choice of rows we picked for column j collide with the at most
t rows of M picked for the columns corresponding to items in D.
There are a total of 2t rows, at most t of which contain a test with
a defective item. Thus, the probability of any non-defective item
joining any particular test having a defective item in it is at most
1/2; hence, any Yj is 1 (a false positive) with probability at most

2−t/d, since each item is included in t/d tests at random.
Let Y =

Pn
j=1

Yj , and note that the expected value of Y ,E(Y ),

is at most µ̂ = n/2t/d. Thus, if µ̂ ≤ 1, we can use Markov’s
inequality to bound the probability of the (bad) case when Y is
non-zero as follows:

Pr(Y ≥ 1) ≤ E(Y ) ≤ µ̂ =
n

2t/d
.
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Thus, if we set

t ≥ 2d log n,

then M will be D-distinguishing with probability at least 1− 1/n,
for any particular subset of defective items, D, from a set C of n
items. Likewise, if we set

t ≥ 2d log n + d log g,

then M will be D-distinguished, with probability at least 1 − 1/n,
for the collection of g subsets of defective items determined by the
sets in C. Finally, we can use the fact (e.g., see Knuth [26]) that

 

n

d

!

< (en/d)d,

so that if we set

t ≥ 2d log n + d2 log(en/d),

then M will be d-disjunct with probability at least 1 − 1/n, which
implies M will work for any subset of at most d defective items.
Therefore, we have the following.

Theorem 1: If

t ≥ 2d log n + min{d log g, d2 log(en/d)},

then a 2t × n random matrix M , constructed as described above,
is D-distinguished, with probability at least 1− 1/n, for any given
collection, D = {D1, D2, . . . , Dg}, of g subsets of size d of the n
columns in M .

Proof: Let D be a given collection of g (not necessarily distinct)
subsets of size d of the n columns in M . If

d2 log(en/d) > d log g,

thenM isD-distinguished by construction, with probability at least
1 − 1/n. If, on the other hand,

d2 log(en/d) ≤ d log g,

then M constructed as above is d-disjunct, with probability at least
1 − 1/n, which implies it is D-distinguished w.h.p. for any collec-
tion D of subsets of size d of the n columns of M .

As mentioned above, this is a way of constructing a simple non-
adaptive group testing method for identifying the defective items in
the collection, D, of subsets of up to d defective items determined
by the sets in C.

3. ATTACK CONSTRUCTION
In this section, we describe how to use nonadaptive group testing

to construct an efficient group-testing attack. Suppose we are given
a database X of g binary attribute vectors,

X = {X1, X2, . . . , Xg},

each of length n, for which Bob is allowed to perform comparison
queries.

3.1 The Standard Group-Testing Attack
In the standard group-testing attack, we assume that Bob makes

aligned match queries, where Q and each Xi are assumed to have
length exactly n and the score between a query string Q and each
string Xi in X is measured by the response

r(Q, Xi) =



0 if Q ∧ Xi = ~0
1 else.

Thus, interpreting Q as a group test, this bit, r(Q, Xi) is 1 if and
only if the group test for Q is “negative,” that is, it detects a “de-
fective” item in the group defined by the positions in Q that have
bit values equal to 1. So, the attack for Bob is perform the set of
tests defined by the rows of a random matrix, M , that is defined so
that, with high probability, M is D-distinguished for a collection,
D = {D1, D2, . . . , Dg}, where Di is the set of bit positions in Xi

where Xi has a 1. Thus, we have the following.

Theorem 2: There is a nonadaptive group-testing attack, which
can discover each of the g binary attribute vector in X , using 2t
tests, with probability at least 1−1/n, where t is the smallest mul-
tiple of d such that

t ≥ 2d log n + min{d log g, d2 log(en/d)},

and d ≤ n is the maximum number of ones in any vector in X .

Suppose, for example, that Bob knows, by Theorems 1 and 2,
that a randomM having t rows, as defined above, isD-distinguished
with high probability. Then if he is doing a group-testing attack on
a social networking site, he needs to create t pseudonyms in the
social network, give each of them a random set of friends using a
random process that defines M as described above, and then use
each of the pseudonyms to check if they have any friends in com-
mon with a target victim, Xi. The results of these tests will be
sufficient, with high probability, to identify all the friends of Xi,
even if he or she has restricted mutual friendship disclosure to only
be allowed for “friends of friends,” as is a standard privacy setting
in Facebook.

3.2 Extensions to the Group-Testing Attack
In some cases, such as in contexts with attacks on genetic sig-

natures, the queries Bob gets to employ don’t actually return a bit
that indicates whether there are any overlaps with Bob’s query vec-
tor. Instead, genetic SMC computations (e.g., see [1,16,34,37,38])
typically return a score indicating the edit distance between a query
DNA string or genetic signature vector, Q, and the subject string or
vector, Xi. In these cases, the response Bob gets from his query is
equivalent to the score,

r(Q, Xi) = |{j : Q[j] = Xi[j]}|.

In addition, it is also common in these cases that there is a ref-
erence string or vector, R, such that there is a parameter d ≤ n so
that each string in X is known to have at most d differences with
a public reference string R. In the description of the group-testing
attack given above, we have implicitly assumed that R = ~0, that
is, that the reference Bob is testing against is a vector of all zeroes.
We can extend the group-testing attack to other scenarios, however,
as is common in genetic applications, where the reference string is
not all zeroes. For example, certain mutations might be so common
in a population that Bob knows he should assume such mutations
are included in his reference string, R. As we explore in our ex-
periments, in Section 4, such a string R and parameter d are not
uncommon in biological applications and d is often much smaller
than average number of ones in a genetic signature.

So, let us describe how to extend the group-testing attack to these
more general settings. Let us start by assuming we have a 2t × n
nonadaptive group testing matrix, M , for a set of size n having at
most d defectives, where

t ≥ 2d log n + min{d log g, d2 log(en/d)}.

We begin our group-testing attack, in this case, by making a query
for the reference string, R. Let r be the response score for the query
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for R. Next, we create a different string query Qk for each of the
2t tests in M , defined as follows:

Qk[j] =



R[j] if M [k, j] = 0
(R[j] + 1) mod 2 else.

This query will have some response, rk. We interpret test k as
having a “positive” response, that is, it does not detect a defective
item, if

rk = r − bk,

where bk is the number of 1’s in row k of M . Intuitively, each 1
in row k of M indicates a place where we test for a deviation from
R from its reference value at that location to the alternative bit. If
none of these locations is a match with the current Xi string, then
all these locations take their reference values. In other words, de-
fective “items” in the associated group testing method correspond
to locations where Xi differs from the reference string. And since
there is only one other choice for the alternative character, differ-
ences from the reference string have to be matches for the comple-
mentary bit. Thus, if there are at most d locations where Xi differs
from the reference string and M is D-distinguished for the set of
at most d locations of difference for each string in X , then this
scheme will learn the complete identity of each string in X . That
is, this method will clone X , with high probability. Therefore, by
Theorem 1, we have the following:

Theorem 3: There is a nonadaptive group-testing attack, which
can discover each of the g binary strings in X , using 2t tests, with
probability at least 1 − 1/n, where t is the smallest multiple of d
such that

t ≥ 2d log n + min{d log g, d2 log(en/d)},

and d ≤ n is the maximum number of differences any string in X
has with a reference string R, even if each response is a difference
score rather than a bit indicating nonempty intersections.

4. EXPERIMENTAL ANALYSIS
To test the real-world risks of the group-testing attack, we ap-

plied our methods to online social networking sites, human mito-
chondrial DNA strings, power grid data, and movie ratings vec-
tors taken from the Netflix Prize contest. We describe the data and
present experimental results which demonstrate the effectiveness of
our approach.

4.1 Data Sets
We use various real-world data sets, each with different charac-

teristics. For each data set, Table 1 lists the number of vectors,
vector length, and maximum difference from the reference string.
The social networks that we attack are Facebook and LiveJour-

nal. In particular, we attack the adjacency matrices of the friend
networks of each site. We use two different Facebook data sets:
Facebook-Uniform and Facebook-UNC. Facebook-Uniform, pro-
vided by the authors of [17], is an unbiased sample of 957K unique
users obtained by performing Metropolis-Hastings random walks
over the Facebook network. Each user is associated with a (sparse)
binary vector of size 72 million which denotes adjacencies. We
restrict ourselves to a random subset of 1,000 users in Facebook-
Uniform. Meanwhile, Facebook-UNC is a self-contained Face-
book network of approximately 18,000 students at the University
of North Carolina at Chapel Hill [36]. The LiveJournal data is a
social network with approximately 5 million users1; in our experi-
ments, we use a representative random subset of 1,000 users.

Table 1: Data sets used in experiments

Name Vectors (g) Length (n) Max Diff (d)

Facebook-Uniform 1,000 72,261,577 2,164
Facebook-UNC 18,163 18,163 3,795
LiveJournal 1,000 4,847,571 320
Genomic 1,000 16,586 107
Power Grid 4,941 4,941 19
Netflix 1,000 17,770 4,395
Netflix-All 100,480,507 17,770 17,653
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Figure 2: Histogram of distances from reference R, for each

data set.
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Figure 3: Complementary CDF of distances from R, on a log-

log scale, for the social network data sets.

Due to the sparse nature of these networks, the reference stringR
we use in our attacks is a 0-vector. The distribution of differences
from R (which is just the “degree distribution” in the case of social
networks) is displayed in Figure 2. The complementary cumula-
tive distribution function (CCDF) is shown in Figure 3. Power-law
behavior would be exhibited as a line on this log-log scale. In the
plots, we see that the curves are “bowed-up” which suggests that
there is not as much mass in the tails of the distributions. This spar-
sity allows for efficient group-testing attacks, as we will see in the
experimental results.

Our Genomic database consists of 1,000 human mitochondrial
sequences downloadable fromGenBank2. We use the Revised Cam-
bridge Reference Sequence (rCRS), of length 16,586 bp, as the ref-

1http://snap.stanford.edu/data/
2http://www.ncbi.nlm.nih.gov/Genbank/
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Table 2: Number of tests needed to clone (a) entire database

according to theory, using d; (b) 50% of database, using dmedian;

(c) entire database, using baseline method.

Theory Theory Baseline
(using d) (using dmedian) method

Facebook-Uniform 272,664 13,608 72,261,577
Facebook-UNC 326,370 5,332 18,163
LiveJournal 35,200 660 4,847,571
Genomic 8,346 2,184 16,586
Power Grid 1,406 148 4,941
Netflix 342,810 7,332 17,770
Netflix-All 1,941,830 10,560 17,770

erence string R. All of the mtDNA sequences were aligned to R,
and each sequence was encoded in binary fashion in terms of the
locations in R where each string differed from the reference. Fig-
ure 2 shows the distribution of sequence differences from R.
The Power Grid data is an adjacency matrix of 4,941 nodes, rep-

resenting the power grid network topology of the western United
States. This data was originally compiled by Watts and Strogatz
and is available online [13]. One can imagine a scenario where the
topology of a power grid is maintained electronically in a database,
making it potentially susceptible to a group-testing attack.
Our movie-rating data is taken from the Netflix Prize database3,

which consists of over 100 million movie ratings by 480,189 Net-
flix users. In our experiments, we mainly use a representative sub-
set of 1,000 users. Exceptions, however, are the experiments in
Figures 7 and Figure 8, in which we attack all 480,189 users. Each
user has an associated vector defined over 17,770 movies, denoting
the movies that the user rated, as well as the actual ratings (from
1 to 5) given by the user. For simplicity, our database only keeps
track of whether or not a user rated a particular movie. Note that
even these binary indicators can be highly informative of the user’s
preferences. Thus, each user is represented as a binary string of
length 17,770. Our reference string in this case consists of all ze-
ros, representing the case where no movies are rated. According to
the Netflix distribution in Figure 2, the majority of users rate less
than 300 movies, which suggests that this data set is sparse as well.

4.2 Experiments
We perform group-testing attacks on each data set in the follow-

ing manner. Similar to randomly selecting t
d
rows from 2t rows

(for each column in the nonadaptive group matrix M ), we take a
stochastic approach and set each entry in M to 1 with probability
p = 1

2d
. This approach allows us to easily add additional tests

to M until the vector is cloned. In our simulation of a cloning
attack, for each vector in the database, additional tests are contin-
ually performed until the vector is exactly cloned or until a cutoff
is reached (10,000 tests for Genomic, 20,000 tests for Power Grid,
and 100,000 tests for the other data sets). Note that our attack is
nonadaptive, since the construction of each test is independent of
the results of previous tests. We initialize with the same random
seed for each vector, ensuring that the same exact tests are per-
formed on each vector. This setup allows us to determine the actual
number of tests needed to clone the vectors.
Before presenting our empirical results, we display in Table 2

the number of tests needed to guarantee that the entire database is
exactly cloned (with probability 1−1/n), according to our theoret-
ical bounds in Section 3. The number of tests is a function of d, the

3http://www.netflixprize.com
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maximum number of differences from R across the entire database
of vectors. If we are only interested in guaranteeing that half of
the database is exactly cloned (namely the sparsest 50%), we can
use the median number of differences from R, dmedian, which sig-
nificantly reduces the number of tests required. Furthermore, there
is a simple baseline technique for cloning an entire database which
requires exactly g tests, where g is the length of the vectors in the
database. Each test Qi, for 1 ≤ i ≤ g, would simply be a vec-
tor with a 1 in index i and zeros elsewhere. In comparison to the
baseline method, our theoretical bound (using d) is quite loose in
the case of Facebook-UNC and Netflix, since the ratio between d
and n is high for those data sets. However, for Facebook-Uniform,
LiveJournal, Genomic, and Power Grid, our theoretical bound re-
quires significantly less tests than the baseline method.

Since each vector’s distance fromR is usually much smaller than

d, it is empirically advantageous to use a target d̂ that is smaller
than d. For the Facebook-UNC data, the maximum difference from
R is 3,795 while the mean difference is 84 and the median is 62.
Likewise, for the Genomic data, the maximum difference from R
is 107, while the mean difference is 30 and the median is 28. Thus,
there are different possible settings for d̂, and some settings will
allow us to significantly outperform both the baseline method and
our theoretical bounds.

Figure 4 shows the average number of tests required (across all
vectors in the database) until the vector is exactly cloned, as a func-

tion of d̂. We exclude Facebook-Uniform and Netflix-All from this
set of experiments due to their high dimensionality. In a few cases,
when vectors are far from R, the algorithm may reach the cutoff
value for the maximum number of tests, which may cause the mean
to be undervalued; thus, we also plot the median number of tests
since the median is more robust against outliers. For all these data
sets, we see that the group-testing attack performs significantly bet-

ter when d̂ is significantly less than the maximum difference d. For
instance, the average number of tests required to clone a LiveJour-

nal vector, when d̂ = d = 320, is over 10,000; in comparison,

when d̂ = 17 (which is actually the mean difference from R), the
average number of required tests is 2,503 and the median is 641
tests, which is an order of magnitude improvement over using d.

Likewise, we see that the optimal d̂ for the Genomic database is

around 22, while the optimal d̂ for the Netflix data is around 165,
when considering the mean curve. For each data set, the empiri-
cal median number of tests in Figure 4 compares favorably to the
theoretical number of tests needed to guarantee that 50% of the

database is cloned. For instance, when setting d̂ = dmedian = 62
in Facebook-UNC, the median number of tests is 2,201, which is
half the number of tests theoretically required. Likewise, when

d̂ = dmedian = 94 for Netflix, the median number of tests is around
3,200, which is significantly less than the theoretical bound.
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Figure 4: Mean (and median) number of tests required until a vector is cloned for various settings of target distance d̂.

Figure 6: Number of tests required to clone each vector, ordered by distance from R. Each vector is a different point.

These results suggest that it is preferable in practice to use a d̂
value that is significantly less than d and closer to the mean dis-

tance from R. These results also indicate a tradeoff. If d̂ is too
small, the number of ones in each test would increase and it would
take longer to exactly clone a string that is far from R. If d̂ is too

large (e.g. d̂ = d), many inefficient tests would be performed on
strings that are close to R. Figure 5 shows the decrease in error (de-
fined as the number of differences between the string and the state
of the reconstructed string) as the number of tests increases, for a
randomly selected Netflix user who has rated 98 movies. One can

see that using d̂ = 998 requires many more tests than using smaller

settings for d̂. We assume that a good estimate for d̂ (such as the
mean distance from R) can be obtained a priori, e.g., through sci-
entific knowledge (in the case of Genomic data) or through public
information (in the cases of Facebook, LiveJournal, and Netflix).
We also investigate the relationship between the number of re-

quired tests and the vector’s distance from R. In Figure 6, we ob-
serve that the number of tests required to clone a vector is very low
(and nearly constant) when the vector’s distance from R is itself low

and close to d̂. As the vector’s distance increases, the number of re-
quired tests grows more quickly due to the mismatch between the

distance and d̂. For the Facebook-UNC, LiveJournal, and Power
Grid data, we display different scatter plots for different settings of

d̂. For instance, for the LiveJournal data, the number of tests is rel-
atively constant across all distances when the d̂ = d = 320; how-
ever, at this setting, the number of required tests is at least 10,000,
even when the vector is close to the reference R. In contrast, when
d̂ = 17, the number of required tests is only in the hundreds, around

the vicinity of d̂; however, when the vector’s distance from R is
significantly greater (e.g. over 100), the scatter plot increases dra-
matically. It is important to note that most vectors are close to R
due to the sparsity of the data, and thus, even when the scatter plot
dramatically increases when the distance from R is great, there are
relatively few vectors that fall within this regime.
In our final set of results, we show the percentage of the data set

that is successfully attacked as a function of the number of tests,

in Figure 7. For Facebook-UNC, we see that the group-testing at-

tack displays different behavior for different choices of d̂. When

d̂ = 3, the attack is able to quickly recover (the sparsest) 15%
of the data set after only 500 tests, but as the number of tests in-

creases, the rate of progress slows significantly. When d̂ = 25,
52% of the database has been successfully recovered after 2000
tests. Thus, using only a couple thousand nonadaptive tests, we are
able to clone the friend lists of half (9K out of 18K) of the Facebook
users at the University of North Carolina. We also ran the same ex-

periment on Facebook-Uniform for d̂ = 108 (the median distance
from R) and see that over 70% of the data set can be reconstructed
with 10,000 tests. Since Facebook-Uniform contains an unbiased
sample of users, these users are representative of the global Face-
book population. Furthermore, our theory states that the number
of required tests increases at a rate of at most log(g) where g is
the number of Facebook users. In fact, the theoretical number of
tests needed to guarantee that 50% of a 300-million user Facebook
network is cloned is only 22,000 (assuming dmedian = 130)4. Since
our attack usually outperforms the theoretical bounds, these results
imply that an attacker may be able to recover over half of the global
Facebook social network with several thousands of seemingly in-
nocuous nonadaptive queries.

The LiveJournal results in Figure 7 also show the effectiveness
of the group-testing attack. Due to the sparsity of this data set, the
algorithm is able to recover at least 90% of the database for a wide

variety of settings for d̂ after several thousands of tests. As in ear-

lier plots, we see that the benefit of using d̂ < d is the faster rate

of progress. When d̂ = d = 320, no vectors are cloned until af-

ter 10,000 tests; in contrast, when d̂ = 6, 50% of the database is
cloned after only 300 tests. Thus, while our theoretical results pro-
vide some nice probabilistic guarantees, our algorithm can perform

better when d̂ is significantly less than d, as long as the data set is
sparse, which is often the case in practice.

4
http://www.facebook.com/press/info.php?statistics

reveals that dmean = 130, and so dmedian should be even smaller.
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Figure 7: Percentage of data vectors successfully attacked, as a

function of the number of nonadaptive tests.

Figure 8: Number of tests needed to clone 50% of Netflix-All,

as a function of the number of vectors g in that database.

Finally, we performed a coordinated Mastermind attack against
the Netflix-All database (by running the same tests on all 480,189

users in parallel). We set d̂ = 96, the mean difference from R
across the entire database. As shown in Figure 7, we can exactly
clone 30% of the users with just 2,500 queries. After 5,000 tests,
65% of the users have been cloned, and nearly 80% of all Netflix
users are cloned after 10,000 tests. In Figure 8, we show the num-
ber of tests needed to recover 50% of the Netflix-All database, as
a function of the number of vectors, g, in that database. While our
theoretical guarantees require that the number of tests scale with
log(g), our empirical results for Netflix-All show that the number
of tests needed stays nearly constant (at around 3,100 tests), even
when we vary g from 500 to 480,189. These results suggest that
our group-testing attack is very scalable. Even in a nonadaptive
setting, it is possible to reconstruct over half of a database of size
480,189 × 17,770 with a few thousand tests.

In addition to the experiments in this section, we also performed
experiments on other data, including the Facebook networks for
Princeton and the University of Oklahoma [36]. We observed that
the group-testing attack also performed well in these other settings.

Our empirical results have also shown that there is sensitivity

to the choice of d̂ in certain cases. One possible improvement to

combat this sensitivity is to use a tiered approach, where d̂1 is used

to construct the first 5000 tests, d̂2 is used to construct the next 5000
tests, etc. Each d̂i could correspond to a mode in the database’s
distribution of differences from R. Nonetheless, even when using

a single d̂, it is possible to clone a large fraction of the database by
simply performing a nonadaptive group-testing attack.

5. CONCLUSION
We have studied the group-testing attack, both from a theoretical

and experimental perspective, and have shown its effectiveness in
being able to copy the contents of a database of binary attribute vec-
tors through a sequence of comparison queries. A natural direction
for future work, of course, is on methods for defeating it, which
we have not addressed in this paper. Certainly, if there is some
way that the correspondence of query responses and query subjects
could be randomly permuted, then that would help, since it would
make it harder (but not necessarily impossible) for Bob to correlate
responses between different queries. Of course, requiring X to al-
ways randomly permute its responses would take extra time, and
it may also require additional space if we needs to store every re-
sponse query so that users can refer back to her responses for other,
limited types of selection queries she may allow. So the technique
of using random permutations can reduce the risks associated with
the group-testing attack, but it doesn’t necessarily eliminate these
risks, and it comes with additional costs.
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