
Extended h-Index Parameterized Data Structures for Computing
Dynamic Subgraph Statistics

David Eppstein
Dept. of Computer Science

http://www.ics.uci.edu/˜eppstein/

Michael T. Goodrich
Dept. of Computer Science
Univ. of California, Irvine

http://www.ics.uci.edu/˜goodrich/

Darren Strash
Dept. of Computer Science
Univ. of California, Irvine

http://www.ics.uci.edu/˜dstrash/

Lowell Trott
Dept. of Computer Science

http://www.ics.uci.edu/˜ltrott/

Abstract

We present techniques for maintaining subgraph frequencies in a dynamic graph, using data struc-
tures that are parameterized in terms of h, the h-index of the graph. Our methods extend previous results
of Eppstein and Spiro for maintaining statistics for undirected subgraphs of size three to directed sub-
graphs and to subgraphs of size four. For the directed case, we provide a data structure to maintain
counts for all 3-vertex induced subgraphs in O(h) amortized time per update. For the undirected case,
we maintain the counts of size-four subgraphs in O(h2) amortized time per update. These extensions
enable a number of new applications in Bioinformatics and Social Networking research.

1 Introduction

Deriving inspiration from work done on fixed-parameter tractable algorithms for NP-hard problems (e.g.,
see [4, 7, 8, 17, 25]), the area of parameterized algorithm design involves defining numerical parameters for
input instances, other than just the input size, and designing data structures and algorithms whose perfor-
mance can be characterized in terms of those parameters. The goal, of course, is to find useful parameters
and then design data structures and algorithms that are efficient for typical values of those parameters (e.g.,
see [12, 13]). In this paper, we are interested in extending previous applications of this approach in the
context of dynamic subgraph statistics—where one maintains the counts of all (induced and non-induced)
subgraphs of certain types—from undirected size-three subgraphs [13] to applications involving directed
size-three subgraphs and undirected subgraphs of size four.

1

ar
X

iv
:1

00
9.

07
83

v1
 [

cs
.D

S]
 3

 S
ep

 2
01

0

http://www.ics.uci.edu/~eppstein/
http://www.ics.uci.edu/~goodrich/
http://www.ics.uci.edu/~dstrash/
http://www.ics.uci.edu/~ltrott/

Upon cursory examination this contribution may seem incremental, but these extensions allow for the
possibility of significant computational improvement in several important applications. For instance, in
bioinformatics, statistics involving the frequencies of certain small subgraphs, called graphlets, have been
applied to protein-protein interaction networks [22, 28] and cellular networks [27]. In these applications,
the frequency statistics for the subgraphs of interest have direct bearing on biological network structure and
function. In particular, in these graphlets applications, the undirected subgraphs of interest include one size-
two subgraph (the 1-path), two size-three subgraphs (the 3-cycle and 2-path), and six size-four subgraphs
(the 3-star, 3-path, triangle-plus-edge, 4-cycle, K4 minus an edge, and K4), which we respectively illustrate
later in Fig. 7 as Q4, Q6, Q7, Q8, Q9, and Q10.

In addition, maintaining subgraph counts in a dynamic graph is of crucial importance to statisticians
and social-networking researchers using the exponential random graph model (ERGM) [15, 29, 30, 33] to
generate random graphs. ERGMs can be tailored to generate random graphs that possess specific properties,
which makes ERGMs an ideal tool for Social Networking research [33, 30]. This tailoring is accomplished
by a Markov Chain Monte Carlo (MCMC) method [30], which generates random graphs via a sequence of
incremental changes. These incremental changes are accepted or rejected based on the values of subgraph
statistics, which must be computed exactly for each incremental change in order to facilitate acceptance or
rejection. Thus, there is a need for dynamic graph statistics in ERGM applications.

Typical graph attributes of interest in ERGM applications include the frequencies of undirected stars and
triangles, which are used in the triad model [16] to study friends-of-friends relationships, as well as other
more-complex subgraphs [31], including undirected 4-cycles and two-triangles (K4 minus an edge), and
directed transitive triangles, which we illustrate as graph T9 in Fig. 3. Therefore, there is a salient need for
algorithms to maintain subgraph statistics in a dynamic graph involving directed subgraphs of size three and
undirected subgraphs of size four.

Interestingly, extending the previous approach, of Eppstein and Spiro [13], for maintaining undirected
size-three subgraphs to these new contexts involves overcoming some algorithmic challenges. The previous
approach uses a parameterized algorithm design framework for counting three-vertex induced subgraphs in
a dynamic undirected graph. Their data structure has running time O(h) amortized time per graph update
(assuming constant-time hash table lookups), where h is the largest integer such that there exists h vertices
of degree at least h, which is a parameter known as the h-index of the graph. This parameter was introduced
by Hirsch [18] as a combined way of measuring productivity and impact in the academic achievements of
researchers. In spite of its drawbacks for this purpose [1], it is a useful parameter for dynamic graph algo-
rithms, as demonstrated by Eppstein and Spiro. As we will show, extending the approach of Eppstein and
Spiro to directed subgraphs of size three and undirected subgraphs of size four involves more than doubling
the complexity of the algebraic expressions and supporting data structures needed. Ensuring the directed
size-three procedure maintains the complexity bounds of previous work required extensive understanding
of dynamic graph composition. Developing the approach for size-four subgraphs that would allow only the
addition of a single factor of h required innovative work with the structure of stored graph elements.

1.1 Other Related Work

Although subgraph isomorphism is known to be NP-complete, it is solvable in polynomial time for small
subgraphs. For example, all triangles and four-cycles can be found in an n-vertex graph with m edges in
O(m3/2) time [19, 5]. All cycles up to length seven can be counted (but not listed) in O(nω) time [3],
where ω ≈ 2.376 is the exponent for the asymptotically fastest known matrix multiplication algorithm [6].
In addition, fast matrix multiplication has also been used for other problems of finding and counting small
cliques in graphs and hypergraphs [9, 20, 23, 32, 34]. Also, in planar graphs, the number of copies of any

2

fixed subgraph may be found in linear time [10, 11]. These previous approaches run too slowly for the
iterative nature of ERGM Markov Chain Monte Carlo simulations, however.

1.2 Our Results

In this paper, we present an extension of the h-index parameterized data structure design from statistics for
undirected subgraphs of size three to directed subgraphs of size three and undirected subgraphs of size four.
We show that in a dynamic directed graph one can maintain the counts of all directed three-vertex subgraphs
in O(h) amortized time per update, and in a dynamic undirected graph one can maintain the four-vertex
subgraph counts in O(h2) amortized time per update, assuming constant-time hash-table lookups (or worst-
case amortized times that are a logarithmic factor larger). These results therefore provide techniques for
application domains, in Bioinformatics and Social Networking, that can take advantage of these extended
types of statistics. In addition, our data structures are based a number of novel insights into the combinatorial
structure of these different types of subgraphs.

2 Preliminaries

As mentioned above, we define the h-index of a graph to be the largest h such that the graph contains h
vertices of degree at least h. We define the h-partition of a graph to be the sets (H,V \H), where H is the
set of vertices that form the h-index.

2.1 The H-Index

Appendix III: Detailed analysis of real-world network data

We calculated the h-index of the networks in our sample in R, using a subroutine pro-
vided by Carter Butts. The data that results from this calculation in plotted in Figure
2.

Fig. 2. Scatter plot of h-index and network size

Figure 2 suggests that the data might be more appropriately viewed on a log-log
scale. This plot is seen in Figure 3.

8.1 Quantile regression

To find an upper bound on the scaling of the h-index of our real world networks we
clustered the data into two groups, and used quantile regression to fit the data with
curves of the form logh = β0 + β1 logn, at the 95th percentile. That is, we are looking
for a power law h = cnβ1 , and we want 95% of the graphs to have an h-index no larger
than the one predicted by this law. We fit a law of this type to the two clusters separately
to provide a more conservative and substantive prediction. The resulting regression lines
are reported in Table 2. Corresponding goodness of fit measure are also reported in
Table 3. We note that these are conservative estimates and the actual scaling is likely
better.

15

Figure 1: Scatter plot of h-index and network size from Eppstein and Spiro [14]
It is easy to see that the h-index of a graph with m edges is O(

√
m); hence it is O(

√
n) for sparse

graphs with a linear number of edges, where n is the number of vertices. Moreover, this bound is optimal in
the worst-case, e.g., for a graph consisting of

√
n stars of size

√
n each. As can be seen in Fig. 1 Eppstein

and Spiro [13] show experimentally that real-world social networks often have h-indices much lower than
the indicated worst-case bound. These indices, perhaps more easily viewed in log-log scale in Fig 2, were
calculated on networks with a range of ten to just over ten-thousand nodes. The h-index of these networks
were consistently below forty with only a few exceptions, none greater than slightly above one-hundred.
Moreover, many large real-world networks possess power laws, so that their number of vertices with degree
d is proportional to nd−λ, for some constant λ > 1. Such networks are said to be scale-free [2, 21, 24, 26],

3

and it is often the case that the parameter λ is between 2 and 3 in real-world networks. Note that the h-index
of a scale-free graph is h = Θ(n1/(1+λ)), since it must satisfy the equation h = nh−λ. Thus, for instances of
scale-free graphs with λ between 2 and 3, an algorithmic performance ofO(h) is much better than the worst-
case O(

√
n) bound for graphs without power-law degree distributions. For example, an O(h) time bound

for a scale-free graph with λ = 2 would give a bound of O(n1/3) while for λ = 3 it would give an O(n1/4)
bound. Likewise, an algorithmic performance of O(h2) is much better than a worst-case performance of
O(n) for these instances, for λ = 2 would give a bound of O(n2/3) while for λ = 3 it would give an
O(n1/2) bound. Thus, by taking a parametric algorithm design approach, we can, in these cases, achieve
running times better than worst-case bounds characterized strictly in terms of the input size, n.

2.2 Maintaining Undirected Size-3 Subgraph Statistics

As mentioned above, Eppstein and Spiro [13] develop an algorithm for maintaining the h-index and the
h-partition of a graph among edge insertions, edge deletions, and insertions/deletions of isolated vertices
in constant time plus a constant number of dictionary operations per update. Observing that the h-index
doubles after Ω(h2) updates, Eppstein and Spiro further show a partitioning scheme requiring amortized
O(1/h) partition changes per graph update. This partitions the graph into sets of low- and high-degree
vertices, which we summarize in Theorem 2.1.

Theorem 2.1 ([13]). For a dynamic graph G = (V,E), we can maintain a partition (H,V \H) such that
for v ∈ H , degree(v) = Ω(h) and |H| = O(h); and for u ∈ V \H , degree(u) = O(h) in constant time
per update, with amortized O(1/h) changes to the partition per update.

Using this partitioning scheme, one can develop a triangle-counting algorithm as follows. For each pair
of vertices i and j, store the number of length-two paths P [i, j] that have an intermediate low-degree vertex.
Whenever an edge (u, v) is added to the graph, increase the number of triangles by P [u, v], and update the
number of length-two paths containing (u, v) in O(h) time. One can then iterate over all the high-degree
vertices, adding to a triangle count when a high-degree vertex is adjacent to both u and v. Since there are
O(h) high-degree vertices, this method takes O(h) time. These same steps can be done in reverse for an
edge removal.

Whenever the partition changes, one must update P [·, ·] values to reflect vertices moving from high
to low, or low to high, which requires O(h2) time. Since there are amortized O(1/h) partition changes
per graph update, this updating takes O(h) amortized time per update. The randomization comes from the
choice of dictionary scheme used. The data structure as described requiresO(mh) space, which is sufficient
to store the length-two paths with an intermediate low-degree vertex.

Fig. 3. Scatter plot of h-index and network size, on log-log scale

Cluster Intercept β0 Slope β1 df
1 0.0609 0.9735 92

(-0.964, 2.581) (0.231, 1.266)
2 -0.598 0.604 44

(-1.938, 5.248) (0.44712, 0.847)

Table 2. Coefficients for quantile regression lines

2 4 6 8 10

1
2

3
4

5
6

log (size)

lo
g
 (

h
!

in
d
e
x
)

Cluster 1: 95th pencentile
Cluster 2: 95th pencentile

Fig. 4. H-index scaling using quantile regression fits

Cluster log-like AIC BIC
1 -109.345 222.691 227.734
2 -41.071 86.143 89.712

Table 3. Goodness of fit measures for quantile regression lines

16

Figure 2: Scatter plot of h-index and network size, on log-log scale from Eppstein and Spiro [14]

4

Finally, to maintain counts of all induced undirected subgraphs on three vertices, it suffices to solve a
simple four-by-four system of linear equations relating induced subgraphs and non-induced subgraphs. This
allows one to keep counts of the induced subgraphs of every type with a constant amount of work in addition
to counting triangles. Extending this to directed subgraphs of size three and undirected subgraphs of size
four requires that we come up with a much larger system of equations, which characterize the combinatorial
relationships between such types of subgraphs.

3 Directed Three-Vertex Induced Subgraphs

Using the partitioning scheme detailed in Theorem 2.1, we can maintain counts for the all possible induced
subgraphs on three vertices (see Fig. 3) in O(h) amortized time per update for a dynamic directed graph.
We begin by maintaining counts for induced subgraphs that are a directed triangle, we then show how to
maintain counts of all induced subgraphs on three vertices.

T0 T1 T2

T3

T4

T5

T6

T7

T8

T9

T10

T11

T12

T13

T14 T15

Figure 3: The 16 possible directed graphs on three vertices, excluding isomorphisms, organized in left-to-
right order by number of edges in the graph. We label these graphs T0 to T15.

3.1 Counting Directed Triangles

Let a directed triangle be a three-vertex directed graph with at least one directed edge between each pair of
vertices. There are seven possible directed triangles, labeled D0 to D6 in Fig. 4. We let dk denote the count
of induced directed triangles of type Dk in the dynamic graph. We now show how to maintain each count
di by extending Eppstein and Spiro’s technique.

D0 D1 D2 D3 D4 D5 D6

Figure 4: The 7 directed triangles, labeled D0 to D6.
When an edge (u, v) is added or removed from the graph, we would like to quickly compute the number

of directed triangles containing (u, v), in order to update the current counts. The third vertex of this directed
triangle can either be low- or high-degree. We handle these cases separately.

For a pair of vertices i and j, we define a joint to be a third vertex l that is adjacent to both i and j.
Vertices i, l and j are said to form an elbow. Fixing a vertex to be a joint, there are nine unique elbows
which we label E0 to E8(see Fig. 5). We store a dictionary mapping pairs of vertices i and j to the number
of elbows of type Ek formed by i and j and a low-degree joint, denoted ek[i, j].

We now discuss how the directed triangle counts change when adding an edge (u, v). We do not discuss
edge removal since its effects are symmetric to edge insertion.

5

E0 E1 E2 E3

E4 E5 E6 E7

E8

Figure 5: The nine elbows with a fixed joint.

For directed triangles with a third low-degree vertex, we update our counts using the dictionary of elbow
counts. If edge (v, u) is not in the graph, directed triangle counts increase as follows.

d0 = d0 + e1[u, v]

d1 = d1 + e0[u, v] + e2[u, v] + e3[u, v]

d2 = d2 + e5[u, v] + e7[u, v]

d3 = d3 + e4[u, v]

d4 = d4 + e6[u, v]

d5 = d5 + e8[u, v]

If edge (v, u) is present in the graph, adding (u, v) destroys some directed triangles containing (v, u).
Therefore, the directed triangle counts change as follows.

d0 = d0 − e1[v, u]

d1 = d1 − (e0[v, u] + e2[v, u] + e3[v, u])

d2 = d2 + (e0[u, v] + e1[u, v])− (e5[v, u] + e7[v, u])

d3 = d3 + e3[u, v]− e4[v, u]

d4 = d4 + e2[u, v]− e6[v, u]

d5 = d5 + (e4[u, v] + e5[u, v] + e6[u, v] + e7[u, v])− e8[v, u]

d6 = d6 + e8[u, v]

To complete the directed triangle counting step, we iterate over theO(h) high-degree vertices to account
for directed triangles formed with u and v and a high-degree vertex, taking O(h) time.

If either u or v is a low-degree vertex, we must also update the elbow counts involving the added edge
(u, v). We consider, without loss of generality, the updates when u is considered the low-degree elbow joint.
For ease of notation, we categorize the different relationships between adjacent vertices as follows:

inneighbor(u) = {w ∈ V : (w, u) ∈ E ∧ (u,w) 6∈ E}
outneighbor(u) = {w ∈ V : (u,w) ∈ E ∧ (w, u) 6∈ E}

neighbor(u) = {w ∈ V : (u,w) ∈ E ∧ (w, u) ∈ E}.

We summarize the elbow count updates in Table 1.
Finally, when there is a partition change, we must update the elbow counts. If node w moves across the

partition, then we consider all pairs of neighbors of w and update their elbow counts appropriately. Since
there are O(h2) pairs of neighbors, and a constant number of elbows, this step takes O(h2) time. Since
O(1/h) amortized partition changes occur with each graph update, this step requires O(h) amortized time.

3.2 Subgraph Multiplicity

Let the count for induced subgraph Ti be called ti. Furthermore, for a vertex v, let i(v) = |inneighbor(v)|,
o(v) = |outneighbor(v)| and r(v) = |neighbor(v)|. We can represent the relationship between the number

6

of induced and non-induced subgraphs using the matrix equation

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
0 1 2 2 2 2 3 3 3 3 4 4 4 4 5 6
0 0 1 0 0 0 1 1 0 0 2 1 1 1 2 3
0 0 0 1 0 0 1 1 3 1 2 2 2 3 4 6
0 0 0 0 1 0 0 1 0 1 1 1 2 1 2 3
0 0 0 0 0 1 1 0 0 1 1 2 1 1 2 3
0 0 0 0 0 0 1 0 0 0 2 2 0 1 3 6
0 0 0 0 0 0 0 1 0 0 2 0 2 1 3 6
0 0 0 0 0 0 0 0 1 0 0 0 0 1 1 2
0 0 0 0 0 0 0 0 0 1 0 2 2 1 3 6
0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 3
0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 3
0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 3
0 0 0 0 0 0 0 0 0 0 0 0 0 1 2 6
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 6
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1





t0
t1
t2
t3
t4
t5
t6
t7
t8
t9
t10
t11
t12
t13
t14
t15



=



n0 =
(
n
3

)
n1 = m(n− 2)

n2 = 1
2 (n− 2)

∑
v∈V r(v)

n3 =
∑

(u,v)∈E
∑

(v,w)∈E,w 6=u 1

n4 =
∑

v∈V
(
indegree(v)

2

)
n5 =

∑
v∈V

(
outdegree(v)

2

)
n6 =

∑
v∈V (

(
r(v)
2

)
+ o(v) · r(v))

n7 =
∑

v∈V (
(
r(v)
2

)
+ i(v) · r(v))

n8 = d0 + d2 + d5 + 2d6
n9 = d1 + d2 + 2d3 + 2d4 + 3d5 + 6d6

n10 =
∑

v∈V
(
r(v)
2

)
n11 = d3 + d5 + 3d6
n12 = d4 + d5 + 3d6
n13 = d2 + 2d5 + 6d6

n14 = d5 + 6d6
n15 = d6



.

On the right hand side, each ni is the count of the number of non-induced Ti subgraphs in the dynamic
graph. Each ni (excluding directed triangle counts) is maintained in constant time per update by storing
a constant amount of structural information at each node, such as indegree, outdegree, and reciprocity of
neighbors. On the left hand side, position i, j in the matrix counts how many non-induced subgraphs of
type Ti appear in Tj . We are counting non-induced subgraphs in two ways: (1) by counting the number of
appearances within induced subgraphs and (2) by using the structure of the graph. Since the multiplicand is
an upper (unit) triangular matrix, this matrix equation is easily solved, yielding the induced subgraph counts.
Thus, we can maintain the counts for three-vertex induced subgraphs in a directed dynamic graph in O(h)
amortized time per update, and O(mh) space, plus the additional overhead for the choice of dictionary.

4 Four-Vertex Subgraphs

We begin by describing the data structure for our algorithm. It will be necessary to maintain the counts of
various subgraph structures. The data structure in whole consists of the following information:

• Counts of the non-induced subgraph structures, m3 through m10.

Table 1: Summary of updating elbow counts when u is considered a low-degree joint.

(v, u) 6∈ E (v, u) ∈ E

w ∈ inneighbor(u) \ {v}
e0[w, v] = e0[w, v] + 1

e1[v, w] = e1[v, w] + 1

e6[w, v] = e6[w, v] + 1

e5[v, w] = e5[v, w] + 1

w ∈ outneighbor(u) \ {v}
e0[v, w] = e0[v, w] + 1

e1[w, v] = e1[w, v] + 1

e4[v, w] = e4[v, w] + 1

e7[w, v] = e7[w, v] + 1

w ∈ neighbor(u) \ {v}
e4[w, v] = e4[w, v] + 1

e7[v, w] = e7[v, w] + 1

e8[w, v] = e8[w, v] + 1

e8[v, w] = e8[v, w] + 1

7

• A set E of the edges in the graph, indexed such that given a pair of endpoints there is a constant-time
lookup to determine if they are linked by an edge.

• A partition of the vertices of the graph into two sets H and V \H .

• A dictionary P1 mapping each vertex u to a pair P1[u] = (s0[u], s1[u]). This pair contains the counts
for the structures S0 and S1 that involve vertex u (see Fig. 6). That is, the count of the number of
two-edge paths that begin at u and pass through two vertices in V \H and the number of these paths
that connect back to u forming a triangle. We only maintain nonzero values for these numbers in P1;
if there is no entry in P1[u] for the vertex u then there exist no such path from u.

• A dictionary P2 mapping each pair of vertices u, v to a tuple P2[u, v] = (s2[u, v], s3[u, v], s4[u, v],
s5[u, v], s6[u, v]). This tuple contains the counts for the structures S2 through S6 that involve vertices
u and v (see Fig. 6). That is, the number of two-edge paths from u to v via a vertex of V \ H , the
number of three-edge paths from u to v via two vertices of V \H , the number of structures in which
both u and v connect to the same vertex in V \ H which connects to another vertex in V \ H , the
number of structures similar to the last in which the final vertex in V \H shares an edge connection
with u or v, and the number of structures where between u and v there are two two-edge paths through
vertices of V \H in which the two vertices in V \H share an edge connection. Again, we only maintain
nonzero values.

• A dictionary P3 mapping each triple of vertices u, v, w to a number P2[u, v, w] = (s7[u, v, w]). This
value is the count for the structure S7 that involves vertices u, v, and w (see Fig. 6). This is, the
number of vertices in V \H that share edge connections with all three vertices. As before, we only
maintain nonzero values for these numbers.

Upon insertion of an edge between vertices v1 and v2 we will need to update the dictionaries P1, P2,
and P3. If both v1 and v2 are in H , no update is necessary.

If v1 and v2 are both in V \ H then we will need to update the counts s0 through s6. First find which
vertices in H connect to v1 or to v2. Increment s0 for these vertices. If both vertices in V \ H connect to
the same vertex in H then increment s1 for this vertex. Increment s2 for v1 and the vertices that connect
to v2, and for v2 and the vertices that connect to v1. Then increment s3 based on pairs of neighbors of v1
and v2 and neighbors of neighbors in V \ H . If either v1 or v2 connect to two vertices in H increment s4
for the vertices in H . Considering v1 to be the vertex with edge connections to two vertices in H , for each
vertex in H that connects to v2 increment s5. For two vertices in H such that v1 and v2 each connect to
both, increment s6 for the vertices in H .

If v1 and v2 are such that one is in V \H and the other in H we will proceed as follows. Consider v1 to
be the vertex in V \H . First, determine the number of vertices in V \H connected to v1 and increase s0 for

S0 S1

S2 S3 S4 S5 S6 S7

Figure 6: We store counts of these eight non-induced subgraphs to maintain counts of four-vertex non-
induced subgraphs Q3 to Q10. The counts are indexed by the labels of the white vertices, and the blue
vertices indicate a vertex has low-degree.

8

Q0 Q1 Q2

Q3

Q4

Q5

Q6

Q7

Q8

Q9 Q10

Figure 7: The 11 possible graphs on four vertices, excluding isomorphisms, organized in left-to-right order
by number of edges in the graph.

v2 by that amount. Upon discovering these adjacent vertices in V \H test their connection to v2. For each of
those connected, increment s1 for v2. It is necessary to determine which vertices inH share an edge with v1.
After these connections have been determined increment the appropriate dictionary entries. Form pairs with
v2 and the connected vertices in H and update the s2 counts. Form triples with v2 and two other connected
vertices in H and update the counts in s7. The s5 update comes from determining the triangles formed by
the additional edge and using the degree of the vertices inH , and the count of the connected triangles, which
can be calculated by searching for attached vertex pairs in H and using s2. In order to update the count for
s6 begin with location of vertex pairs as with the elbow update. For each of the H vertex pairs increase the
stored value by the number of vertices in V \H that share an edge with v1 and with both of the vertices in
H , which can be retrieved from s2.

Examining the time complexity we can see that in order to generate the dictionary updates the most
complex operation involves examination of two sets of connected vertices consecutively that are O(h) in
size each. This results in O(h2) operations to determine which updates are necessary. Since it is possible to
see from the structure of the stored items that no single edge insertion can result in more than O(h2) new
structures, this will be the upper bound on dictionary updates, and make O(h2) the time complexity bound.

These maintained counts will have to be modified when the vertex partition is updated. If a vertex is
moved from H to V \ H then it is necessary to count the connected structures it now forms. This can be
done by examining all edges formed by this vertex, and following the procedure for edge additions. When a
vertex is moved into H it is necessary to count the structures it had been forming as a vertex in V \H and
decrement the appropriate counts. This can be done similarly to the method for generating new structures.
In analysis of the partition updates we see that since we are working with a single vertex with O(h) degree
the complexity has an additional O(h) factor to use the edge-based dictionary update scheme. This results
in O(h3) time per update. Since this partition update is done an average of O(1/h) times per operation, the
amortized time for updates, per change to the input graph, is O(h2).

4.1 Subgraph Structure Counts

The following section covers the update of the subgraph structure counts after an edge between vertices v1
and v2 has been inserted. Let these vertices have degree count d1 and d2 respectively. Recall that mi refers
to the count of the non-induced subgraph of the structure Qi (see Fig. 7).

The m3 count will be increased by (m− (d1 + d2 − 2)), where m is the number of edges in the graph.
Since this structure consists of two edges that do not share vertices, the increase of the count comes from a
selection of a second edge to be paired with the inserted edge. The second term in the update value reflects
the number of edges that connected to the inserted edge.

9

The m4 count will be updated as follows. Each of the two vertices can be the end of a claw structure.
From each end two edges in addition to the newly inserted edge must be selected. Thus the value to update
the count is

(
d1−1
2

)
+
(
d2−1
2

)
.

The m5 count is updated by calculating the number of additional triangles the edge addition would add,
which can be done with the Eppstein-Spiro [13] method, and multiplying that by a factor of (n−3) to reflect
the selection of the additional vertex, where n is the number of vertices in the graph.

The update for m6 is done in parts based on which position in the structure the edge is forming. The
increase to the count for the new structures in which the additional edge is the center in the three-edge path
is ((d1 − 1)(d2 − 1)).

This value will be increased by the count when the new edge is not the center of the structure. The
process to calculate the count increase will assume that v1 connects to the rest of this structure. The same
process can be done without loss of generality with the assumption v2 connects to the rest of the structure.
These values will then both be added to form the final part of the count update. If v1 is an element of H then
we will sum the results from the following subcases. First we consider the case where the vertex adjacent to
v1 is in H . The number of these paths of length two originating at v1 can be counted by summing the degree
of these vertices minus 1. We must also subtract one for each of the adjacent vertices in H that are adjacent
to v2. If v1 is not an element of H , then it has h or less neighbors. Sum over all neighbors the following
value. If the vertex does not have an edge connecting it to v2 then the degree of the vertex; if it does the
degree minus one.

The m7 count is updated as follows. An inserted edge can form the structure in three positions, so our
final update will be the sum of those three counts. For the first case let the inserted edge be the additional
edge connected to the triangle. For this case, we must do all of the following for both vertices and sum the
result. If the vertex is in H retrieve s1. This gives us the connected triangles through vertices in V \ H .
Then determine which vertices in H connect to the vertex. Form the triangle counts with all vertices in H .
Form those with one additional vertex in H using s2. If the vertex is in V \H , then determine its neighbors
connections and form a connected triangle count.

In the second case the edge is in the triangle and shares a vertex with the additional edge. The count can
be determined in two parts. First the triangles. If either v1 or v2 are in V \ H then the triangle count can
be calculated. If both are in H then a lookup to s2 will determine the number of triangles. The number of
additional edges can then be calculated using the degrees of the vertices of the inserted edge, with care to
not count the edges used to form the triangle. The product of the triangle and additional edge will form the
increase for this case.

The final case occurs when the inserted edge is part of the triangle, but does not share a vertex with the
additional edge. If either v1 or v2 are in V \ H then the triangle count can be calculated, and the degree
of the vertices used to form these triangles can be used to calculate the count increase. If both v1 or v2 are
in H then there are three remaining subcases. The count if all vertices are in H can be determined. If the
vertex on the additional edge that is not in the triangle is in H , then using the three known vertices in H and
a lookup from P2 can yield the counts. If both remaining vertices are in V \ H this is the structure stored
in s4, and counts can be retrieved. Sum the counts for these subcases to calculate the total increase for this
case.

The count form8 is increased upon edge update by a sum of the following. The count of the length three
path through vertices in V \ H can be looked up in s3. There are two possible types of length three paths
remaining. In the first, both vertices are in H . These paths can be counted be examining the connections
between v1, v2, and all vertices in H . The second contains one vertex in H and one in V \H . These paths
can be counted by establishing which vertices in H connect to either v1 or v2, and then using the count in

10

s2 of the length two paths from the vertices in H to v2 or v1 respectively.
The m9 count can be increased by an edge insert in two positions. The first is between the opposite

ends of the cycle. If either v1 or v2 is in V \H then the edge connections can be determined and the count
calculated. If both v1 and v2 are in H then the count of the two two-edge paths that form the cycle must be
determined. These paths will either pass through a vertex in H or a vertex in V \ H . The former can be
counted by examining the vertices in H , and the latter by a lookup to s2.

The second possible position for an edge insert is on the outer path of a cycle that already has an edge
through it. If either v1 or v2 are in V \ H calculate the count as follows, summing with an additional
calculation considering the vertices reversed. If the vertex connected to the triangle is in V \ H then the
count can be determined by examining neighbors and their edge connections. If the vertex not connected to
the triangle is in V \ H then examine the neighbors. For those neighbors that are in V \ H the count can
be determined by examining additional edge connections of neighbors. For the neighbors in H a lookup s2
is required to completely determine the counts. If both v1 and v2 are in H then the count is calculated as
follows. If all vertices of the structure are inH , determine the count by examining edge connections. If both
remaining vertices are in V \ H the count can be determined by lookup to s5. Otherwise, one of the two
remaining vertices is in H . This will leave a structure that can be completed and provide a count by using a
lookup to s2, or s7

The m10 count update is separated by the membership of v1 and v2. If either vertex is contained in
V \H , consider v1, then it is possible to determine which vertices connect to v1 and which of these share
edges with v2 and each other. This count can be calculated and the total count can be updated. If both v1
and v2 are in H then we will sum the values determined in the following three subcases. First, all four
vertices are in H . This count can be determined by examining the edge connections of the vertices in H . If
three vertices in H form the correct structure, the count of cliques formed with one vertex in V \H can be
determined by a look up to s7. These counts should be summed for all vertices in H that form the correct
structure with v1 and v2. The final count, with both of the remaining vertices in V \H can be determined
by an s6 lookup.

The time complexity for the updates of the stored subgraphs is O(h2). Calculations and lookups can
be performed in constant time, and subcase calculations can be done independently. The most complicated
subcase count computations involve examination of two sets of connected vertices consecutively that are
O(h) in size each. This results in O(h2) operations. The space complexity for our data structure is O(1)
for the maintained subgraph counts, O(m) for E, O(n) for the partition to maintain H , and O(mh2) for the
dictionaries, because each edge belongs to at most O(h2) subgraph structures.

4.2 Subgraph Multiplicity

The data structure in the previous section only maintains counts of certain subgraph structures. With the
addition of m, n, and the count of length two paths, where m is the number of edges and n the number of
vertices, it is possible to use these counts to determine the counts of all subgraphs on four vertices. The
additional values m, n, and the count of length two paths can be maintained in constant time per update.
Values for m and n are modified incrementally. Adding an edge uv will increase the count of length two
paths by du + dv, the degrees of u and v respectively. Removing the edge will decrease the value by
du + dv − 2.

11



1 1 1 1 1 1 1 1 1 1 1
0 1 2 2 3 3 3 4 4 5 6
0 0 1 0 3 3 2 5 4 8 12
0 0 0 1 0 0 1 1 2 2 3
0 0 0 0 1 0 0 1 0 2 4
0 0 0 0 0 1 0 1 0 2 4
0 0 0 0 0 0 1 2 4 6 12
0 0 0 0 0 0 0 1 0 4 12
0 0 0 0 0 0 0 0 1 1 3
0 0 0 0 0 0 0 0 0 1 6
0 0 0 0 0 0 0 0 0 0 1





q0
q1
q2
q3
q4
q5
q6
q7
q8
q9
q10


=



m0 =
(
n
4

)
m1 = m

(
n−2
2

)
m2 = (n− 3)

∑
v∈V

(
degree(v)

2

)
m3

m4

m5

m6

m7

m8

m9

m10


Similar to the matrix for size three subgraphs, we can use the counts of the non-induced subgraphs on

the right and the composition of the induced subgraphs to determine the counts of any desired subgraph.

5 Conclusion

The work we present here can maintain counts for all 3-vertex directed subgraphs O(h) amortized time per
update. This can be done in O(mh) space. For the undirected case, we maintain counts of size-four sub-
graphs in O(h2) amortized time per update and O(mh2) space. Although we do not discuss the specifics
in this paper, the methodology presented can be used to count directed size-four subgraphs with similar
complexity. These developments open significant possibility for improvement in calculating graphlet fre-
quencies within Bioinformatics and in ERGM applications for social network analysis.

References

[1] R. Adler, J. Ewing, and P. Taylor. Citation Statistics: A report from the International Mathematical
Union (IMU) in cooperation with the International Council of Industrial and Applied Mathematics
(ICIAM) and the Institute of Mathematical Statistics. Joint Committee on Quantitative Assessment of
Research, 2008.

[2] R. Albert, H. Jeong, and A.-L. Barabasi. The diameter of the world wide web. Nature, 401:130–131,
1999.

[3] N. Alon, R. Yuster, and U. Zwick. Finding and counting given length cycles. Algorithmica, 17(3):209–
223, 1997.

[4] J. Chen, Y. Liu, S. Lu, B. O’Sullivan, and I. Razgon. A fixed-parameter algorithm for the directed
feedback vertex set problem. J. ACM, 55(5):1–19, 2008.

[5] N. Chiba and T. Nishizeki. Arboricity and subgraph listing algorithms. SIAM J. Comput., 14(1):210–
223, 1985.

[6] D. Coppersmith and S. Winograd. Matrix multiplication via arithmetic progressions. Journal of Sym-
bolic Computation, 9(3):251–280, 1990.

[7] E. D. Demaine, F. V. Fomin, M. Hajiaghayi, and D. M. Thilikos. Fixed-parameter algorithms for (k,
r)-center in planar graphs and map graphs. ACM Trans. Algorithms, 1(1):33–47, 2005.

12

[8] R. G. Downey and M. R. Fellows. Fixed-parameter tractability and completeness i: Basic results.
SIAM J. Comput., 24(4):873–921, 1995.

[9] F. Eisenbrand and F. Grandoni. On the complexity of fixed parameter clique and dominating set.
Theoretical Computer Science, 326(1–3):57–67, 2004.

[10] D. Eppstein. Subgraph isomorphism in planar graphs and related problems. Journal of Graph Algo-
rithms & Applications, 3(3):1–27, 1999.

[11] D. Eppstein. Diameter and treewidth in minor-closed graph families. Algorithmica, 27:275–291, 2000.

[12] D. Eppstein and M. T. Goodrich. Studying (non-planar) road networks through an algorithmic lens.
In GIS ’08: Proceedings of the 16th ACM SIGSPATIAL international conference on Advances in geo-
graphic information systems, pages 1–10, New York, NY, USA, 2008. ACM.

[13] D. Eppstein and E. S. Spiro. The h-index of a graph and its application to dynamic subgraph statistics.
In F. Dehne, M. Gavrilova, J.-R. Sack, and C. D. Tóth, editors, WADS 2009, volume 5664 of LNCS,
pages 278–289. Springer-Verlag, 2009.

[14] D. Eppstein and E. S. Spiro. The h-index of a graph and its application to dynamic subgraph statistics.
arXiv:0904.3741, 2009.

[15] O. Frank. Statistical analysis of change in networks. Statistica Neerlandica, 45:283–293, 199.

[16] O. Frank and D. Strauss. Markov graphs. J. Amer. Statistical Assoc., 81:832–842, 1986.

[17] J. Guo, J. Gramm, F. Hüffner, R. Niedermeier, and S. Wernicke. Compression-based fixed-parameter
algorithms for feedback vertex set and edge bipartization. J. Comput. Syst. Sci., 72(8):1386–1396,
2006.

[18] J. E. Hirsch. An index to quantify an individual’s scientific research output. Proc. National Academy
of Sciences, 102(46):16569–16572, 2005.

[19] A. Itai and M. Rodeh. Finding a minimum circuit in a graph. SIAM J. Comput., 7(4):413–423, 1978.

[20] T. Kloks, D. Kratsch, and H. Müller. Finding and counting small induced subgraphs efficiently. Infor-
mation Processing Letters, 74(3–4):115–121, 2000.

[21] F. Liljeros, C. R. Edling, L. A. N. Amaral, H. E. Stanley, and Y. Åberg. The web of human sexual
contacts. Nature, 411:907–908, 2001.

[22] T. Milenković and N. Pržulj. Uncovering biological network function via graphlet degree signatures.
Cancer Informatics, 6:257–273, 2008.

[23] J. Nešetřil and S. Poljak. On the complexity of the subgraph problem. Commentationes Mathematicae
Universitatis Carolinae, 26(2):415–419, 1985.

[24] M. E. J. Newman. The structure and function of complex networks. SIAM Review, 45:167–256, 2003.

[25] R. Niedermeier and P. Rossmanith. On efficient fixed-parameter algorithms for weighted vertex cover.
J. Algorithms, 47(2):63–77, 2003.

13

[26] D. J. d. S. Price. Networks of scientific papers. Science, 149(3683):510–515, 1965.

[27] N. Pržulj. Biological network comparison using graphlet degree distribution. Bioinformatics,
23(2):e177–e183, 2007.

[28] N. Pržulj, D. G. Corneil, and I. Jurisica. Efficient estimation of graphlet frequency distributions in
protein–protein interaction networks. Bioinformatics, 22(8):974–980, 2006.

[29] G. Robins and M. Morris. Advances in exponential random graph (p∗) models. Social Networks,
29(2):169–172, 2007. Special issue of journal with four additional articles.

[30] T. A. B. Snijders. Markov chain Monte Carlo estimation of exponential random graph models. Journal
of Social Structure, 3(2):1–40, 2002.

[31] T. A. B. Snijders, P. E. Pattison, G. Robins, and M. S. Handcock. New specifications for exponential
random graph models. Sociological Methodology, 36(1):99–153, 2006.

[32] V. Vassilevska and R. Williams. Finding, minimizing and counting weighted subgraphs. In Proc. 41st
ACM Symposium on Theory of Computing, 2009.

[33] S. Wasserman and P. E. Pattison. Logit models and logistic regression for social networks, I: an
introduction to Markov graphs and p∗. Psychometrika, 61:401–425, 1996.

[34] R. Yuster. Finding and counting cliques and independent sets in r-uniform hypergraphs. Information
Processing Letters, 99(4):130–134, 2006.

14

	1 Introduction
	1.1 Other Related Work
	1.2 Our Results

	2 Preliminaries
	2.1 The H-Index
	2.2 Maintaining Undirected Size-3 Subgraph Statistics

	3 Directed Three-Vertex Induced Subgraphs
	3.1 Counting Directed Triangles
	3.2 Subgraph Multiplicity

	4 Four-Vertex Subgraphs
	4.1 Subgraph Structure Counts
	4.2 Subgraph Multiplicity

	5 Conclusion

