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ABSTRACT
We present data-oblivious algorithms in the external-memory
model for compaction, selection, and sorting. Motivation for such
problems comes from clients who use outsourced data storage
services and wish to mask their data access patterns. We show
that compaction and selection can be done data-obliviously using
O(N/B) I/Os, and sorting can be done, with a high probability of
success, using O((N/B) logM/B(N/B)) I/Os.

Categories and Subject Descriptors
F.2.2 [Analysis of Algorithms and Problem Complexity]: Non-
numerical Algorithms and Problems

General Terms
Algorithms, Theory

Keywords
External memory, data-oblivious algorithms, sorting.

1. INTRODUCTION
Online data storage is becoming a large and growing industry,

in which companies provide large storage capabilities for hosting
outsourced data for individual or corporate users, such as with
Amazon S3 and Google Docs. The companies that provide such
services typically give their users guarantees about the availability
and integrity of their data, but they often have commercial interests
in learning as much as possible about their users’ data.

Clearly, a necessary first step towards achieving privacy is for
users to store their data in encrypted form, e.g., using a secret key
that is known only to the users. Simply encrypting one’s data is
not sufficient to achieve privacy in this context, however, since
information about the content of a user’s data is leaked by the
pattern in which the user accesses it [9].

Problem Statement. The problem of protecting the privacy of
a user’s data accesses in an outsourced data storage facility can
be defined in terms of external-memory data-oblivious RAM com-
putations. In this framework, a group of users, who we will call
“Alices,” share in parallel a large data set, which is stored on a
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data storage server owned by Bob, who provides the Alices with
an interface that supports indexed addressing of their data, so each
word has a unique address. Each Alice has a CPU with a private
cache, which can be used for data-dependent computations. As in
the standard external-memory model (e.g., see [1]), where external
storage is typically assumed to be on a disk drive, data on the
external storage device is accessed and organized in contiguous
blocks, with each block holding B words, where B ≥ 1. That
is, this is an adaptation of the standard external-memory model
so that the external disk drive is associated with Bob and each
Alice has a CPU and much smaller cache. The service provider,
Bob, is trying to learn as much as possible about the content of
the data shared by the Alices and he can view the sequence and
location of all of their disk accesses. But he cannot see the content
of what is read or written, for we assume it is encrypted using
a semantically secure encryption scheme such that re-encryption
of the same value is indistinguishable from an encryption of a
different value (with all the Alices sharing a secret key). Moreover,
Bob cannot view the content or access patterns of any private cache.
We parameterize this model by assuming that each Alice has a
private cache of size M , that the size of data set stored on Bob’s
server is N , and data is transfered between Bob’s memory and any
private cache in contiguous blocks of size B. Using terminology
of the cryptography literature, Bob is assumed to be an honest-but-
curious adversary [13], in that he correctly performs all protocols
and does not tamper with any data, but he is nevertheless interested
in learning as much as possible about the data he storing on behalf
of the group of Alices.

Periodically, one of the Alices will connect to the server, Bob,
to perform some computation so as to solve some combinatorial
problem, P (like sorting or selection), on the shared data. During
this connection, she has exclusive access to the data stored by
Bob so that she can complete a sequence of block I/Os on his
memory to solve the problem P , and when she is finished, she
disconnects her session with Bob. We say that Alice’s sequence of
I/Os during this session is data-oblivious for solving the problem
P if the distribution of this sequence depends only on P , N , M ,
and B, and the length of the access sequence itself. In particular,
this distribution should be independent of the data values in the
input. Put another way, this definition of a data-oblivious com-
putation means that Pr(S |M,P, N, M, B), the probability that
Bob sees an access sequence, S, conditioned on a specific initial
configuration of external memory, M, and the values of P , N , M ,
and B, satisfies

Pr(S |M,P, N, M, B) = Pr(S |M′,P, N, M, B),

for any memory configuration M′ �= M such that |M′| = |M|.
Note, in particular, that this implies that the length, |S|, of Alice’s
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access sequence cannot depend on specific input values. Examples
of data-oblivious access sequences for an array, A, of size N , in
Bob’s external memory, include the following (assuming B = 1):

• Simulating a circuit, C, with its inputs taken in order from A.
For instance, C could be a Boolean circuit or an AKS sorting
network [2].

• Accessing the cells of A according to a random hash func-
tion, h(i), as A[h(1)], A[h(2)], . . ., A[h(n)], or random
permutation, π(i), as A[π(1)], A[π(2)], . . ., A[π(n)].

Examples of computations on A that would not be data-oblivious
include the following:

• Using the standard merge-sort or quick-sort algorithm to
sort A. (Neither of these well-known algorithms is data-
oblivious.)

• Using values in A as indices for a hash table, T , and access-
ing them as T [h(A[1])], T [h(A[2])], . . ., T [h(A[n])], where
h is a random hash function. (For instance, think of what
happens if all the values in A are equal and how improbable
the resulting n-way collision in T would be.)

This last example is actually a little subtle. It is, in general, not data-
oblivious to access a hash table, T , in this way, but note that such
an access sequence would be data-oblivious if the elements in A
are always guaranteed to be distinct. In this case, each such access
in T would be to a random location and every possible sequence of
such accesses in T would be equally likely for any set of distinct
values in A, assuming our random hash function, h, satisfies the
random oracle model (e.g., see [3]).

Related Prior Results. Data-oblivious sorting is a classic algo-
rithmic problem, which Knuth [19] studies in some depth, since
deterministic schemes give rise to sorting networks, such as the
theoretically-optimal O(n log n) AKS network [2] as well as prac-
tical sorting networks [21]. Randomized data-oblivious sorting
algorithms running in O(n log n) time and succeeding with high
probability are likewise studied by Leighton and Plaxton [23] and
Goodrich [15]. Moreover, data-oblivious sorting is finding applica-
tions to privacy-preserving secure multi-party computations [28].
For the related selection problem, Leighton et al. [22] give a ran-
domized data-oblivious solution that runs in O(n log log n) time
and they give a matching lower bound for methods exclusively
based on compare-exchange operations.

Chaudhry and Cormen [8] argue that data-oblivious external-
memory sorting algorithms have several advantages, including
good load-balancing and the avoidance of poor performance on
“bad” inputs. They give a data-oblivious sorting algorithm for
the parallel disk model and analyze its performance experimen-
tally [7]. But their method is size-limited and does not achieve
the optimal I/O complexity of previous external-memory sorting
algorithms (e.g., see [1]), which use O((N/B) logM/B(N/B))
I/Os. None of the previous external-memory sorting algorithms that
use O((N/B) logM/B(N/B)) I/Os are data-oblivious, however.

Goodrich and Mitzenmacher [16] show that any RAM algorithm,
A, can be simulated in a data-oblivious fashion in the external-
memory model so that each memory access performed by A has an
overhead of O(min{log2(N/B), log2

M/B(N/B) log2 N}) amor-
tized I/Os in the simulation, and which is data-oblivious with high
probability (w.v.h.p.)1, which both improves and extends a result

1In this paper, we take the phrase “with high probability” to mean

that the probability is at least 1 − 1/(N/B)d, for a given constant
d ≥ 1.

of Goldreich and Ostrovsky [14] to the I/O model. The overhead
of the Goodrich-Mitzenmacher simulation is optimal for the case
when N/B is polynomial in M/B and is based on an “inner loop”
use of a deterministic data-oblivious sorting algorithm that uses
O((N/B) log2

M/B(N/B)) I/Os, but this result is not optimal in
general.

Our Results. We give data-oblivious external-memory al-
gorithms for compaction, selection, quantile computation, and
sorting of outsourced data. Our compaction and selection al-
gorithms use O(N/B) I/Os and our sorting algorithm uses
O((N/B) logM/B(N/B)) I/Os, which is asymptotically opti-
mal [1]. All our algorithms are randomized and succeed with
high probability. Our results also imply that one can improve the
expected amortized overhead for a randomized external-memory
data-oblivious RAM simulation to be O(logM/B(N/B) log2 N).

Our main result is for the sorting problem, as we are not aware of
any asymptotically-optimal oblivious external-memory sorting al-
gorithm prior to our work. Still, our other results are also important,
in that our sorting algorithm is based on our algorithms for selection
and quantiles, which in turn are based on new methods for data-
oblivious data compaction. We show, for instance, that efficient
compaction leads to a selection algorithm that uses O(n) I/Os, and
succeed w.v.h.p, where n = O(N/B). Interestingly, this result
beats a lower bound for the complexity of parallel selection net-
works, of Ω(n log log n), due to Leighton et al. [22]. Our selection
result doesn’t invalidate their lower bound, however, for their lower
bound is for circuits that only use compare-exchange operations,
whereas our algorithm uses other “blackbox” primitive operations
besides compare-exchange, including addition, subtraction, data
copying, and random functions. Thus, our result demonstrates the
power of using operations other than compare-exchange in a data-
oblivious selection algorithm.

Our algorithms are based on a number of new techniques for
data-oblivious algorithm design, including the use of a recent data
structure by Goodrich and Mitzenmacher [17], known as the invert-
ible Bloom lookup table. We show in this paper how this data struc-
ture can be used in a data-oblivious way to solve the compaction
problem, which in turn leads to efficient methods for selection,
quantiles, and sorting. Our methods also use a butterfly-like routing
network and a “shuffle-and-deal” technique reminiscent of Valiant-
Brebner routing [27], so as to avoid data-revealing access patterns.

Given the motivation of our algorithms from outsourced data
privacy, we make some reasonable assumptions regarding the com-
putational models used by some of our algorithms. For instance,
for some of our results, we assume that B ≥ logε(N/B), which
we call the wide-block assumption. This is, in fact, equivalent or
weaker than several similar assumptions in the external-memory
literature (e.g., see [4, 24]). In addition, we sometimes also use
a weak tall-cache assumption that M ≥ B1+ε, for some small
constant ε > 0, which is also common in the external-memory
literature (e.g., see [6, 11]).

2. INVERTIBLE BLOOM FILTERS
As mentioned above, one of the tools we use in our algorithms

involves a data-oblivious use of the invertible Bloom lookup table
of Goodrich and Mitzenmacher [17], which is itself based on the in-
vertible Bloom filter data structure of Eppstein and Goodrich [10].

An invertible Bloom lookup table, B, is a randomized data
structure storing a set of key-value pairs. It supports the following
operations (among others):

• insert(x, y): insert the key-value pair, (x, y), into B. This
operation always succeeds, assuming that keys are distinct.
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• delete(x, y): remove the key-value pair, (x, y), from B. This
operation assumes (x, y) is in B.

• get(x): lookup and return the value, y, associated with the
key, x, in B. This operation may fail, with some probability.

• listEntries: list all the key-value pairs being stored in B. With
low probability, this operation may return a partial list along
with an “list-incomplete” error condition.

When an invertible-map Bloom lookup table B is first created, it
initializes a table, T , of a specified capacity, m, which is initially
empty. The table T is the main storage used to implement B.
Each of the cells in T stores a constant number of fields, each of
which is a single memory word or block. Insertions and deletions
can proceed independent of the capacity m and can even create
situations where the number, n, of key-value pairs in B can be much
larger than m. Nevertheless, the space used for B remains O(m).
The get and listEntries methods, on the other hand, only guarantee
good probabilistic success when n < m.

Like a traditional Bloom filter [5], an invertible Bloom lookup
table uses a set of k random hash functions, h1, h2, . . ., hk, defined
on the universe of keys, to determine where items are stored. In
this case, we also assume that, for any x, the hi(x) values are
distinct, which can be achieved by a number of methods, including
partitioning. Each cell contains three fields:

• a count field, which counts the number of entries that have
been mapped to this cell,

• a keySum field, which is the sum of all the keys that have
been mapped to this cell,

• a valueSum field, which is the sum of all the values that
have been mapped to this cell.

Given these fields, which are all initially set to 0, performing the
insert operation is fairly straightforward:

• insert(x, y):

for each (distinct) hi(x) value, for i = 1, . . . , k do
add 1 to T [hi(x)].count
add x to T [hi(x)].keySum
add y to T [hi(x)].valueSum

The delete method is basically the reverse of that above. The
listEntries method is similarly simple2:

• listEntries:

while there is an i ∈ [1, m] s. t. T [i].count = 1 do
output (T [i].keySum , T [i].valueSum)
call delete(T [i].keySum)

It is a fairly straightforward exercise to implement this method in
O(m) time, say, by using a link-list-based priority queue of cells in
T indexed by their count fields and modifying the delete method
to update this queue each time it deletes an entry from B. If, at the
end of the while-loop, all the entries in T are empty, then we say
that the method succeeded.

Lemma 1 (Goodrich and Mitzenmacher) [17]: Given an invert-
ible Bloom lookup table, T , of size m = �δkn�, holding at most
n key-value pairs, the listEntries method succeeds with probability
1 − 1/nc, where c ≥ 1 is any given constant and k ≥ 2 and δ ≥ 2
are constant depending on c.

2We describe this method in a destructive fashion—if one wants a
non-destructive method, then one should first create a copy of the
table T as a backup.

The important observation about the functioning of the invert-
ible Bloom lookup table, for the purposes of this paper, is that
the sequence of memory locations accessed during an insert(x, y)
method is oblivious to the value y and the number of items already
stored in the table. That is, the locations accessed in performing an
insert method depend only on the key, x. The listEntries method,
on the other hand, is not oblivious to keys or values.

3. DATA-OBLIVIOUS COMPACTION
In this section, we describe efficient data-oblivious algorithms

for compaction. In this problem, we are given an array, A, of
N cells, at most R of which are marked as “distinguished” (e.g.,
using a marked bit or a simple test) and we want to produce an
array, D, of size O(R) that contains all the distinguished items
from A. Note that this is the fundamental operation done during
disk defragmentation, which is a natural operation that one would
want to do in an outsourced file system, since users of such systems
are charged for the space they use.

We say that such a compaction algorithm is order-preserving if
the distinguished items in A remain in their same relative order in
D. In addition, we say that a compaction algorithm is tight if it
compacts A to an array D of size exactly R. If this size of D is
merely O(R), and we allow for some empty cells in D, then we
say that the compaction is loose. Of course, we can always use a
data-oblivious sorting algorithm, such as with the following sub-
optimal result, to perform a tight order-preserving compaction.

Lemma 2 (Goodrich and Mitzenmacher) [16]: Given an array
A of size N , one can sort A with a deterministic data-oblivious
algorithm that uses O((N/B) log2

M/B(N/B)) I/Os, assuming
B ≥ 1 and M ≥ 2B.

In the remainder of this section, we give several compaction
algorithms, which exhibit various trade-offs between performance
and the compaction properties listed above. Incidentally, each
of these algorithms is used in at least one of our algorithms for
selection, quantiles, and sorting.

Data Consolidation. Each of our compaction algorithms uses
a data-oblivious consolidation preprocessing operation. In this
operation, we are given an array A of size N such that at most
R ≤ N elements in A are marked as “distinguished.” The output
of this step is an array, A′, of �N/B� blocks, such that �R/B	
blocks in A′ are completely full of distinguished elements and at
most one block in A′ is partially full of distinguished elements. All
other blocks in A′ are completely empty of distinguished elements.
This consolidation step uses O(N/B) I/Os, assuming only that
B ≥ 1 and M ≥ 2B, and it is order-preserving with respect to
the distinguished elements in A.

We start by viewing A as being subdivided into �N/B� blocks
of size B each (it is probably already stored this way in Bob’s
memory). We then scan the blocks of A from beginning to end,
keeping a block, x, in Alice’s memory as we go. Initially, we just
read in the first block of A and let x be this block. Each time
after this that we scan a block, y, of A, from Bob’s memory, if
the distinguished elements from x and y in Alice’s memory can
form a full block, then we write out to Bob’s memory a full block
to A′ of the first B distinguished elements in x ∪ y, maintaining
the relative order of these distinguished elements. Otherwise, we
merge the fewer than B distinguished elements in Alice’s memory
into the single block, x, again, maintaining their relative order, and
we write out an empty block to A′ in Bob’s memory. We then
repeat. When we are done scanning A, we write out x to Bob’s
memory; hence, the access pattern for this method is a simple scan
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of A and A′, which is clearly data-oblivious. Thus, we have the
following.

Lemma 3: Suppose we are given an array A of size N , with at
most R of its elements marked as distinguished. We can deter-
ministically consolidate A into an array A′ of �N/B� blocks of
size B each with a data-oblivious algorithm that uses �N/B� I/Os,
such that all but possibly the last block in A′ are completely full
of distinguished elements or completely empty of distinguished
elements. This computation assumes that B ≥ 1 and M ≥ 2B,
and it preserves the relative order of distinguished elements.

Tight Order-Preserving Compaction for Sparse Arrays. The
semi-oblivious property of the invertible Bloom lookup table al-
lows us to efficiently perform tight order-preserving compaction
in a data-oblivious fashion, provided the input array is sufficiently
sparse. Given the consolidation preprocessing step (Lemma 3), we
describe this result in the RAM model (which could be applied to
blocks that are viewed as memory words for the external-memory
model), with n = N/B and r = R/B.

Theorem 4: Suppose we are given an array, A, of size n, holding
at most r ≤ n distinguished items. We can perform a tight order-
preserving compaction of the distinguished items from A into an
array D of size r in a data-oblivious fashion in the RAM model
in O(n + r log2 r) time. This method succeeds with probability
1 − 1/rc, for any given constant c ≥ 1.

PROOF. We create an invertible Bloom lookup table, T , of size
3r. Then we map each entry, A[i], into T using the key-value pair
(i, A[i]). Note that the insertion algorithm begins by reading k cells
of T whose locations in this case depend only on i (recall that k is
the number of hash functions). If the entry A[i] is distinguished,
then this operation involves changing the fields of these cells in T
according to the invertible Bloom lookup table insertion method
and then writing them back to T . If, on the other hand, A[i] is not
distinguished, then we return the fields back to each cell T [hj(i)]
unchanged (but re-encrypted so that Bob cannot tell of the cells
were changed or not). Since the memory accesses in T are the
same independent of whether A[i] is distinguished or not, each
key we use is merely an index i, and insertion into an invertible
Bloom lookup table is oblivious to all factors other than the key,
this insertion algorithm is data-oblivious. Given the output from
this insertion phase, which is the table T , of size O(r), we then
perform a RAM simulation of the listEntries method to list out the
distinguished items in T , using the simulation result of Goodrich
and Mitzenmacher [16]. The simulation algorithm performs the
actions of a RAM computation in a data-oblivious fashion such
that each step of the RAM computation has an amortized time
overhead of O(log2 r). Thus, simulating the listEntries method in
a data-oblivious fashion takes O(r log2 r) time and succeeds with
probability 1 − 1/rc, for any given constant c > 0, by Lemma 1.
The size of the output array, D, is exactly r. Note that, at this point,
the items in the array D are not necessarily in the same relative
order that they were in A. So, to make this compaction operation
order-preserving, we complete the algorithm by performing a data-
oblivious sorting of D, using each item’s original position in A as
its key, say by Lemma 2.

Thus, we can perform tight data-oblivious compaction for sparse
arrays, where r is O(n/ log2 n), in linear time. Performing this
method on an array that is not sparse, however, would result in an
O(n log2 n) running time. Nevertheless, we can perform such an
action on a dense array faster than this.

Tight Order-Preserving Compaction. Let us now show how to
perform a tight order-preserving compaction for a dense array in a
data-oblivious fashion using O((N/B) logM/B(N/B)) I/Os. We
begin by performing a data consolidation preprocessing operation
(Lemma 3). This allows us to describe our compaction algorithm
at the block level, for an array, A, of n blocks, where n = �N/B�,
and a private memory of size m = O(M/B).

Let us define a routing network, R, for performing this action,
in such a way that R is somewhat like a butterfly network (e.g.,
see [21]). There are �log n� levels, L0, L1, . . ., to this network,
with each level, Li, consisting of n cells (corresponding to the
positions in A). Cell j of level Li is connected to cell j and cell
j − 2i of level Li+1. (See Figure 1.)

2 3 3 6 8 8 9

2 2 2 6 8 8 8

0 0 0 4 8 8 8

0 0 0 0 8 8 8

0 0 0 0 0 0 0

m cells 

L0

L2

L1

L4

L3

Figure 1: A butterfly-like compaction network. Occupied cells
are shaded and labeled with the remaining distance that the
block for that cell needs to move to the left. In addition, a block
of m cells on level L0 is highlighted to show that its destination
on a level O(log m) away is of size roughly m/2.

Initially, each occupied cell on level L0 is labeled with the
number of cells that it needs to be moved to the left to create a
tight compaction. Note that such a labeling can easily be produced
by a single left-to-right data-oblivious scan of the array A. For
each occupied cell j on level Li, labeled with distance label, dj ,
we route the contents of cell j to cell j − (dj mod 2i+1), which,
by a simple inductive argument, is either cell j or j − 2i on
level Li+1. We then update the distance label for this cell to be
dj ← dj − (dj mod 2i+1), and continue.

Lemma 5: If we start with a valid set of distance labels on level
L0, there will be no collisions at any internal level of the network
R.

PROOF. Notice that we can cause a collision between two cells,
j and k, in going from level i to level i + 1, only if k = j + 2i and
(dj mod 2i+1) = 0 and (dk mod 2i+1) = 2i. So suppose such
a pair of colliding cells exists. Then (dk − dj) mod 2i+1 = 2i.
Also, note that there are dk − dj empty cells between k and j, by
the definition of these distance labels. Thus, there are at least 2i

empty cells between j and k; hence, k ≥ j + 2i + 1, which is a
contradiction. So no such pair of colliding cells exists.

Thus, we can route the elements of A to their final destinations in
O(n log n) scans. We can, in fact, route elements faster than this,
by considering cells 2m − 1 at a time, starting at a cell jm + 1 on
level L0. In this case, there are m possible destination cells at level
Ll with index at least jm+1, where l = i+log m − 1. So we can
route all these m cells with destinations among these cells on level
Ll in internal memory with a single scan of these cells. We can
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then move this “window” of 2m−1 cells to the right by m cells and
repeat this routing. At the level Ll we note that these consecutive m
cells are now independent of one other, and the connection pattern
of the previous log m − 1 levels will be repeated for cells that are at
distance m apart. Thus, we can repeat the same routing for level Ll

(after a simple shuffle that brings together cells that are m apart).
Therefore, we can route the cells from L0 to level Llog n using
O(n log n/ log m) = O((N/B) logM/B(N/B)) I/Os. Moreover,
since we are simulating a circuit, the sequence of I/Os is data-
oblivious.

Theorem 6: Given an array A of N cells such that at most R ≤ N
of the cells in A are distinguished, we can deterministically perform
a tight order-preserving compaction of A in a data-oblivious fash-
ion using O((N/B) logM/B(N/B)) I/Os, assuming B ≥ 1 and
M ≥ 3B.

Note that we can also use this method “in reverse” to expand
any compact array to a larger array in an order-preserving way. In
this case, each element would be given an expansion factor, which
would be the number of cells it should be moved to the right (with
these factors forming a non-decreasing sequence).

Loose Compaction. Suppose we are now given an array A of size
N , such that at most R < N/4 of the elements in A are marked
as “distinguished” and we want to map the distinguished elements
from A into an array D, of size 5R using an algorithm that is data-
oblivious.

We begin by performing the data consolidation algorithm of
Lemma 3, to consolidate the distinguished elements of A to be full
or empty block-sized cells (save the last one), where we consider a
cell “empty” if it stores a null value that is different from any input
value. So let us view A as a set of n = �N/B� cells and let us
create an array, C, of size 4r block-sized cells, for r = �R/B�.

Define an A-to-C thinning pass to be a sequential scan of A such
that, for each A[i], we choose an index j ∈ [1, 4r] uniformly at
random, read the cell C[j], and if it’s empty, A[i] is distinguished,
and we have yet to successfully write A[i] to C (which can be
indicated with a simple bit associated with A[i]), then we write
A[i] to the cell C[j]. Otherwise, if C[j] is nonempty or A[i] is not
distinguished, then we write the old value of C[j] back to the cell
C[j]. Thus, the memory accesses made by an A-to-C thinning pass
are data-oblivious and the time to perform such a pass is O(n).

We continue our algorithm by performing c0 rounds of A-to-C
thinning passes, where c0 is a constant determined in the analysis,
so the probability that any block of A is unsuccessfully copied
into C is at most 1/22c0 . We then consider regions of A of
size �c1 log n� = O(log(N/B)), where c1 is another constant
determined in the analysis, so that each such region has at most
(c1 log n)/2 occupied cells w.v.h.p. In particular, we assign these
values according to the following.

Lemma 7: Consider a region of c1 log(N/B) blocks of A, such
that each block is unsuccessfully copied into C independently with
probability at most 1/22c0 . The number of blocks of A that still
remain in this region is over (c1/2) log(N/B) with probability at
most (N/B)−c1 , provided c0 ≥ 3.

PROOF. The expected number of blocks that still remain is at
most (c1/22c0) log(N/B). Thus, if we let X denote the number
blocks that still remain, then, by a Chernoff bound (e.g., Lemma 22
from the appendix) and the fact that c0 ≥ 3, we have he following:

Pr (X > (c1/2) log(N/B)) < 2−(c1/2) log(N/B) (2c0−3)

< 2−c1 log(N/B)

= (N/B)−c1 .

So this lemma gives us a lower bound for c0. In addition, if we
take c1 = d+2, then the probability that there is any of our regions
of size c1 log(N/B) blocks with more than c1 log(N/B)/2 blocks

still remaining is at most (N/B)−(d+1), which gives us a high
probability of success.

Since c1 is a constant and the number of blocks we can fit in

memory is m = M/B ≥ logε2(N/B) = logε2 n, by our wide-
block and tall-cache assumptions, we can apply the data-oblivious
sorting algorithm of Lemma 2 to sort each of the O(n/logn)
regions using O(log n) I/Os a piece, putting every distinguished
element before any unmarked elements. Thus, the overall number
of I/Os for such a step is linear. Then, we compact each such region
to its first (c1/2) log n blocks. This action therefore halves the
size of the array, A. So we then repeat the above actions for the
smaller array. We continue these reductions until the number of
the remaining set of blocks is less than n/ log2

m n, at which point
we completely compress the remaining array A by using the data-
oblivious sorting algorithm of Lemma 2 on the entire array. This
results in array of size at most r, which we concatenate to the array,
C, of size 4r, to produce a compacted array of size 5r. Therefore,
we have the following.

Theorem 8: Given an array, A, of size N , such that at most R <
N/4 of A’s elements are marked as distinguished, we can compress
the distinguished elements in A into an array B of size 5R using a
data-oblivious algorithm that uses O(N/B) I/Os and succeeds with
probability at least 1 − 1/(N/B)d, for any given constant d ≥ 1,
assuming B ≥ logε(N/B) and M ≥ B1+ε, for some constant
ε > 0.

PROOF. To establish the claim on the number of I/Os for this
algorithm, note that the I/Os needed for all the iterations are pro-
portional to the geometric sum,

n + n/2 + n/4 + · · · + n/ log2
m n,

which is O(n) = O(N/B). In addition, when we complete the
compression using the deterministic sorting algorithm of Lemma 2,
we use

O((n/ log2
m n) log2

m(n/ log2
m n)) = O(n) = O(N/B)

I/Os, under our weak wide-block and tall-cache assumptions. Thus,
the entire algorithm uses O(N/B) I/Os and succeeds with very
high probability.

Incidentally, we can also show that it is also possible to perform
loose compaction without the wide-block and tall-cache assump-
tions, albeit with a slightly super-linear number of I/Os. Specifi-
cally, we prove the following in the full version of this paper.

Theorem 9: Given an array, A, of size N , such that at most R <
N/4 of A’s elements are marked as distinguished, we can compress
the distinguished elements in A into an array B of size 4.25R using
a data-oblivious algorithm that uses O((N/B) log∗(N/B)) I/Os
and succeeds with probability at least 1−1/(N/B)d, for any given
constant d ≥ 1, assuming only that B ≥ 1 and M ≥ 2B.

4. SELECTION AND QUANTILES
Selection. Suppose we are given an array A of n comparable
items and want to find the kth smallest element in A. For each
element ai in A, we mark ai as distinguished with probability
1/n1/2. Assuming that there are at most n1/2 +n3/8 distinguished
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items, we then compress all the distinguished items in A to an
array, C, of size n1/2 + n3/8 using the method of Theorem 4,
which runs in O(n) time in this case and, as we prove, succeeds
with high probability. We then sort the items in C using a data-
oblivious algorithm, which can be done in O(n1/2 log2 n) time
by Lemma 2, considering empty cells as holding +∞. We then
scan this sorted array, C. During this scan, we save in our internal
registers, items, x′ and y′, with ranks �k/n1/2 − n3/8� and

|C| − �(n − k)/n1/2 − 2n3/8�, respectively, in C, if they exist.
If x′ (resp., y′) does not exist, then we set x′ = −∞ (resp.,
y′ = +∞). We then scan A to find x′′ and y′′, the smallest and
largest elements in A, respectively. Then we set x = max{x′, x′′}
and y = min{y′, y′′}. We show below that, w.v.h.p., the kth
smallest element is contained in the range [x, y] and there are

O(n7/8) items of A in this range.

Lemma 10: There are more than n1/2 + n3/8 elements in C with

probability at most e−n1/4/3, and fewer than n1/2−n3/8 elements

in C with probability at most e−n1/4/2.

PROOF. Let X denote the number of elements of A chosen
to belong to C. Noting that each element of A is chosen inde-
pendently with probability 1/n1/2 to belong to C, by a standard
Chernoff bound (e.g., see [25], Theorem 4.4),

Pr(X > n1/2 + n3/8) = Pr(X > (1 + n−1/8)n1/2)

≤ e−n1/4/3,

since E(X) = n1/2. Also, by another standard Chernoff bound
(e.g., see [25], Theorem 4.5),

Pr(X < n1/2 − n3/8) = Pr(X < (1 − n−1/8)n1/2)

≤ e−n1/4/2.

Recall that we then performed a scan, where we save in our
internal registers, items, x′ and y′, with ranks �k/n1/2 − n3/8�
and |C| − �(n − k)/n1/2 − n3/8�, respectively, in C, if they
exist. If x′ (resp., y′) does not exist, then we set x′ = −∞ (resp.,
y′ = +∞). We then scan A to find x′′ and y′′, the smallest and
largest elements in A, respectively. Then we set x = max{x′, x′′}
and y = min{y′, y′′}.

Lemma 11: With probability at least 1−2e−n1/8/9−e−4n3/8/5−
e−n1/4/3 − en1/4/2, the kth smallest element of A is contained in
the range [x, y] and there are at most 8n7/8 items of A in the range
[x, y].

PROOF. Let us first suppose that k ≤ 2n7/8. In this case, we
pick the smallest element in A for x, in which case k ≥ x.

So, to consider the remaining possibility that x > k, for k >
2n7/8. We can model the number of elements of A less than or
equal to x as the sum, X , of k′ = k/n1/2 − n3/8 independent

geometric random variables with parameter p = n−1/2. The
probability that k is less than or equal to x is bounded by

Pr(X > k) = Pr(X > (n1/2 + t)k′),

where t = n7/8/(k/n1/2−n3/8); hence, t ≥ n3/8 and k′ > n3/8.

If t/n1/2 < 1/2, then, by a Chernoff bound (e.g., Lemma 23 from
the appendix), we have the following:

Pr(X > k) < e−(t2/n)k′/3

< e−n1/8/3.

Similarly, if t/n1/2 ≥ 1/2, then

Pr(X > k) < e−(t/n1/2)k′/9

< e−n1/8/9.

Thus, in either case, the probability that the kth smallest element is
greater than x is bounded by this latter probability. By a symmetric
argument, assuming |C| ≥ n1/2 − n3/8, the probability that there
are the more than (n−k) elements of A greater than y, for k < n−
2n7/8, is also bounded by this latter probability (note that, for k ≥
n − 2n7/8, it is trivially true that the kth smallest element is less

than or equal to y). So, with probability at least 1 − 2e−n1/8/9 −
e−n1/4/2, the kth smallest element is contained in the range [x, y].

Let us next consider the number of elements of A in the range

[x, y]. First, note that, probability at least 1 − en1/4/3, there are

at most n′ = 4n3/8 elements of the random sample, C, in this
range; hence, we can model the number of elements of A in this
range as being bounded by the sum, Y , of n′ geometric random
variables with parameter p = 1/n1/2. Thus, by a Chernoff bound
(e.g., Lemma 23 from the appendix), we have the following:

Pr(Y > 8n7/8) = Pr(Y > (n1/2 + n1/2)n′)

< e−n′/5

= e−4n3/8/5.

This gives us the lemma.

So, we make an addition scan of A to mark the elements in A
that are in the range [x, y], and we then compress these items to an

array, D, of size O(n7/8), using the method of Theorem 4, which
runs in O(n) time in this case. In addition, we can determine the
rank, r(x), of x in A. Thus, we have just reduced the problem to
returning the item in D with rank k − r(x) + 1. We can solve
this problem by sorting D using the oblivious sorting method of
Lemma 2 followed by a scan to obliviously select the item with
this rank. Therefore, we have the following:

Theorem 12: Given an integer, 1 ≤ k ≤ n, and an array, A, of
n comparable items, we can select the kth smallest element in A
in O(n) time using a data-oblivious algorithm that succeeds with
probability at least 1 − n−d, for any given constant d > 0.

Note that the running time (with a very-high success proba-
bility) of this method beats the Ω(n log log n) lower bound of
Leighton et al. [22], which applies to any high-success-probability
randomized data-oblivious algorithm based on the exclusive use
of compare-exchange as the primitive data-manipulation operation.
Our method is data-oblivious, but it also uses primitive operations
of copying, summation, and random hashing. Thus, Theorem 12
demonstrates the power of using these primitives in data-oblivious
algorithms. In addition, by substituting data-oblivious external-
memory compaction and sorting steps for the internal-memory
methods used above, we get the following:

Theorem 13: Given an integer, 1 ≤ k ≤ N , and an array, A,
of N comparable items, we can select the kth smallest element
in A using O(N/B) I/Os with a data-oblivious external-memory
algorithm that succeeds with probability at least 1− (N/B)−d, for
any given constant d > 0, assuming only that B ≥ 1 and M ≥ 2B.

Quantiles. Let us now consider the problem of selecting q
quantile elements from an array A using an external-memory data-
oblivious algorithm, for the case when q ≤ (M/B)1/4, which will
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be sufficient for this algorithm to prove useful for our external-
memory sorting algorithm, which we describe in Section 5.

If (M/B) > (N/B)1/4, then we sort A using the deterministic
data-oblivious algorithm of Lemma 2, which uses O(N/B) I/Os in
this case. Then we simply read out the elements at ranks that are
multiples of N/(q + 1), rounded to integer ranks.

Let us therefore suppose instead that (M/B) ≤ (N/B)1/4; so

q ≤ (N/B)1/16. In this case, we randomly choose each element of

A to belong to a random subset, C, with probability 1/N1/4. With

high probability, there are at most N3/4 ± N1/2 such elements, so
we can compact them into an array, C, of capacity N3/4 + N1/2

by Theorem 4, using O(N/B) I/Os. We then sort this array and

compact it down to capacity N3/4 +N1/2, using Lemma 2, and let
|C| denote its actual size (which we remember in private memory).
We then scan this sorted array, C, and read into Alice’s memory
every item, xi, with rank that is a multiple of (n̂/(q + 1))−N1/2,

rounded to integer ranks, where n̂ = N3/4, with the exception that
x1 is the smallest element in A. We also select items at ranks, yi =
|C|− (N3/4−N3/4i/(q+1)−2N1/2), rounded to integer ranks,
with the exception that yq is the largest element in A. Let [xi, yi]
denote each such pair of such items, which, as we show below, will
surround a value, n̂/(q + 1), with high probability. In addition, as

we also show in the analysis, there are at most 8N3/4 elements of
A in each interval [xi, yi], with high probability. That is, there are

at most O(N13/16) elements of A in any interval [xi, yi], with high
probability. Storing all the [xi, yi] intervals in Alice’s memory, we
scan A to identify for each element in A if it is contained in such
an interval [xi, yi], marking it with i in this case, or if it is outside
every such interval. During this scan we also maintain counts (in
Alice’s memory) of how many elements of A fall between each
consecutive pair of intervals, [xi, yi] and [xi+1, yi+1], and how
many elements fall inside each interval [xi, yi]. We then compact
all the elements of A that are inside such intervals into an array
D of size O(N13/16) using Theorem 4, using O(N/B) I/Os, and
we pad this array with dummy elements so the number of elements
of D in each interval [xi, yi] is exactly �8N3/4�. We then sort
D using the data-oblivious method of Lemma 2. Next, for each
subarray of D of size �8N3/4� we use the selection algorithm of
Theorem 13 to select the kith smallest element in this subarray,
where ki is the value that will return the ith quantile for A (based
on the counts we computed during our scans of A).

Lemma 14: The number of elements of A in C is more than
N3/4 + N1/2 with probability at most e−N1/4/3, and the number
of elements of A in C is less than N3/4 − N1/2 with probability

at most e−N1/4/2.

PROOF. Let X denote the number of elements of A chosen
to belong to C. Noting that each element of A is chosen inde-
pendently with probability 1/N1/4 to belong to C, by a standard
Chernoff bound (e.g., see [25], Theorem 4.4),

Pr(X > N3/4 + N1/2) = Pr(X > (1 + N−1/4)N3/4)

≤ e−N1/4/3,

since E(X) = n1/2. Also, by another standard Chernoff bound
(e.g., see [25], Theorem 4.5),

Pr(X < N3/4 − N1/2) = Pr(X < (1 − N−1/4)N3/4)

≤ e−N1/4/2.

We then compress these elements into an array, C, of size
assumed to be at most N3/4+N1/2 by Theorem 4, using O(N/B)

I/Os, which will fail with probability at most 1/N3c/4, for any
given constant c > 0. Given the array C, we select items at
ranks xi = (n̂i/(q + 1))−N1/2, rounded to integer ranks. where

n̂ = N3/4. We also select items at ranks, yi = |C| − (N3/4 −
N3/4i/(q + 1) − 2N1/2), rounded to integer ranks. Let [xi, yi]
denote each such pair, with the added convention that we take x1

to be the smallest element in A and yq to be the largest element in
A.

Lemma 15: There are more than 8N3/4 elements of A in any

interval [xi, yi] with probability at most e−N1/2/9 + 2e−N1/4/3.

PROOF. Let us assume that N3/4 − N1/2 ≤ |C| ≤ N3/4 +

N1/2, which hold with probability at least 1 − 2e−N1/4/3. Thus,
there are at most 4N1/2 elements in C that are in any [xi, yi]
pair, other than the first or last. Thus, in such a general case, the
number of elements, X , from A in this interval has expected value
E(X) ≤ 4N3/4. In addition, since X is the sum of geometric

random variables with parameter 1/N1/4,

Pr(X > 8N3/4) = Pr(X > (N1/4 + N1/4)4N1/2)

≤ e−N1/2/9.

The probability bounds for the first and last intervals are proved by
a similar argument.

In addition, note that there are at most (N/B)1/16 intervals,
[xi, yi]. Also, we have the following.

Lemma 16: Interval [xk, yk] contains the kth quantile with prob-

ability at least 1 − 2e−N1/4/3.

PROOF. Let us consider the probability that the kth quantile
is less than xk. In the random sample, xk has rank n̂k/(q +

1) − N1/2 = N3/4k/(q + 1) − N1/2. Thus, the number, X ,
of elements from A less than this number has expected value

E(X) = Nk/(q + 1) − N3/4. Since X is the sum of geo-

metric random variables with parameter N−1/4, we can bound
Pr (X > Nk/(q + 1)) by

Pr

 
X > (N1/4 + τ) ·

 
N3/4k

q + 1
− N1/2

!!

≤ e−(τN−1/4)2(N3/4k/(q+1)− N1/2)/3

= e−τ2N−1/2(N3/4k/(q+1)− n1/2)/3,

where τ = N3/4/(N3/4k/(q + 1) − N1/2), which greater than
1. So

Pr(X > Nk(q + 1)) ≤ e−τN−1/2N3/4/3

< e−N1/4/3.

By a symmetric argument, the kth quantile is more than yk by this
same probability.

Thus, each of the intervals, [xk, yk], contains the kth quantile

with probability at least 1 − 2qe−N1/4/3. Therefore, we have the
following.

Theorem 17: Given an array, A, of N comparable items, we can
select the q ≤ (M/B)1/4 quantiles in A using O(N/B) I/Os with
a data-oblivious external-memory algorithm that succeeds with
probability at least 1 − (N/B)−d, for any given constant d > 0,
assuming only that B ≥ 1 and M ≥ 2B.
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5. DATA-OBLIVIOUS SORTING
Consider now the sorting problem, where we are given an array,

A, of N comparable items stored as key-value pairs and we want to
output an array C of size N holding the items from A in key order.
For inductive reasons, however, we allow both A and C to be arrays
of size O(N) that have N non-empty cells, with the requirement
that the items in non-empty cells in the output array C be given in
non-decreasing order.

We begin by computing q quantiles for the items in A using
Theorem 17, for q = (M/B)1/4. We then would like to distribute
the items of A distributed between all these quantiles to q + 1
subarrays of size O(N/q) each. Let us think of each subgroup
(defined by the quantiles) in A as a separate color, so that each
item in A is given a specific color, 1, 2, . . . , q +1, with there being
�N/(q + 1)� items of each color.

Multi-way Data Consolidation. To prepare for this distribution,
we do a (q + 1)-way consolidation of A, so that the items in each
block of size B in the consolidated array A′ are all of the same
color. We perform this action as follows. Read into Alice’s memory
the first q+1 blocks of A, and separate them into q+1 groups, one
for each color. While there is a group of items with the same color
of size at least B, output a block of these items to A′. Once we have
output q′ such blocks, all the remaining colors in Alice’s memory
have fewer than B members. So we then output q + 1 − q′ empty
blocks to A′, keeping the “left over” items in Alice’s memory. We
then repeat this computation for the next q +1 blocks of A, and the
next, and so on. When we complete the scan of A, all the blocks in
A′ will be completely full of items of the same color or they will be
completely empty. We finish this (q + 1)-way consolidation, then,
by outputting (q + 1) blocks, each containing as many items of the
same color as possible. These last blocks are the only partially-full
blocks in A′. Thus, all the blocks of A′ are monochromatic and all
but these last blocks of A′ are full.

Shuffle-and-Deal Data Distribution. Our remaining goal, then,
is to distribute the (monochromatic) blocks of A′ to q + 1 separate
arrays, C1, . . ., Cq+1, one for each color. Unfortunately, doing
this as a straightforward scan of A′ may encounter the colors in
a non-uniform fashion. To probabilistically avoid this “hot spot”
behavior, we apply a shuffle-and-deal technique, where we perform
a random permutation to the n′ = O(N/B) blocks in A′ in
a fashion somewhat reminiscent of Valiant-Brebner routing [27].
The random permutation algorithm we use here is the well-known
algorithm (e.g., see Knuth [20]), where, for i = 1, 2, . . . , n′, we
swap block i and a random block chosen uniformly from the range
[i, n′]. This is the “shuffle,” and even though the adversary, Bob,
can see us perform this shuffle, note that the choices we make do
not depend on data values. Given this shuffled deck of blocks in
A′, we then perform a series of scans to “deal” the blocks of A′ to
the q + 1 arrays.

We do this “deal” as follows. We read in the next (M/B)3/4

blocks of A′. Note that, w.v.h.p., there should now be at most
O((M/B)1/2) blocks of each color now in Alice’s memory. So

we write out c(M/B)1/2 blocks to each Ci in Bob’s memory,
including as many full blocks as possible and padding with empty
blocks as needed (to keep accesses being data-oblivious), for a
constant c determined in the analysis. Then, we apply Theorem 8,
which implies a success with high probability, to compact each
Ci to have size O(N/q) = O(N/(M/B)1/4) each, which is
O(N/(qB)) blocks. We then repeat the above computation for
each subarray, Ci.

Data-Oblivious Failure Sweeping. We continue in this manner
until we have formed O(n1/2) subarrays of size O(n1/2) each,

where n = N/B. At this point, we then recursively call our sorting
algorithm to produce a padded sorting of each of the subarrays. Of
course, since we are recursively solving smaller problems, whose
success probability depends on their size, some of these may fail to
correctly produce a padded sorting of their inputs. Let us assume
that at most O(n1/4) of these recursive sorts fail, however, and
apply Theorem 6 to deterministically compact all of these subarrays
into a single array, D, of size O(n3/4), in O(n logm n) time,
where m = M/B. We then apply the deterministic data-oblivious
sorting method of Lemma 2 to D, and then we perform a reversal
of Theorem 6 to expand these sorted elements back to their original
subarrays. This provides a data-oblivious version of the failure
sweeping technique [12] and gives us a padded sorting of A w.v.h.p.

Finally, after we have completed the algorithm for producing
a padded sorting of A, we perform a tight order-preserving com-
paction for all of A using Theorem 6. Given appropriate proba-
bilistic guarantees, given below, this completes the algorithm.

Lemma 18: Given (M/B)3/4 blocks of A′, read in from consec-

utive blocks from a random permutation, more than c(M/B)1/2 of
these blocks are of color, χ, for a given color, χ, with probability
less than (N/B)−d, for c > 2de/ε2, where ε is the constant used
in the wide-block and tall-cache assumptions.

PROOF. Let X be the number of blocks among (M/B)3/4

blocks chosen independently without replacement from A′ that are
of color χ and let Y be the number of blocks among (M/B)3/4

blocks chosen independently with replacement from A′ that are of
color χ. By a theorem (4) of Hoeffding [18],

Pr(X > c(M/B)1/2) ≤ Pr(Y > c(M/B)1/2).

Thus, since E(Y ) = (M/B)1/2, then, by a Chernoff bound (e.g.,
Lemma 22 from the appendix),

Pr(Y > c(M/B)1/2) ≤ 2−c(M/B)1/2 ≤ (N/B)d,

for c > 2de/ε2.

This bound applies to any (M/B)3/4 blocks we read in from A′,
and any specific color, χ. Thus, we have the following.

Corollary 19: For each set of (M/B)3/4 blocks of A′, read in
from consecutive blocks from the constructed random permutation,
more than c(M/B)1/2 of these blocks are of any color, χ, with
probability less than (N/B)−d, for c > 2d′e/ε2, where ε is the
constant used in the wide-block and tall-cache assumptions and
d′ ≥ d + 1.

PROOF. There are (N/B)/(M/B)3/4 sets of (M/B)3/4 blocks
of A′ read in from consecutive blocks from the constructed random
permutation. In addition, there are (M/B)1/16 colors. Thus, by
the above lemma and the union bound, the probability that any of
these sets overflow a color χ is at most

N/B

(M/B)3/4
· 1

(N/B)d′ · (M/B)1/16 ≤ (N/B)−d,

for d′ ≥ d + 1.

So we write out c(M/B)1/2 blocks to each Ci, including as
many full blocks as possible and padding with empty blocks as
needed. We then repeat the quantile computation and shuffle-and-
deal computation on each of the Ci’s.

At the point when subproblem sizes become of size O(n1/2), we
then switch to a recursive computation, which we claim inductively
succeeds with probability 1−1/nd/2, for any given constant d ≥ 2,
for n = N/B.
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Lemma 20: There are more than n1/4 failing recursive subprob-

lems with probability at most 2−n1/4
.

PROOF. Each of the recursive calls fails independently. Thus,
if we let X denote the number of failing recursive calls, then
E(X) ≤ n1/2/nd/2 = n−(d−1)/2. Thus, by a Chernoff bound
(e.g., Lemma 22 from the appendix),

Pr(X > n1/4) = Pr(X > n1/4 + (d−1)/2 · n(d−1)/2)

≤ 2−n1/4
.

Thus, the failure sweeping step in our sorting algorithm succeeds
with high probability, which completes the analysis and gives us the
following.

Theorem 21: Given an array, A, of size N , we can perform a
data-oblivious sorting of A with an algorithm that succeeds with
probability 1 − 1/(N/B)d and uses O((N/B) logM/B(N/B))
I/Os, for any given constant d ≥ 1, assuming that B ≥ logε(N/B)
and M ≥ B1+ε, for some small constant ε > 0.
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APPENDIX
A. SOME CHERNOFF BOUNDS

Several of our proofs make use of Chernoff bounds (e.g., see [25]
for other examples), which, for the sake of completeness, we review
in this subsection. We begin with the following Chernoff bound,
which is a simplification of a well-known bound.

Lemma 22: Let X = X1 + X2 + · · · + Xn be the sum of inde-
pendent 0-1 random variables, such that Xi = 1 with probability
pi, and let μ ≥ E(X) =

Pn
i=1 pi. Then, for γ > 2e,

Pr (X > γμ) < 2−γμ log(γ/e).

PROOF. By a standard Chernoff bound (e.g., see [25]) and the
fact that γ > 2e,

Pr (X > γμ) <

„
eγ−1

γγ

«μ

≤
„

e

γ

«γμ

= 2−γμ log(γ/e).

There are other simplified Chernoff bounds similar to that of
Lemma 22 (e.g., see [25, 26]), but they typically omit the log(γ/e)
term (where the log is base-2, of course). We include it here, since
it is useful for large γ, which will be the case for some of our uses.
Nevertheless, we sometimes leave off the log(γ/e) term, as well,
in applying Lemma 22, if that aids simplicity, since log(γ/e) > 1
for γ > 2e.

In addition, we also need a Chernoff bound for the sum, X , of n
independent geometric random variables with parameter p, that is,
for X being a negative binomial random variable with parameters
n and p. Recall that a geometric random variable with parameter
p is a discrete random variable that is equal to j with probability
qj−1p, where q = 1 − p. Thus, E(X) = αn, where α = 1/p.

Lemma 23: Let X = X1 + X2 + · · · + Xn be the sum of n
independent geometric random variables with parameter p. Then
we have the following:

• If 0 < t < α/2, then Pr(X > (α + t)n) ≤ e−(tp)2n/3.

• If t ≥ α/2, then Pr(X > (α + t)n) ≤ e−tpn/9.

• If t ≥ α, then Pr(X > (α + t)n) ≤ e−tpn/5.

• If t ≥ 2α, then Pr(X > (α + t)n) ≤ e−tpn/3.

• If t ≥ 3α, then Pr(X > (α + t)n) ≤ e−tpn/2.

PROOF. We follow the approach of Mulmuley [26], who uses
the Chernoff technique (e.g., see [25]) to prove a similar result for
the special case when p = 1/2 and t ≥ 6 (albeit with a slight flaw,
which we fix). For 0 < λ < ln(1/(1 − p)),

E
“
eλXi

”
=

∞X
j=1

eλj Pr(Xi = j)

=

∞X
j=1

eλjqj−1p

= peλ
∞X

j=0

(eλq)j

=
peλ

1 − eλq
.

Applying the Chernoff technique, then,

Pr(X > (α + t)n) ≤ e−λ(α+t)n

„
peλ

1 − eλq

«n

= pn

„
e−λ(α+t−1)

1 − eλq

«n

.

Let β = p/(1 − p) and observe that we can satisfy the condition
that 0 < λ < ln(1/(1 − p)) by setting

eλ = 1 +
βt

α + t
.

By substitution and some calculation, note that

e−λ = 1 − βt

α + t + βt

and

1 − eλq =
p

1 + tp
.

Thus, we can bound Pr(X > (α + t)n) by

pn

„
1 − βt

α + t + βt

«(α+t−1)n„
1 + tp

p

«n

=

„
1 − βt

α + t + βt

«(α+t−1)n

(1 + tp)n .

Moreover, since 1 − x ≤ e−x, for all x,„
1 − βt

α + t + βt

«(α+t−1)

≤ e
− βt(α+t−1)

α+t+βt = e−tp.

Therefore,

Pr(X > (α + t)n) ≤ e−tpn (1 + tp)n .

Unfortunately, if we use the well-known inequality, 1 + x ≤ ex,
with x = tp, to bound the “1 + tp” term in the above equation, we
get a useless result. So, instead, we use better approximations:

• If 0 < x < 1, then we can use a truncated Maclaurin series
to bound

ln(1 + x) ≤ x − x2

2
+

x3

3
.

Thus,

1 + x ≤ ex− x2
2 + x3

3 ,

which implies that, for 0 < t < α/2,

Pr(X > (α + t)n) ≤
 

e(tp)3/3

e(tp)2/2

!n

≤ e−(tp)2n/3.

• The remaining bounds follow from the following facts, which
are easily verified:

1. If x ≥ 1/2, then 1 + x < ex/(1+1/8).

2. If x ≥ 1, then 1 + x < ex/(1+1/4).

3. If x ≥ 2, then 1 + x < ex/(1+1/2).

4. If x ≥ 3, then 1 + x < ex/2.

Incidentally, the bound for t ≥ 3α fixes a slight flaw in a
Chernoff bound proof by Mulmuley [26].
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