
Brief Announcement: Large-Scale Multimaps

Michael T. Goodrich
Dept. of Computer Science

University of California, Irvine
goodrich(at)acm.org

Michael Mitzenmacher
Dept. of Computer Science

Harvard University
michaelm(at)eecs.harvard.edu

ABSTRACT
Many data structures support dictionaries, also known as
maps or associative arrays, which store and manage a set
of key-value pairs. A multimap is generalization that al-
lows multiple values to be associated with the same key.
We study how multimaps can be implemented efficiently
online in external memory frameworks, with constant ex-
pected I/O. The key technique used to achieve our results
is a combination of cuckoo hashing using buckets that hold
multiple items with a multiqueue implementation to cope
with varying numbers of values per key.

Categories and Subject Descriptors
F.2.2 [Analysis of Algorithms and Problem Complex-
ity]: Nonnumerical Algorithms and Problems

General Terms
Algorithms, Theory

Keywords
Multimap, inverted index, cuckoo hashing, multiqueue.

1. INTRODUCTION
A multimap is a simple abstract data type (ADT) that

generalizes the the map ADT to support key-value associa-
tions in a way that allows multiple values to be associated
with the same key. Specifically, it is a dynamic container,
C, of key-value pairs, which we call items, supporting (at
least) the following operations:

• insert(k, v): insert the key-value pair, (k, v). This op-
eration allows for there to be existing key-value pairs
having the same key as k, but we assume w.l.o.g. that
the particular key-value pair (k, v) is itself not already
present in C.

• isMember(k, v): return true if and only if the key-value
pair, (k, v), is present in C.

• remove(k, v): remove the key-value pair, (k, v), from
C. This operation returns an error condition if (k, v)
is not currently in C.

• findAll(k): return the set of all key-value pairs in C
having key equal to k.

• removeAll(k): remove from C all key-value pairs hav-
ing key equal to k.

Copyright is held by the author/owner(s).
SPAA’11, June 4–6, 2011, San Jose, California, USA.
ACM 978-1-4503-0743-7/11/06.

Surprisingly, we are not familiar with any previous dis-
cussion of this specific abstract data type in the theoretical
algorithms and data structures literature. Nevertheless, ab-
stract data types equivalent to the above ADT, as well as
multimap implementations, are included in the C++ Stan-
dard Template Library (STL), Guava–the Google Java Col-
lections Library, and the Apache Commons Collection 3.2.1
API. The existence of these implementations provides em-
pirical evidence for the utility of this abstract data type.

One of the primary motivations for studying the multimap
ADT is that associative data in the real world can exhibit
significant non-uniformities with respect to the relationships
between keys and values. For example, many real-world
data sets follow a power law with respect to data frequen-
cies indexed by rank. Specifically, in natural language doc-
uments, the frequency of the word of rank j is predicted
to be roughly proportional to j−s for some parameters s.
Thus, if we wished to construct a data structure to retrieve
all instances of any query word in such a corpus, subject
to insertions and deletions of documents, then we could use
a multimap, but would require one that could handle large
skews in the number of values per key. In this case, the mul-
timap could be viewed as providing a dynamic functionality
for a classic static data structure, known as an inverted
file or inverted index (e.g., see Knuth [3]). Such data
structures are often used in modern search engines (e.g., see
Zobel and Moffat [9]). Dynamic inverted indexes have been
studied in the past, but generally from a systems viewpoint
rather than a theoretical one. (See, e.g., [4, 5], and refer-
ences therein.)

Our work utilizes a variation on cuckoo hash tables. We
assume the reader has some familiarity with such hash ta-
bles, as originally presented by Pagh and Rodler [6]. (A
general description can be found on Wikipedia at http:

//en.wikipedia.org/wiki/Cuckoo_hashing.) We describe
an external-memory implementation of the multimap ADT,
based on the standard two-level I/O model (e.g., see [1, 8]).
We also have a parallel algorithm abstracted using the bulk
synchronous parallel (BSP) model [7], which we do not de-
scribe due to lack of space. We support an online implemen-
tation where each operation must be completely finished ex-
ecuting prior to our beginning execution of any subsequent
operations. The bounds we achieve are shown in Table 1.

Our constructions are based on the combination of external-
memory cuckoo hash tables and multiqueues. We show
that external-memory cuckoo hashing supports a cuckoo-
type method for insertions that can be implemented in a way
that allows us to prove that only an expected constant num-

259



Method Amortized I/O Performance

insert(k, v) Ō(1)

isMember(k, v) O(1)

remove(k, v) O(1)

findAll(k) O(1 + nk/B)

removeAll(k) O(1)

Table 1: Performance bounds for our multimap im-
plementation. We use Ō(∗) to denote an expected
bound; B to denote the block size; N to denote
the number of key-value pairs; and nk to denote the
number of key-value pairs with key equal to k.

ber of I/Os are needed to find a place where each new item
can be placed. We then show that this performance can be
combined with amortized expected constant I/O complexity
for multiqueues to design a multimap implementation that
has constant amortized worst-case or expected I/O perfor-
mance for most methods. Our methods imply that one can
maintain an inverted file in external memory so as to sup-
port a constant amortized expected number of I/Os for in-
sertions and worst-case constant amortized I/Os for lookups
and item removal.

2. BRIEF SKETCH
For our external-memory cuckoo hash table, each bucket

can store up to B items, where B defines our block size and
is not necessarily a constant. Formally, let T = (T0, T1)
be a cuckoo hash table such that each Ti consists of γn/2
buckets, where each bucket stores a block of size B, with
n = N/B. Of particular interest is when γ = 1 + ε for some
(small) ε > 0, so that space overhead of the hash table is
only an ε factor over the minimum possible. The items in
T are indexed by keys and stored in one of two locations,
T0[h0(k)] or T1[h1(k)], where h0 and h1 are random hash
functions.

We modify previous analyses of two-choice cuckoo hash-
ing with multiple items per bucket from [2] by splitting the
items into sub-buckets to show that we can stay within a
1+ ε factor of the total space required for all elements while
maintaining an expected log(1/ε)O(log log(1/ε)) insertion time,
using a breadth first search approach. As noted in [2], a more
practical approach is to use random walk cuckoo hashing in
place of breadth first search cuckoo hashing, but it is not
known if there is a random walk cuckoo hashing scheme us-
ing (1+ε)N total space for N items, two bucket choices, and
multiple items per bucket that similarly achieves expected
constant insertion time and logarithmic insertion time with
high probability.

To implement the multimap ADT, we begin with a pri-
mary structure that is an external-memory cuckoo hash ta-
ble storing just the set of keys. In particular, each record
R(k) in T is associated with a specific key k and holds the
following fields: the key k; the number nk of key-value pairs
in C with key equal to k; and a pointer pk to a block X
in a secondary table, S, that stores items in C with key
equal to k. If nk < B, then X stores all the items with key
equal to k (plus possibly some items with keys not equal to
k). Otherwise, if nk ≥ B, then pk points to a first block
of items with key equal to k, with the other blocks of such
items being stored elsewhere in S.

This secondary storage is an external-memory data struc-

ture we call a multiqueue. It maintains a set Q of queues
in external memory. The header pointers for these queues
are stored in an array T , which in our external-memory
multimap construction is the external-memory cuckoo hash
table described above. For any queue Q, we wish to support
the following operations: enqueue(x, H) adds the element x
to Q given a pointer to its header H; remove(x) removes x
from Q; and isMember(x): determine whether x is in some
queue Q. In addition, we wish to maintain all these queues
in a space-efficient manner, so that the total storage is pro-
portional to their total size. To enable this efficiency, we
store all the blocks used for queue elements in a secondary
table, S, of blocks of size B each. Thus, each header record
H in T points to a block in S. In addition, we maintain a
second cuckoo table, D, which uses entire key-value pairs as
its keys. For each one, it provides a pointer to the block in
S that stores this key-value pair (the data structure, D, is
what allows us to perform fast removals).

Our intent is to store each queue Q as a doubly-linked
list of blocks from S. Unfortunately, some queues in Q are
too small to deserve an entire block in S dedicated to stor-
ing their elements. So small queues must share their first
block of storage with other small queues until they are large
enough to deserve dedicated storage blocks. Managing the
small and large queues with dynamic insertions and dele-
tions is the further challenge in our construction, which we
give in the full version of this paper1.

3. REFERENCES
[1] A. Aggarwal and J. S. Vitter. The input/output

complexity of sorting and related problems. Commun.
ACM, 31:1116–1127, 1988.

[2] M. Dietzfelbinger and C. Weidling. Balanced allocation
and dictionaries with tightly packed constant size bins.
Theoretical Computer Science, 380:47–68, 2007.

[3] D. E. Knuth. Sorting and Searching, volume 3 of The
Art of Computer Programming. Addison-Wesley,
Reading, MA, 1973.

[4] N. Lester, A. Moffat, and J. Zobel. Efficient online
index construction for text databases. ACM Trans.
Database Syst., 33:19:1–19:33, September 2008.

[5] N. Lester, J. Zobel, and H. Williams. Efficient online
index maintenance for contiguous inverted lists. Inf.
Processing & Management, 42(4):916–933, 2006.

[6] R. Pagh and F. Rodler. Cuckoo hashing. Journal of
Algorithms, 52:122–144, 2004.

[7] L. G. Valiant. A bridging model for parallel
computation. Commun. ACM, 33(8):103–111, 1990.

[8] J. S. Vitter. External sorting and permuting. In M.-Y.
Kao, editor, Encyclopedia of Algorithms. Springer, 2008.

[9] J. Zobel and A. Moffat. Inverted files for text search
engines. ACM Comput. Surv., 38, July 2006.

1Goodrich was supported in part by the NSF under grants
0724806, 0713046, and 0847968, and by the ONR under
MURI grant N00014-08-1-1015. Mitzenmacher was sup-
ported in part by the NSF under grants 0915922 and
0964473.

260




