
Privacy-Preserving Access of Outsourced Data
via Oblivious RAM Simulation

Michael T. Goodrich1 and Michael Mitzenmacher2

1 University of California, Irvine
2 Harvard University

Abstract. We describe schemes for the oblivious RAM simulation problem with
a small logarithmic or polylogarithmic amortized increase in access times, with a
very high probability of success, while keeping the external storage to be of size
O(n).

1 Introduction

Suppose Alice owns a large data set, which she outsources to an honest-but-curious
server, Bob. For the sake of privacy, Alice can, of course, encrypt the cells of the
data she stores with Bob. But encryption is not enough, as Alice can inadvertently
reveal information about her data based on how she accesses it. Thus, we desire that
Alice’s access sequence (of memory reads and writes) is data-oblivious, that is, the
probability distribution for Alice’s access sequence should depend only on the size, n,
of the data set and the number of memory accesses. Formally, we say a computation
is data-oblivious if Pr(S |M), the probability that Bob sees an access sequence, S,
conditioned on a specific configuration of his memory (Alice’s outsourced memory),
M, satisfies Pr(S |M) = Pr(S |M′), for any memory configuration M′ �= M such
that |M′| = |M|. In particular, Alice’s access sequence should not depend on the values
of any set of memory cells in the outsourced memory that Bob maintains for Alice. To
provide for full application generality, we assume outsourced data is indexed and we
allow Alice to make arbitrary indexed accesses to this data for queries and updates.
That is, let us assume this outsourced data model is as general as the random-access
machine (RAM) model.

Most computations that Alice would be likely to perform on her outsourced data
are not naturally data-oblivious. We are therefore interested in this paper in simulation
schemes that would allow Alice to make her access sequence data-oblivious with low
overhead. For this problem, which is known as oblivious RAM simulation [5], we are
primarily interested in the case where Alice has a relatively small private memory, say,
of constant size or size that is O(n1/r), for a given constant r > 1.

Our Results. In this paper, we show how Alice can perform an oblivious RAM simu-
lation, with very high probability1, with an amortized time overhead of O(log n) and

1 We show that our simulation fails to be oblivious with negligible probability; that is, the
probability that the algorithm fails can be shown to be O

(
1

nα

)
for any α > 0. We say an

event holds with very high probability if it fails with negligible probability.

L. Aceto, M. Henzinger, and J. Sgall (Eds.): ICALP 2011, Part II, LNCS 6756, pp. 576–587, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Privacy-Preserving Access of Outsourced Data via Oblivious RAM Simulation 577

with O(n) storage overhead purchased from Bob, while using a private memory of size
O(n1/r), for a given constant r > 1. With a constant-sized memory, we show that she
can do this simulation with overhead O(log2 n), with a similarly high probability of
success. At a high level, our result shows that Alice can leverage the privacy of her
small memory to achieve privacy in her much larger outsourced data set of size n.
Interestingly, our techniques involve the interplay of some seemingly unrelated new re-
sults, which may be of independent interest, including an efficient MapReduce parallel
algorithm for cuckoo hashing and a novel deterministic data-oblivious external-memory
sorting algorithm.

Previous Related Results. Goldreich and Ostrovsky [5] introduce the oblivious RAM
simulation problem and show that it requires an overhead of Ω(log n) under some
reasonable assumptions about the nature of such simulations. For the case where Al-
ice has only a constant-size private memory, they show how Alice can easily achieve
an overhead of O(n1/2 log n), with O(n) storage at Bob’s server, and, with a more
complicated scheme, how Alice can achieve an overhead of O(log3 n) with O(n log n)
storage at Bob’s server.

Williams and Sion [15] study the oblivious RAM simulation problem for the case
when the data owner, Alice, has a private memory of size O(n1/2), achieving an ex-
pected amortized time overhead of O(log2 n) using O(n log n) memory at the data
provider. Incidentally, Williams et al. [16] claim an alternative method that uses an
O(n1/2)-sized private memory and achieves O(log n log log n) amortized time over-
head with a linear-sized outsourced storage, but some researchers (e.g., see [14]) have
raised concerns with the assumptions and analysis of this result.

The results of this paper were posted by the authors in preliminary form as [7].
Independently, Pinkas and Reinman [14] published an oblivious RAM simulation result
for the case where Alice maintains a constant-size private memory, claiming that Alice
can achieve an expected amortized overhead of O(log2 n) while using O(n) storage
space at the data outsourcer, Bob. Unfortunately, their construction contains a flaw that
allows Bob to learn Alice’s access sequence, with high probability, in some cases, which
our construction avoids.

Ajtai [1] shows how oblivious RAM simulation can be done with a polylogarithmic
factor overhead without cryptographic assumptions about the existence of random hash
functions, as is done in previous papers [5,14,15,16], as well as any paper that derives
its security or privacy from the random oracle model (including this paper). A similar
result is also given by Damgård et al. [2]. Although these results address interesting
theoretical limits of what is achievable without random hash functions, we feel that
the assumption about the existence of random hash functions is actually not a major
obstacle in practice, given the ubiquitous use of cryptographic hash functions.

2 Preliminaries

A Review of Cuckoo Hashing. Pagh and Rodler [13] introduce cuckoo hashing, which
is a hashing scheme using two tables, each with m cells, and two hash functions, h1

and h2, one for each table, where we assume h1 and h2 can be modeled as random hash
functions for the sake of analysis. The tables store n = (1 − ε)m keys, where one key

578 M.T. Goodrich and M. Mitzenmacher

can be held in each cell, for a constant ε < 1. Keys can be inserted or deleted over
time; the requirement is that at most n = (1 − ε)m distinct keys are stored at any time.
A stored key x should be located at either h1(x) or h2(x), and, hence, lookups take
constant time. On insertion of a new key x, cell h1(x) is examined. If this cell is empty,
x is placed in this cell and the operation is complete. Otherwise, x is placed in this cell
and the key y already in the cell is moved to h2(y). This may in turn cause another key
to be moved, and so on. We say that a failure occurs if, for an appropriate constant c0,
after c0 log n steps this process has not successfully terminated with all keys located in
an appropriate cell. Suppose we insert an nth key into the system. Well-known attributes
of cuckoo hashing include:

– The expected time to insert a new key is bounded above by a constant.
– The probability a new key causes a failure is Θ(1/n2).

Kirsch, Mitzenmacher, and Wieder introduce the idea of utilizing a stash [10]. A
stash can be thought of as an additional memory where keys that would otherwise
cause a failure can be placed. In such a setting, a failure occurs only if the stash
itself overflows. For n items inserted in a two-table cuckoo hash table, the total failure
probability can be reduced to O(1/nk+1) for any constant k using a stash that can hold
k keys. For our results, we require a generalization of this result to stashes that are larger
than constant sized.

3 MapReduce Cuckoo Hashing

The MapReduce Paradigm. In the MapReduce paradigm (e.g., see [4,9]), a parallel
computation is defined on a set of values, {x1, x2, . . . , xn}, and consists of a series of
map, shuffle, and reduce steps:

– A map step applies a mapping function, μ, to each value, xi, to produce a key-value
pair, (ki, vi). To allow for parallel execution, the function, μ(xi) → (ki, vi), must
depend only on xi.

– A shuffle step takes all the key-value pairs produced in the previous map step, and
produces a set of lists, Lk = (k; vi1 , vi2 , . . .), where each such list consists of all
the values, vij , such that kij = k for a key k assigned in the map step.

– A reduce step applies a reduction function, ρ, to each list, Lk = (k; vi1 , vi2 , . . .),
formed in the shuffle step, to produce a set of values, w1, w2, The reduction
function, ρ, is allowed to be defined sequentially on Lk, but should be independent
of other lists Lk′ where k′ �= k.

Since we are using a MapReduce algorithm as a means to an end, rather than as an end
in itself, we allow values produced at the end of a reduce step to be of two types: final
values, which should be included in the output of such an algorithm when it completes
and are not included in the set of values given as input to the next map step, and non-final
values, which are to be used as the input to the next map step. Thus, for our purposes, a
MapReduce computation continues performing map, shuffle, and reduce steps until the
last reduce step is executed, at which point we output all the final values produced over
the course of the algorithm.

Privacy-Preserving Access of Outsourced Data via Oblivious RAM Simulation 579

In the MUD version of this model [4], which we call the streaming-MapReduce
model, the computation of ρ is restricted to be a streaming algorithm that uses only
O(logc n) working storage, for a constant c ≥ 0. Given our interest in applications to
data-oblivious computations, we define a version that further restricts the computation
of ρ to be a streaming algorithm that uses only O(1) working storage. That is, we focus
on a streaming-MapReduce model where c = 0, which we call the sparse-streaming-
MapReduce model. In applying this paradigm to solve some problem, we assume we
are initially given a set of n values as input, for which we then perform t steps of map-
shuffle-reduce, as specified by a sparse-streaming-MapReduce algorithm, A.

Let us define the message complexity of a MapReduce to be the total size of all the
inputs and outputs to all the map, shuffle, and reduce steps in a MapReduce algorithm.
That is, if we let ni denote the total size of the input and output sets for the ith phase of
map, shuffle, and reduce steps, then the message complexity of a MapReduce algorithm
is

∑
i ni.

Suppose we have a function, f(i, n), such that ni ≤ f(i, n), for each phase i, over
all possible executions of a MapReduce algorithm, A, that begins with an input of size
n. In this case, let us say that f is a ceiling function for A. Such a function is useful for
bounding the worst-case performance overhead for a MapReduce computation.

A MapReduce Algorithm for Cuckoo Hashing. Let us now describe an efficient algo-
rithm for setting up a cuckoo hashing scheme for a given set, X = {x1, x2, . . . , xn},
of items, which we assume come from a universe that can be linearly ordered in some
arbitrary fashion. Let T1 and T2 be the two tables that we are to use for cuckoo hashing
and let h1 and h2 be two candidate hash functions that we are intending to use as well.

For each xi in X , recall that h1(xi) and h2(xi) are the two possible locations for xi

in T1 and T2. We can define a bipartite graph, G, commonly called the cuckoo graph,
with vertex sets U = {h1(xi) : xi ∈ X} and W = {h2(xi) : xi ∈ X} and edge
set E = {(h1(xi), h2(xi)) : xi ∈ X}. That is, for each edge (u, v) in E, there is an
associated value xi such that (u, v) = (h1(xi), h2(xi)), with parallel edges allowed.
Imagine for a moment that an oracle identifies for us each connected component in G
and labels each node v in G with the smallest item belonging to an edge of v’s connected
component. Then we could initiate a breadth-first search from the node u in U such that
h1(xi) = u and xi is the smallest item in u’s connected component, to define a BFS
tree T rooted at u. For each non-root node v in T , we can store the item xj at v, where
xj defines the edge from v to its parent in T .

If a connected component C in G is in fact a tree, then this breadth-first scheme
will accommodate all the items associated with edges of C. Otherwise, if C contains
some non-tree edges with respect to its BFS tree, then we pick one such edge, e. All
other non-tree edges belong to items that are going to have to be stored in the stash.
For the one chosen non-tree edge, e, we assign e’s item to one of e’s endvertices,
w, and we perform a “cuckoo” action along the path, π, from w up to the root of
its BFS tree, moving each item on π from its current node to the parent of this node
on π. Therefore, we can completely accommodate all items associated with unicyclic
subgraphs or tree subgraphs for their connected components. All other items are stored

580 M.T. Goodrich and M. Mitzenmacher

in the stash. For cuckoo graphs corresponding to hash tables with load less than 1/2,
with high probability there are no components with two or more non-tree edges, and the
stash further increases the probability that, when such edges exist, they can be handled.

Unfortunately, we don’t have an oracle to initiate the above algorithm. Instead, we
essentially perform the above algorithm in parallel, starting from all nodes in U , as-
suming they are the root of a BFS tree. Whenever we discover a node should belong
to a different BFS tree, we simply ignore all the work we did previously for this node
and continue the computation for the “winning” BFS tree (based on the smallest item in
that connected component). Consider an efficient MapReduce algorithm for performing
n simultaneous breadth-first searches such that, any time two searches “collide,” the
search that started from a lower-numbered vertex is the one that succeeds. We can easily
convert this into an algorithm for cuckoo hashing by adding steps that process non-
tree edges in a BFS search. For the first such edge we encounter, we initiate a reverse
cuckoo operation, to allocate items in the induced cycle. For all other non-tree edges,
we allocate their associated items to the stash.

Intuitively, the BFS initiated from the minimum-numbered vertex, v, in a connected
component propagates out in a wave, bounces at the leaves of this BFS tree, returns back
to v to confirm it as the root, and then propagates back down the BFS tree to finalize all
the members of this BFS tree. Thus, in time proportional to the depth of this BFS tree
(which, in turn, is at most the size of this BFS tree), we will finalize all the members of
this BFS tree. And once these vertices are finalized, we no longer need to process them
any more. Moreover, this same argument applies to the modified BFS that performs the
cuckoo actions. Therefore, we process each connected component in the cuckoo graph
in a number of iterations that is, in the worst-case, equal to three times the size of each
such component (since the waves of the BFS move down-up-down, passing over each
vertex three times).

To bound both the time for the parallel BFS algorithm to run and to bound its
total work, we require bounds on the component sizes that arise in the cuckoo graph.
Such bounds naturally appear in previous analyses of cuckoo hashing. In particular, the
following result is proven in [10][Lemma 2.4].

Lemma 1. Let v be any fixed vertex in the cuckoo graph and let Cv be its component.
Then there exists a constant β ∈ (0, 1) such that for any integer k ≥ 0,

Pr(|Cv| ≥ k) ≤ βk.

More detailed results concerning the asymptotics of the distribution of component sizes
for cuckoo hash tables can be found in, for example [3], although the above result is
sufficient to prove linear message-complexity overhead.

Lemma 1 immediately implies that the MapReduce BFS algorithm (and the exten-
sion to cuckoo hashing) takes O(log n) time to complete with high probability.

Lemma 2. The message complexity of the MapReduce BFS algorithm is O(n) with
very high probability.

Proof. The message complexity is bounded by a constant times
∑

v |Cv|, which in
expectation is

Privacy-Preserving Access of Outsourced Data via Oblivious RAM Simulation 581

E

[
∑

v

|Cv|
]

=
∑

v

E[|Cv|] ≤ 2m
∑

k≥0

Pr(Cv ≥ k) ≤ 2m
∑

k≥0

βk = O(m).

To prove a very high probability bound, we use a variant of Azuma’s inequality
specific to this situation. If all component sizes were bounded by say O(log2 n), then a
change in any single edge in the cuckoo graph could affect

∑
v |Cv| by only O(log4 n),

and we could directly apply Azuma’s inequality to the Doob martingale obtained by
exposing the edges of the cuckoo graph one at a time. Unfortunately, all component
sizes are O(log2 n) only with very high probability. However, standard results yield
that one can simply add in the probability of a “bad event” to a suitable tail bound, in
this case the bad event being that some component size is larger than c1 log2 n for some
suitable constant c1. Specifically, we directly utilize Theorem 3.7 from [12], which
allows us to conclude that if the probability of a bad event is a superpolynomially small
δ, then

Pr

(
∑

v

|Cv| ≥
∑

v

E[|Cv|] + λ

)

≤ e−(2λ2)/(nc2 log4 n) + δ,

where c2 is again a suitably chosen constant. Now choosing λ = n2/3, for example,
suffices. ��

4 Simulating a MapReduce Algorithm Obliviously

Our simulation is based on a reduction to oblivious sorting.

Theorem 1. Suppose A is a sparse-streaming-MapReduce algorithm that runs in at
most t map-shuffle-reduce steps, and suppose further that we have a ceiling function,
f , for A. Then we can simulate A in a data-oblivious fashion in the RAM model in
time O(

∑t
i=1 o-sort(f(i, n))), where o-sort(n) is the time needed to sort n items in a

data-oblivious fashion.

Proof. Let us consider how we can simulate the map, shuffle, and reduce steps in phase
i of algorithm A in a data-oblivious way. We assume inductively that we store the input
values for phase i in an array, Xi. Let us also assume inductively that Xi can store values
that were created as final values the step i − 1. A single scan through the first f(i, n)
values of Xi, applying the map function, μ, as we go, produces all the key-value pairs
for the map step in phase i (where we output a dummy value for each input value that is
final or is itself a dummy value). We can store each computed value, one by one, in an
oblivious fashion using an output array Y . We then obliviously sort Y by keys to bring
together all key-value pairs with the same key as consecutive cells in Y (with dummy
values taken to be larger than all real keys). This takes time O(o-sort(f(i, n)). Let us
then do a scan of the first f(i, n) cells in Y to simulate the reduce step. As we consider
each item z in Y , we can keep a constant number of state variables as registers in our

582 M.T. Goodrich and M. Mitzenmacher

RAM, which collectively maintain the key value, k, we are considering, the internal
state of registers needed to compute ρ on z, and the output values produced by ρ on z.
This size bound is due to the fact that A is a sparse-streaming-MapReduce algorithm.
Since the total size of this state is constant, the total number of output values that could
possibly be produced by ρ on an input z can be determined a priori and bounded by a
constant, d. So, for each value z in Y , we write d values to an output array Z , according
to the function ρ, padding with dummy values if needed. The total size of Z is therefore
O(d f(i, n)), which is O(f(i, n)). Still, we cannot simply make Z the input for the
next map-shuffle-reduce step at this point, since we need the input array to have at most
f(i, n) values. Otherwise, we would have an input array that is a factor of d too large
for the next phase of the algorithm A. So we perform a data-oblivious sorting of Z ,
with dummy values taken to be larger than all real values, and then we copy the first
f(i, n) values of Z to Xi+1 to serve as the input array for the next step to continue
the inductive argument. The total time needed to perform step i is O(o-sort(f(i, n)).
When we have completed processing of step t, we concatenate all the Xi’s together,
flagging all the final values as being the output values for the algorithm A, which can
be done in a single data-oblivious scan. Therefore, we can simulate each step of A in
a data-oblivious fashion and produce the output from A, as well, at the end. Since we
do two sorts on arrays of size O(f(i, n)) in each map-shuffle-reduce step, i, of A, this
simulation takes time O(

∑t
i=1 o-sort(f(i, n))). ��

We can show that by combining this result with Lemma 2 we get the following:

Theorem 2. Given a set of n distinct items and corresponding hash values, there is a
data-oblivious algorithm for constructing a two-table cuckoo hashing scheme of size
O(n) with a stash of size s, whenever this stash size is sufficient, in O(o-sort(n + s))
time.

External-Memory Data-Oblivious Sorting. In this section, we give our efficient external-
memory oblivious sorting algorithm. Recall that in this model memory is divided be-
tween an internal memory of size M and an external memory (like a disk), which
initially stores an input of size N , and that the external memory is divided into blocks
of size B, for which we can read or write any block in an atomic action called an I/O. In
this context, we say that an external-memory sorting algorithm is data-oblivious if the
sequence of I/Os that it performs is independent of the values of the data it is processing.
So suppose we are given an unsorted array A of N comparable items stored in external
memory. If N ≤ M , then we copy A into our internal memory, sort it, and copy it
back to disk. Otherwise, we divide A into k = 	(M/B)1/3
 subarrays of size N/k and
recursively sort each subarray. Thus, the remaining task is to merge these subarrays into
a single sorted array.

Let us therefore focus on the task of merging k sorted arrays of size n = N/k each.
If nk ≤ M , then we copy all the lists into internal memory, merge them, and copy them
back to disk. Otherwise, let A[i, j] denote the jth element in the ith array. We form a
set of m new subproblems, where the pth subproblem involves merging the k sorted
subarrays defined by A[i, j] elements such that j mod m = p, for m = 	(M/B)1/3
.
We form these subproblems by processing each input subarray and filling in the portions
of the output subarrays from the input, sending full blocks to disk when they fill up

Privacy-Preserving Access of Outsourced Data via Oblivious RAM Simulation 583

(which will happen at deterministic moments independent of data values), all of which
uses O(N/B) I/Os. Then we recursively solve all the subproblems. Let D[i, j] denote
the jth element in the output of the ith subproblem. That is, we can view D as a two-
dimensional array, with each row corresponding to the solution to a recursive merge.

Lemma 3. Each row and column of D is in sorted order and all the elements in column
j are less than or equal to every element in column j + k.

Proof. The lemma follows from Theorem 1 of Lee and Batcher [11]. ��
To complete the k-way merge, then, we imagine that we slide an m×k rectangle across
D, from left to right. We begin by reading into internal memory the first 2k columns
of D. Next, we sort this set of elements in internal memory and we output the ordered
list of the km smallest elements (holding back a small buffer of elements if we don’t
fill up the last block). Then we read in the next k columns of D (possibly reading
in k additional blocks for columns beyond this, depending on the block boundaries),
and repeat the sorting of the items in internal memory and outputting the smallest km
elements in order. At any point in this algorithm, we may need to have up to 2km +
(m+2)B elements in internal memory, which, under a reasonable tall cache assumption
(say M > 3B4), will indeed fit in internal memory. We continue in this way until we
process all the elements in D. Note that, since we process the items in D from left to
right in a block fashion, for all possible data values, the algorithm is data-oblivious with
respect to I/Os.

Consider the correctness of this method. Let D1, D2, . . . , Dl denote the subarrays
of D of size m × k used in our algorithm. By a slight abuse of notation, we have that
D1 ≤ D3, by Lemma 3. Thus, the smallest mk items in D1 ∪ D2 are less than or
equal to the items in D3. Likewise, these mk items are obviously less than the largest
mk items in D1 ∪ D2. Therefore, the first mk items output by our algorithm are the
smallest mk items in D. Inductively, then, we can now ignore these smallest mk items
and repeat this argument with the remaining items in D. Thus, we have the following.

Theorem 3. Given an array A of size N comparable items, we can sort A with a data-
oblivious external-memory algorithm that uses O((N/B) log2

M/B(N/B)) I/Os, under
a tall-cache assumption (M > 3B4).

Theorem 4. Given a set of n distinct items and corresponding hash values, there is a
data-oblivious algorithm for constructing a two-table cuckoo hashing scheme of size
O(n) with a stash of size s = O(log n) whenever this stash size is sufficient, using a
private memory of size O(n1/r), for a given fixed constant r > 1, in O(n + s) time.

Proof. Combine Theorems 2 and 3, with N = n + s, B = 1, and M ∈ O(n1/r). ��

5 Oblivious RAM Simulations

Our data-oblivious simulation of a non-oblivious algorithm on a RAM follows the
general approach of Goldreich and Ostrovsky [5], but differs from it in some important

584 M.T. Goodrich and M. Mitzenmacher

ways, most particularly in our use of cuckoo hashing. We assume throughout that Alice
encrypts the data she outsources to Bob using a probabilistic encryption scheme, so
that multiple encryptions of the same value are extremely likely to be different. Thus,
each time she stores an encrypted value, there is no way for Bob to correlate this value
to other values or previous values. So the only remaining information that needs to be
protected is the sequence of accesses that Alice makes to her data.

Our description simultaneously covers two separate cases: the constant-sized private
memory case with very high probability amortized time bounds, and the case of private
memory of size O(n1/r) for some constant r > 1. The essential description is the
same for these settings, with slight differences in how the hash tables are structured as
described below.

We store the n data items in a hierarchy of hash tables, Hk, Hk+1, . . ., HL, where k
is an initial starting point for our hierarchy and L = log n. Each table, Hi, has capacity
for 2i items, which are distributed between “real” items, which correspond to memory
cells of the RAM, plus “dummy” items, which are added for the sake of obliviousness
to make the number of items stored in Hi be the appropriate value. The starting table,
Hk, is simply an array that we access exhaustively with each RAM memory read or
write. The lower-level tables, Hk+1 to Hl, for l determined in the analysis, are standard
hash tables with Hi having 2i+1 buckets of size O(log n), whereas higher-level tables,
Hl+1 to HL, are cuckoo hash tables, with Hi having (1 + ε)2i+2 cells and a stash of
size s, where s is determined in the analysis and ε > 0 is a constant. The sizes of the
hash tables in this hierarchy increase geometrically; hence the total size of all the hash
tables is proportional to the size of HL, which is O(n). Our two settings will differ in
the starting points for the various types of hash tables in the hierarchy as well as the
size of the stash associated with the hash tables.

For each Hi with i < L we keep a count, di, of the number of times that Hi has been
accessed since first being constructed as an “empty” hash table containing 2i dummy
values, numbered consecutively from −1 to −2i. For convenience, in what follows, let
us think of each hash table Hi with i > l as being a standard cuckoo hash table, with
a stash of size s = Θ(log n) chosen for the sake of a desired superpolynomially-small
error probability. Initially, every Hi is an empty cuckoo hash table, except for HL,
which contains all n = 2L initial values plus 2L dummy values.

We note that there is, unfortunately, some subtlety in the geometric construction of
hash tables in the setting of constant-sized private memory with very high probability
bounds. A problem arises in that for small hash tables, of size say polylogarithmic in
n, it is not clear that appropriate very high probability bounds, which required failures
to occur with probability inverse superpolynomial in n, hold with logarithmic sized
stashes. Such results do not follow from previous work [10], which focused on constant-
sized stashes. However, to keep the simulation time small, we cannot have larger than a
logarithmic-sized stash (if we are searching it exhaustively), and we require small initial
levels to keep the simulation time small.

We can show that we can cope with the problem by extending results from [10]
that logarithmic sized stashes are sufficient to obtain the necessary probability bounds
for hash tables of size that are polylogarithmic in n. In order to start our hierarchy with

Privacy-Preserving Access of Outsourced Data via Oblivious RAM Simulation 585

small, logarithmic-sized hash tables, we simply use standard hash tables as described
above for levels k+1 to l = O(log log n) and use cuckoo hash tables, each with a stash
of size s = O(log n), for levels l + 1 to L.

Access Phase. When we wish to make an access for a data cell at index x, for a read
or write, we first look in Hk exhaustively to see if it contains an item with key x.
Then, we initialize a flag, “found,” to false iff we have not found x yet. We continue
by performing an access2 to each hash table Hk+1 to HL, which is either to x or to a
dummy value (if we have already found x).

Our privacy guarantee depends on us never repeating a search. That is, we never
perform a lookup for the same index, x or d, in the same table, that we have in the
past. Thus, after we have performed the above lookup for x, we add x to the table Hk,
possibly with a new data value if the access action we wanted to perform was a write.

Rebuild Phase. With every table Hi, we associate a potential, pi. Initially, every table
has zero potential. When we add an element to Hk, we increment its potential. When a
table Hi has its potential, pi, reach 2i, we reset pi = 0 and empty the unused values in
Hi into Hi+1 and add 2i to pi+1. There are at most 2i such unused values, so we pad
this set with dummy values to make it be of size exactly 2i; these dummy values are
included for the sake of obliviousness and can be ignored after they are added to Hi+1.
Of course, this could cause a cascade of emptyings in some cases, which is fine.

Once we have performed all necessary emptyings, then for any j < L,
∑j

i=1 pi is
equal to the number of accesses made to Hj since it was last emptied. Thus, we rehash
each Hi after it has been accessed 2i times. Moreover, we don’t need to explicitly store
pi with its associated hash table, Hi, as di can be used to infer the value of pi.

The first time we empty Hi into an empty Hi+1, there must have been exactly 2i

accesses made to Hi+1 since it was created. Moreover, the first emptying of Hi into
Hi+1 involves the addition of 2i values to Hi+1, some of which may be dummy values.

When we empty Hi into Hi+1 for the second time it will actually be time to empty
Hi+1 into Hi+2, as Hi+1 would have been accessed 2i+1 times by this point—so we can
simply union the current (possibly padded) contents of Hi and Hi+1 together to empty
both of them into Hi+2 (possibly with further cascaded emptyings). Since the sizes
of hash tables in our hierarchy increase geometrically, the size of our final rehashing
problem will always be proportional to the size of the final hash table that we want to
construct. Every n = 2L accesses we reconstruct the entire hierarchy, placing all the
current values into HL. Thus, the schedule of table emptyings follows a data-oblivious
pattern depending only on n.

Correctness and Analysis. To the adversary, Bob, each lookup in a hash table, Hi, is to
one random location (if the table is a standard hash table) or to two random locations
and the s elements in the stash (if the table is a cuckoo hash table), which can be

1. a search for a real item, x, that is not in Hi,
2. a search for a real item, x, that is in Hi,
3. a search for a dummy item, di.

2 This access is actually two accesses if the table is a cuckoo hash table.

586 M.T. Goodrich and M. Mitzenmacher

Moreover, as we search through the levels from k to L we go through these cases in
this order (although for any access, we might not ever enter case 1 or case 3, depending
on when we find x). In addition, if we search for x and don’t find it in Hi, we will
eventually find x in some Hj for j > i and then insert x in Hk; hence, if ever after
this point in time we perform a future search for x, it will be found prior to Hi. In
other words, we will never repeat a search for x in a table Hi. Moreover, we continue
performing dummy lookups in tables Hj , for j > i, even after we have found the
item for cell x in Hi, which are to random locations based on a value of di that is
also not repeated. Thus, the accesses we make to any table Hi are to locations that are
chosen independently at random. In addition, so long as our accesses don’t violate the
possibility of our tables being used in a valid cuckoo hashing scheme (which our scheme
guarantees with very high probability) then all accesses are to independent random
locations that also happen to correspond to locations that are consistent with a valid
cuckoo scheme. Finally, note that we rebuild each hash table Hi after we have made
2i accesses to it. Of course, some of these 2i accesses may have successfully found
their search key, while others could have been for dummy values or for unsuccessful
searches. Nevertheless, the collection of 2i distinct keys used to perform accesses to Hi

will either form a standard hash table or a cuckoo graph that supports a cuckoo hash
table, with a stash of size s, w.v.h.p. Therefore, with very high probability, the adversary
will not be able to determine which among the search keys resulted in values that were
found in Hi, which were to keys not found in Hi, and which were to dummy values.

Each memory access involves at most O(s log n) reads and writes, to the tables Hk

to HL. In addition, note that each time an item is moved into Hk, either it or a surrogate
dummy value may eventually be moved from Hk all the way to HL, participating in
O(log n) rehashings, with very high probability. In the constant-memory case, by The-
orem 2, each data-oblivious rehashing of ni items takes O((ni +s) log(ni+s)) time. In
addition, in this case, we use a stash of size s ∈ O(log n) and set l = k + O(log log n).
In the case of a private memory of size O(n1/r), each data-oblivious rehashing of
ni items takes O(ni) time, by Theorem 4. In addition, in this case, we can use a
constant-size stash (i.e., s = O(1)), but start with k = (1/r) log n, so that Hk fits
in private memory (with all the other Hi’s being in the outsourced memory). The use
of a constant-sized stash, however, limits us to a result that holds with high probability,
instead of with very high probability.

To achieve very high probability in this latter case, we utilize a technique suggested
in [6]. Instead of using a constant-sized stash in each level, we combine them into a
single logarithmic-sized stash, used for all levels. This allows the stash at any single
level to possibly be larger than any fixed constant, giving bounds that hold with very
high probability. Instead of searching the stash at each level, Alice must load the entire
stash into private memory and rewrite it on each memory access. Therefore, we have
the following.

Theorem 5. Data-oblivious RAM simulation of a memory of size n can be done in the
constant-size private-memory case with an amortized time overhead of O(log2 n), with
very high probability. Such a simulation can be done in the case of a private memory of
size O(n1/r) with an amortized time overhead of O(log n), with very high probability,
for a constant r > 1. The space needed at the server in all cases is O(n).

Privacy-Preserving Access of Outsourced Data via Oblivious RAM Simulation 587

Acknowledgments. We thank Radu Sion and Peter Williams for helpful discussions
about oblivious RAM simulation. This research was supported in part by the National
Science Foundation under grants 0724806, 0713046, 0847968, 0915922, 0953071, and
0964473. A full version of this paper is available as [8].

References

1. Ajtai, M.: Oblivious RAMs without cryptographic assumptions. In: Proc. of the 42nd ACM
Symp. on Theory of Computing (STOC), pp. 181–190. ACM, New York (2010)

2. Damgård, I., Meldgaard, S., Nielsen, J.B.: Perfectly secure oblivious RAM without random
oracles. Cryptology ePrint Archive, Report 2010/108 (2010),
http://eprint.iacr.org/

3. Drmota, M., Kutzelnigg, R.: A precise analysis of cuckoo hashing (2008) (preprint),
http://www.dmg.tuwien.ac.at/drmota/cuckoohash.pdf

4. Feldman, J., Muthukrishnan, S., Sidiropoulos, A., Stein, C., Svitkina, Z.: On distributing
symmetric streaming computations. In: ACM-SIAM Symp. on Discrete Algorithms
(SODA), pp. 710–719 (2008)

5. Goldreich, O., Ostrovsky, R.: Software protection and simulation on oblivious RAMs. J.
ACM 43(3), 431–473 (1996)

6. Goodrich, M., Mitzenmacher, M., Ohrimenko, O., Tamassia, R.: Privacy-preserving group
data access via stateless oblivious RAM simulation (unpublished manuscript)

7. Goodrich, M.T., Mitzenmacher, M.: MapReduce Parallel Cuckoo Hashing and Oblivious
RAM Simulations. ArXiv e-prints, Eprint 1007.1259v1 (July 2010)

8. Goodrich, M.T., Mitzenmacher, M.: Privacy-Preserving Access of Outsourced Data via
Oblivious RAM Simulation. ArXiv e-prints, Eprint 1007.1259v2 (April 2011)

9. Karloff, H., Suri, S., Vassilvitskii, S.: A model of computation for MapReduce. In: Proc.
ACM-SIAM Sympos. Discrete Algorithms (SODA), pp. 938–948 (2010)

10. Kirsch, A., Mitzenmacher, M., Wieder, U.: More robust hashing: cuckoo hashing with a
stash. SIAM J. Comput. 39, 1543–1561 (2009)

11. Lee, D.-L., Batcher, K.E.: A multiway merge sorting network. IEEE Trans. on Parallel and
Distributed Systems 6(2), 211–215 (1995)

12. McDiarmid, C.: Concentration. In: Habib, M., McDiarmid, C., Ramirez-Alfonsin, J., Reed,
B. (eds.) Probabilistic Methods for Algorithmic Discrete Mathematics, pp. 195–248.
Springer, Berlin (1998)

13. Pagh, R., Rodler, F.: Cuckoo hashing. Journal of Algorithms 52, 122–144 (2004)
14. Pinkas, B., Reinman, T.: Oblivious RAM revisited. In: Rabin, T. (ed.) CRYPTO 2010.

LNCS, vol. 6223, pp. 502–519. Springer, Heidelberg (2010)
15. Williams, P., Sion, R.: Usable pir. In: NDSS. The Internet Society, San Diego (2008)
16. Williams, P., Sion, R., Carbunar, B.: Building castles out of mud: practical access pattern

privacy and correctness on untrusted storage. In: 15th ACM Conf. on Computer and
Communications Security (CCS), pp. 139–148 (2008)

http://eprint.iacr.org/
http://www.dmg.tuwien.ac.at/drmota/cuckoohash.pdf

	Privacy-Preserving Access of Outsourced Data via Oblivious RAM Simulation
	Introduction
	Preliminaries
	MapReduce Cuckoo Hashing
	Simulating a MapReduce Algorithm Obliviously
	Oblivious RAM Simulations
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 149
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 149
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 599
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200038002000280038002e0032002e00310029000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f0061006400650064002000610074002000680074007400700073003a002f002f0070006f007200740061006c002d0064006f0072006400720065006300680074002e0073007000720069006e006700650072002d00730062006d002e0063006f006d002f00500072006f00640075006300740069006f006e002f0046006c006f0077002f00740065006300680064006f0063002f00640065006600610075006c0074002e0061007300700078000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c00200030003800200061006e0064002000500069007400530074006f0070002000530065007200760065007200200030003800200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

