
Invertible Bloom Lookup Tables

Michael T. Goodrich1 and Michael Mitzenmacher2

Abstract— We present a version of the Bloom filter data
structure that supports not only the insertion, deletion, and
lookup of key-value pairs, but also allows a complete listing of
the pairs it contains with high probability, as long the number
of key-value pairs is below a designed threshold. Our structure
allows the number of key-value pairs to greatly exceed this
threshold during normal operation. Exceeding the threshold
simply temporarily prevents content listing and reduces the
probability of a successful lookup. If entries are later deleted
to return the structure below the threshold, everything again
functions appropriately. We also show that simple variations
of our structure are robust to certain standard errors, such as
the deletion of a key without a corresponding insertion or the
insertion of two distinct values for a key. The properties of our
structure make it suitable for several applications, including
database and networking applications that we highlight.

I. INTRODUCTION

The Bloom filter data structure [1] is a well-known way of
probabilistically supporting dynamic set membership queries
that has been used in a multitude of applications (e.g.,
see [3]). The key feature of a standard Bloom filter is the
way it trades off query accuracy for space efficiency, by
using a binary array T (initially all zeroes) and k random
hash functions, h1, . . . , hk, to represent a set S by assigning
T [hi(x)] = 1 for each x ∈ S. To check if x ∈ S one can
check that T [hi(x)] = 1 for 1 ≤ i ≤ k, with some chance
of a false positive. This representation of S does not allow
one to list out the contents of S given only T . In many
domains one would benefit from a similar set representation
that would also allow listing out the set’s contents [9].

In this paper, we are interested not in simply representing a
set, but instead in methods for probabilistically representing
a lookup table (that is, an associative memory) of key-value
pairs, where the keys and values can be represented as fixed-
length integers. Unlike previous approaches (e.g., see [2],
[4]), we specifically desire a data structure that supports the
listing out of all of its key-value pairs. We refer to such a
structure as an invertible Bloom lookup table (IBLT).

A. Related Work

Our work can be seen as an extension of the invertible
Bloom filter data structure of Eppstein and Goodrich [9],
modified to store key-value pairs instead of only keys. Our
analysis, however, supersedes the analysis of the previous
paper in several respects, in terms of efficiency and tight-
ness of the analysis (as well as correcting some small

1Dept. of Computer Science, University of California, Irvine. Supported
in part by the NSF under grants 0724806, 0713046, 0847968, and 0953071.

2School of Engineering and Applied Sciences, Harvard University. Sup-
ported in part by the NSF under grants IIS-0964473, CCF-0915922 and
CNS-0721491.

deficiencies). In particular, our analysis demonstrates the
natural connection between these data structures and cores
of random hypergraphs, similar to the connection found
previously for cuckoo hashing and erasure-correcting codes
(e.g., see [8], [14]). This provides both a significant constant
factor reduction in the required space for the data structure,
as well as an important reduction in the error probability (to
inverse polynomial, from constant in [9]). In addition, our
IBLT supports some usage cases and applications (discussed
later in this section) that are not supported by a standard
invertible Bloom filter.

While we do not review the large body of work on Bloom
filters, two closely related works include Bloomier filters [4]
and Approximate Concurrent State Machines (ACSMs) [2],
which are structures to store and track key-value pairs. An
IBLT has additional features these structures do not have,
including listing, graceful handling of data exceeding the
listing threshold, and counting multiplicities, which make it
useful for several applications where these other structures
are insufficient.

Another similar structure is the recently developed counter
braid architecture [13], which keeps an updatable count field
for a set of flows in a compressed form based on hashing that
allows reconstruction of the count for each flow. Unlike an
IBLT, however, the flow list must be kept explicitly to read
out the flow counts, the lists do not allow for direct lookups
of individual values, and their decoding algorithm utilizes
a more complex belief propagation. Additional work in the
area of approximate counting of a similar flavor but with
very different goals from the IBLT includes the well-known
CM-sketch [7] and recent work by Price [16].

In parallel with this work, [10] used IBLTs, including
IBLTs with negative entries1, in the context of efficient set
reconciliation, further validating the value of this type of
structure.

B. Our Results

We present a deceptively simple variation of the Bloom
filter data structure that is designed for key-value pairs and
further avoids the limitation of previous structures that do not
allow the listing of contents. As mentioned above, we call our
structure an invertible Bloom lookup table, or IBLT for short.
Our IBLT supports insertions, deletions, and lookups in O(k)
time, where k is the number of random hash functions used
(which will typically be a constant in practice). Just as Bloom
filters have false positives, our lookup operation works only

1We note the conference paper [10] incorrectly states that that negative
entries were not considered in the arxiv’ed version of this paper.

978-1-4577-1818-2/11/$26.00 ©2011 IEEE 792

Forty-Ninth Annual Allerton Conference
Allerton House, UIUC, Illinois, USA
September 28 - 30, 2011

with constant probability, although this probability can be
made quite close to 1.

Our data structure also allows for a complete listing of the
contained key-value pairs with high probability, whenever the
current number n of such pairs lies below a certain threshold
capacity t, a parameter that is part of the structure’s design.
This listing takes O(t) time. One can also use listing as a
backup when a standard lookup fails, by performing a listing
until finding a value for the desired key.

Our IBLT construction is also space-efficient, requiring
space at most linear in t, the threshold number of keys,
even if the number, n, of stored key-value pairs grows well
beyond t (for example, to polynomial in t) at points in time.
One could of course instead keep an actual list of key-
value pairs with linear space, but this would require space
linear in n, i.e., the maximum number of keys, not the target
number, t, of keys. Keeping a list also necessarily requires
more computationally expensive lookup operations than our
approach supports.

We further show that with some additional checksums
we can tolerate various natural errors in the system. For
example, we can cope with key-value pairs being deleted
without first being inserted, or keys being inserted with the
same value multiple times, or keys mistakenly being inserted
with multiple values simultaneously. Interestingly, together
with its contents-listing ability, this error tolerance leads to a
number of applications of the IBLT, which we discuss next.

C. Applications and Usage Cases

There are a number of possible applications and usage
cases for invertible Bloom lookup tables.

a) Database Reconciliation: Suppose Alice and Bob
hold distinct, but similar, copies DA and DB of an indexed
database D, and they would like to reconcile the differences
between DA and DB . For example, Alice could hold a
current version of D and Bob could hold a backup, or Alice
and Bob could represent two different copies of someone’s
calendar database (say, on a desktop computer and a smart-
phone) that now need to be symmetrically synchronized.

To achieve such a reconciliation with low overhead, Alice
constructs an IBLT, B, for DA, using indices as keys and
checksums of her records as values. She then sends the IBLT
B to Bob, who then deletes index-checksum pairs from B
corresponding to all of his entries in DB . The remaining
key-value pairs corresponding to insertions without deletions
identify records that Alice has that Bob doesn’t have, and
the remaining key-value pairs corresponding to deletions
without insertions identify records that Bob has that Alice
doesn’t have. In addition, as we show, Bob can also use B
to identify records that they both possess but with different
checksums. In this way, Alice needs only to send a message
B of size O(t), where t here is an upper bound on the number
of differences between DA and DB , for Bob to determine
the identities of their differences (and a symmetric property
holds for a similar message from Bob to Alice).

b) Tracking Network Acknowledgments: Consider a
router R that would like to track TCP sessions passing

through R. Each session corresponds to a key, and may have
an associated value, such as the source or the destination.
When such flows are initiated or terminated in TCP, control
messages are passed that can be easily detected, allowing the
router to add or remove the flow to the structure. The IBLT
supports fast insertions and deletions and can be used to list
out the current flows in the system, as long as the number
of flows is less than some preset threshold, t. This work
can also be offloaded simply by sending a copy of the IBLT
to an offline agent if desired. Furthermore, the IBLT can
return the value associated with a flow when queried, with
constant probability close to 1. Finally, if at any point, the
number of flows spikes to well above t, once the total load
returns to t or below. the IBLT can again list the flows and
perform lookups with the appropriate probabilities Again,
this is the key feature of the IBLT; all key-value pairs can
be reconstructed with high probability whenever the number
of keys is below the design threshold, even if this threshold
is temporarily exceeded.

In this networking setting, sometimes flows do not termi-
nate properly, leaving them in the data structure when they
should disappear. Similarly, initialization messages may not
be properly handled, leading to a deletion without a corre-
sponding insertion. We show that the IBLT can be modified
to handle such errors with minimal loss in performance.
Specifically, we can handle keys that are deleted without
being inserted, or keys that erroneously obtain multiple val-
ues. Even with such errors, we provide conditions for which
all valid flows can still all be listed with high probability.
Our experimental results also highlight robustness to these
types of errors. (Eventually, of course, such problematic keys
should be removed from the data structure; see [2] for some
possibilities based on timing structures.)

c) Oblivious Selection from a Table: As a final mo-
tivating application, consider a scenario where Alice has
outsourced storage of an important indexed table, T , of
size n, to a cloud storage server, Bob, because Alice has
very limited storage capacity (e.g., Alice may only have a
smartphone). Moreover, because her data is sensitive and
she knows Bob is honest-but-curious regarding her data, she
encrypts each record of T using a secret key, and random
nonces, so that Bob cannot determine the contents of any
record from its encryption alone. Such encryptions are not
sufficient, however, to fully protect the privacy of Alice’s
data, as recent attacks show that the way Alice accesses her
data can reveal its contents (e.g., see [5]). Alice needs a way
of hiding any patterns in the way she accesses her data.

Suppose now that Alice would like to do a simple SELECT
query on T and she is confident that the result will have a
size at most t, which is much less than n but still more
than she can store locally. Thus, she cannot use techniques
from private information retrieval [6], as that would either
require storing results back with Bob in a way that could
reveal selected indices or using yet another server besides
Bob. She could use techniques from recent oblivious RAM
simulations [11] to obfuscate her access patterns, but doing
so would require O(n log2 n) I/Os. Therefore, using existing

793

techniques would be inefficient.
By using an IBLT, she can perform her SELECT query

much more efficiently. The advantage comes from the fact
that an insertion in an IBLT accesses a random set of cells
(that is, memory locations) whose addresses depend (via
random hash functions) only on the key of the item being
inserted. Alice thus uses all the indices for T as keys, one for
each record, and accesses memory as though inserting each
record into an IBLT of size O(t). In fact, Alice only inserts
those records that satisfy her SELECT query. However, since
Alice encrypts each write using a secret key and random
nonces, Bob cannot tell when Alice’s write operations are
actually changing the records stored in the IBLT, and when
a write operation is simply rewriting the same contents of a
cell over again re-encrypted with a different nonce. In this
way Alice can obliviously create an IBLT of size O(t) that
contains the result of her query and is stored by Bob. Then,
using existing methods for oblivious RAM simulation [11],
she can subsequently obliviously extract the elements from
her IBLT using O(t log2 t) I/Os. With this approach Bob
learns nothing about her data from her access pattern. In
addition, the total number of I/Os for her to perform her
query is O(n + t log2 t), which is linear (and optimal) for
any t that is O(n/ log2 n). We are not currently aware of
any other way that Alice can achieve such a result using a
structure other than an IBLT.

II. A SIMPLE VERSION

In this section, we describe and analyze a simple version
of the IBLT. In the sections that follow we describe how to
augment and extend this simple structure to achieve various
additional performance goals.

The IBLT data structure, B, is a randomized data structure
storing a set of key-value pairs. It is designed with respect to
a threshold number of keys, t; when we say the structure is
successful for an operation with high probability it is under
the assumption that the actual number of keys in the structure
at that time, which we henceforth denote by n, is less than
or equal to t. Note that n can exceed t during the course of
normal operation, however.

We assume throughout that, as in the standard RAM
model, keys and values respectively fit in a single word
of memory (which, in practice, could actually be any fixed
number of memory words) and that each such word can al-
ternatively be viewed as an integer, character string, floating-
point number, etc. Thus, without loss of generality, we view
keys and values as positive integers. Space is measured by
the number of memory words used.

In many cases we take sums of keys and/or values; we
must also consider whether word-value overflow when trying
to store these sums in a memory word. (That is, the sum is
larger than what fits in a data word.) Such considerations
have minimal effects. In most situations, with suitably sized
memory words, overflow may never be a consideration.
Alternatively, if we work in a system that supports graceful
overflows, so that (x + y) − y = x even if the first sum
results in an overflow, our approach works with negligible

changes. Finally, we can also work modulo some large prime
(so that values fit within a memory word) to enforce graceful
overflow. These variations have negligible effects on the
analysis. However, we point out that in many settings (except
in the case where we may have duplicate copies of the same
key-value pair), we can use XORs in place of sums in our
algorithms, and avoid overflow issues entirely.

A. Operations Supported

Our structure supports the following operations:
• INSERT(x, y): insert the key-value pair, (x, y), into B.

This operation always succeeds, assuming that all keys
are distinct.

• DELETE(x, y): delete the key-value pair, (x, y), from B.
This operation always succeeds, provided (x, y) ∈ B,
which we assume for the rest of this section.

• GET(x): return the value y such that there is a key-value
pair, (x, y), in B. If y = null is returned, then (x, y) 6∈ B
for any value of y. With low (but constant) probability,
this operation may fail, returning a “not found” error
condition. In this case there may or may not be a key-
value pair (x, y) in B.

• LISTENTRIES(): list all the key-value pairs being stored
in B. With low (inverse polynomial in t) probability,
this operation may return a partial list along with an
“list-incomplete” error condition.

When an IBLT B is first created, it initializes a lookup
table T of m cells. Each of the cells in T stores a constant
number of fields, each of which corresponds to a single
memory word. We emphasize that at times the number of
key-value pairs in B can be much larger than m, but the space
used for B remains O(m) words. The INSERT and DELETE
methods never fail, whereas the GET and LISTENTRIES
methods only guarantee good probabilistic success when
n ≤ t. For our structures we shall generally have m = O(t),
and often we can give quite tight analyses on the constant
factors required.

B. Data Structure Architecture

Like a standard Bloom filter, an IBLT uses a set of k
random2 hash functions, h1, h2, . . ., hk, to determine where
key-value pairs are stored. In our case, each key-value pair,
(x, y), is placed into cells T [h1(x)], T [h2(x)], . . . T [ht(x)].
In what follows, for technical reasons3, we assume that the
hashes yield distinct locations. This can be accomplished in
various ways, with one standard approach being to split the
m cells into k subtables each of size m/k, and having each
hash function choose one cell (uniformly) from each sub-
table. Such splitting does not affect the asymptotic behavior
in our analysis.

Each cell contains three fields:
• a count field, which counts the number of entries that

have been mapped to this cell,

2We assume, for the sake of simplicity in our analysis, that the hash
functions are fully random; see the full paper for further discussion.

3Incidentally, this same technicality can be used to correct a small
deficiency in the paper of Eppstein and Goodrich [9].

794

• a keySum field, which is the sum of all the keys that
have been mapped to this cell,

• a valueSum field, which is the sum of all the values
that have been mapped to this cell.

Given these fields, which are initially 0, performing the
update operations is fairly straightforward:

• INSERT(x, y):
for each (distinct) hi(x), for i = 1, . . . , k do

add 1 to T [hi(x)].count
add x to T [hi(x)].keySum
add y to T [hi(x)].valueSum

end for
• DELETE(x, y):

for each (distinct) hi(x), for i = 1, . . . , k do
subtract 1 from T [hi(x)].count
subtract x from T [hi(x)].keySum
subtract y from T [hi(x)].valueSum

end for

C. Data Lookups

We perform the GET operation in a manner similar to how
membership queries are done in a standard Bloom filter. The
details are as follows:

• GET(x):
for each (distinct) hi(x), for i = 1, . . . , k do

if T [hi(x)].count = 0 then
return null

else if T [hi(x)].count = 1 then
if T [hi(x)].keySum = x then

return T [hi(x)].valueSum
else

return null
end if

end if
end for
return “not found”

Recall that for now we assume that all insertions and
deletions are done correctly, that is, no insert will be done
for an existing key in B and no delete will be performed for
a key-value pair not already in B. With this assumption, if
the above operation returns a value y or the null value, then
this is the correct response. This method may fail, returning
“not found,” if it can find no cell that x maps to that holds
only one entry. Also, as a value is returned only if the count
is 1, overflow of the sum fields is not a concern.

For a key x in B, consider the probability p0 that each of
its hash locations contains no other item. Using the standard
analysis for Bloom filters (e.g., see [3]), we find p0 is:

p0 =

(
1− k

m

)(n−1)

≈ e−kn/m.

One nice interpretation of this is that the number of keys
that hash to the cell is approximately a Poisson random
variable with mean kn/m, and e−kn/m is the corresponding
probability a cell is empty. The probability that a GET

for a key that is in B returns “not found” is therefore
approximately

(1− p0)k ≈
(
1− e−kn/m

)k
,

which corresponds to the false-positive rate for a standard
Bloom filter. As is standard for these arguments, these ap-
proximations can be readily replaced by tight concentration
results [3].

The probability that a GET for a key that is not in B returns
“not found” instead of null can be found similarly. Here,
however, note that every cell hashed to by that key must
be hashed to by at least two other keys from B; an empty
cell returns a null value, and a cell with just one key hashed
returns the true key value, leading to a null return value for
a key not in B. Using the same Poisson approximation, we
find this probability is(

1− e−kn/m − kn

m
e−kn/m

)k
.

D. Listing Set Entries

Let us next consider the method for listing the contents of
B. We describe this method in a destructive fashion—if one
wants a non-destructive method, then one should first create
a copy of B as a backup.

• LISTENTRIES():
while there’s an i ∈ [1,m] with T [i].count = 1 do

add the pair (T [i].keySum , T [i].valueSum) to
the output list
call DELETE(T [i].keySum , T [i].valueSum)

end while
It is a fairly straightforward exercise to implement this
method in O(m) time, say, by using a link-list-based priority
queue of cells in T indexed by their count fields and
modifying the DELETE method to update this queue each
time it deletes an entry from B.

If at the end of the while-loop all the entries in T are
empty, then we say that the method succeeded and we can
confirm that the output list is the entire set of entries in B.
If, on the other hand, there are some cells in T with non-
zero counts, then the method only outputs a partial list of
the key-value pairs in B.

This process should appear entirely familiar to those who
work with random graphs and hypergraphs. It is exactly
the same procedure used to find the 2-core of a random
hypergraph (e.g., see [8], [15]). To make the connection,
think of the cells as being vertices in the hypergraph, and
the key-value pairs as being hyperedges, with the vertices
for an edge corresponding to the hash locations for the key.
The 2-core is the largest sub-hypergraph that has minimum
degree at least 2. The standard “peeling process” finds the
2-core: while there exists a vertex with degree 1, delete it
and the corresponding hyperedge. The equivalence between
the peeling process and the scheme for LISTENTRIES is
immediate. We note that this peeling process is similarly
used for various erasure-correcting codes, such as Tornado

795

codes and its derivatives (e.g., see [14]), that have, in some
ways, the same flavor as this construction4.

Assuming that the cells associated with a key are chosen
uniformly at random, we use known results on 2-cores
of random hypergraphs. In particular, tight thresholds are
known; when the number of hash values k of each is at least
2, there are constants ck > 1 such that if m > (ck + ε)n
for any constant ε > 0, LISTENTRIES succeeds with high
probability, that is with probability 1−o(1). Similarly, if m <
(ck − ε)n for any constant ε > 0, LISTENTRIES succeeds
with probability o(1). Hence t = m/ck is (approximately)
the design threshold for the IBLT. As can be found in for
example [8], [15], these values are given by

c−1
k = sup

{
α : 0 < α < 1;∀x ∈ (0, 1), 1− e−kαx

k−1

< x
}
.

Table I gives numerical values for these thresholds for 3 ≤
k ≤ 7. Here we are not truly concerned with the exact values
ck; it is enough that only linear space is required. It is worth
noting that because ck is relatively small, in practice the
choice of the size of the IBLT will generally be determined
by the desired probability for a successful GET operation,
not the need for listing.

When we design our IBLT, depending on the application,
we may want a target probability for succeeding in listing
entries. Specifically, we may desire failure to occur with
probability O(t−c) for a chosen constant c (whenever n ≤ t).
By choosing k sufficiently large and m above the 2-core
threshold, we can ensure this; indeed, standard results give
that the bottleneck is the possibility of having two edges with
the same collection of vertices, giving a failure probability
of O(t−k+2). The following theorem follows readily from
previous work.

Theorem 1: As long asm is chosen so thatm > (ck+ε)t for
some ε > 0, LISTENTRIES fails with probability O(t−k+2)
whenever n ≤ t.

Finally, up to this point, we have not been concerned with
minimizing space for our IBLT structure, noting that it can
be done in linear space. In the full paper we discuss various
space-saving techniques, including using compressed arrays,
quotienting, and irregular graphs.

III. ADDING FAULT TOLERANCE

For cases where there can be deletions for key-value pairs
that are not already in B, or values can be inserted for keys
that are already in B, we require some fault tolerance. We
can utilize a standard approach of adding random checksums
to get better fault tolerance.

d) Extraneous Deletions: Let us first consider a case
with extraneous deletions only. Specifically, we assume a
key-value pair might be deleted without a corresponding in-
sertion; however, here we still assume each key is associated

4Following this analogy, one could for example, consider irregular
versions of the IBLT, where different keys utilize a different number of hash
values; such a variation could use less space while allowing LISTENTRIES
to succeed, or could be used to allow some keys with more hash locations
to obtain a better likelihood of a successful lookup. These variations are
straightforward and we do not consider the details further here.

k 3 4 5 6 7
ck 1.222 1.295 1.425 1.570 1.721

TABLE I
THRESHOLDS FOR THE 2-CORE ROUNDED TO FOUR DECIMAL PLACES.

with a single value, and duplicate key-value pairs are not
allowed in the system. Such deletions cause a variety of
problems for both the GET and LISTENTRIES routines. For
example, it is possible for a cell to have an associated count
of 1 even if more than one key has hashed to it, so we must
re-evaluate our LISTENTRIES routine.

To help deal with these issues, we add to our IBLT
structure. We assume that each key x has an additional hash
value given by a hash function G1(x), which in general we
assume will take on uniform random values in a range [1, R].
We then require each cell has the following additional field:

• a hashkeySum field, which is the sum of the hash
values, G1(x), for all the keys that have been mapped
to this cell.

The hashkeySum field must be of sufficiently many bits
and the hash function must be sufficiently random to make
collisions sufficiently unlikely; this is not hard to achieve
in practice. Our insertion and deletion operations must now
change accordingly, in that we now must add G1(x) to each
T [hi(x)].hashkeySum on an insertion and subtract G1(x)
during a deletion. The pseudocode for these and the other
operations is given in the full paper.

The hashkeySum field can serve as an extra check. For
example, to check when a cell has a count of 1 that it
corresponds to a cell without extraneous deletions, we check
G1(x) field against the hashkeySum field. For an error to
occur, we must have that a deletion has caused a count of
1 where the count should be higher, and the hashed key
values must align so that their sum causes a false check.
This probability is clearly at most 1/R (using the standard
principle of deferred decisions, the “last hash” must take on
the precise wrong value for a false check). We will generally
assume that R is chosen large enough that we can assume
a false match does not occur throughout the lifetime of the
data structure, noting that only O(log n) bits are needed to
handle lifetimes that are polynomial in n.

Let us now consider GET operations. The natural approach
is to assume that the hashkeySum field will not lead to a
false check, as above. In this case, on a GET of a key x, if
the count field is 0, and the keySum and hashkeySum are
also 0, one should assume that the cell is in fact empty, and
return null. Similarly, if the count field is 1, and the keySum
and hashkeySum match x and G1(x), respectively, then
one should assume the cell has the right key, and return its
value. In fact, if the count field is −1, and after negating
keySum and hashkeySum the values match x and G1(x),
respectively, one should assume the cell has the right key,
except that it has been deleted instead of inserted! We could
return the value, or flag it as an extraneous deletion. Note,
however, that we can no longer return null if the count
field is 1 but the keySum field does not match x; in this
case, there could be, for example, an additional key inserted

796

and an additional key extraneously deleted from that cell,
which would cause the field to not match even if x was
hashed to that cell. If we let n be the number of keys
either inserted or extraneously deleted in the IBLT, then this
reduces the probability of returning null for a key not in B
to
(
1− e−kn/m

)k
. That is, to return null we must have at

least one cell with zero key-value pairs from B hashing to
it, which occurs (approximately) with the given probability
(using our Poisson approximation).

For the LISTENTRIES operation, we again use the
hashkeySum field to check when a cell has a count of 1
that it corresponds to a cell without extraneous deletions.
An error in this check will cause the entire listing operation
to fail, so the probability of a false check should be made
quite low—certainly inverse polynomial in n. Also, we can
make progress in recovering keys with cells with a count
of −1 as well, if the cell contains only one extraneously
deleted key and no inserted keys. That is, if a cell contains
a count of −1, we can negate the count, keySum, and
hashkeySum fields, check the hash value against the key to
prevent a false match, and if that check passes recover the
key and remove it (in this case, add it back in) to the other
associated cells. Hence, a cell cannot yield a key during the
listing process only if more than one key, either inserted or
deleted, has hashed to that cell. This is now exactly the same
setting as in the original case of no extraneous deletions,
and hence (assuming that no false checks occur!) the same
analysis applies, with n representing the number of keys
either inserted or extraneously deleted.

e) Multiple Values: A more challenging case for fault
tolerance occurs when a key can be inserted multiple times
with different values, or inserted and deleted with different
values. If a key is inserted multiple times with different
values, not only can that key not be recovered, but every
cell associated with that key has been poisoned, in that it
will not be useful for listing keys, as it cannot have a count
of 1 even as other values are recovered. (A later deletion of a
key-value pair could correct this problem.) The same is true
if a key is inserted and deleted with different values, and here
the problem is potentially even worse: if a single other key
hashes to that cell, the count may be 1 and the keySum
and hashkeySum fields will be correct even though the
valueSum field will not match the other key’s value, causing
errors.

Correspondingly, we introduce an additional check for the
sum of the values at a cell, using a hash function G2(y) for
the values, and adding the following field:

• a hashvalueSum field, which is the sum of the hash
values G2(y) for all the values that have been mapped
to this cell.

One can then check that the hash of the keySum and
valueSum take on the appropriate values when the count
field of a cell is 1 (or −1) in order to see if listing the key-
value pair is appropriate.

The question remains whether the poisoned cells will
prevent recovery of key values. Here we modify the goal

of LISTENTRIES to return all key-value pairs for all valid
keys with high probability—that is, all keys with a single
associated value at that time. We first claim that if the invalid
keys make up a constant fraction of the n keys that this
is not possible under our construction with linear space. A
constant fraction of the cells would then be poisoned, and
with constant probability each valid key would then hash
solely to poisoned cells, in which case the key could not be
recovered.

However, it is useful to consider these probabilities, as
in practical settings these quantities will determine the
probability of failure. For example, suppose γn keys are
invalid for some constant γ. By our previous analysis, the
fraction of cells that are poisoned is concentrated around(
1− e−kγn/m

)
, and hence the probability that any specific

valid key has all of its cells poisoned is
(
1− e−kγn/m

)k
.

(While there are other possible ways a key could not be
recovered, for example if two keys have all but one of their
cells poisoned and their remaining cell is the same, this gives
a good first approximation for reasonable values, as other
terms will generally be lower order when these probabilities
are small.) For example, in a configuration we use in our
experiments below, we choose k = 5, m/n = 8, and
γ = 1/10; in this case, the probability of a specific valid
key being unrecoverable is approximately 8.16 ·10−7, which
may be quite suitable for practice.

One can also consider a more theoretical asymptotic
analysis. In the full version, we show the following result:

Theorem 2: Suppose there are n1−β invalid keys. Let k =
d1/βe + 4. Then if m > (ck + ε)n for some ε > 0,
LISTENTRIES succeeds with high probability.

While such asymptotic analysis provides some useful
insights, in practice we expect the heuristic analysis based
on considering γn invalid keys will prove more useful for
parameter setting and predicting performance.

f) Extensions to Duplicates: Interestingly, using the
same approach as for extraneous deletions, our IBLT can
handle the setting where the same key-value pair is inserted
multiple times. Essentially, this means the IBLT is robust to
duplicates, or can also be used to obtain a count for key-
value pairs that are inserted multiple times. We again use
the additional hashkeySum and valueSum fields. When
the count field is j for the cell, we take the keySum,
hashkeySum, and valueSum fields and divide them by j
to obtain the proposed key, value, and corresponding hash.
(Here, note we cannot use XORs in place of sums in our
algorithms.) If the key hash matches, we assume that we have
found the right key and return the lookup value or list the
key-value pair accordingly, depending on whether a GET or
LISTENTRIES operation is being performed. If it is possible
to have the same key appear with multiple values, as above,
then we must also make use of the hashvalueSum fields,
dividing it by j and using it to check that the value is correct
as well. For the listing operation, the IBLT deletes j copies

797

of the key-value pair from the other cells.5 Thus, duplicate
key-value pairs can also be handled with minimal changes.

The one potential issue with duplicate key-value pairs is
in the case of word-value overflow for the memory locations
containing the sum; in case of overflow, it may be that one
does not detect that the key hash matches (and similarly
for the hashvalueSum fields). In practice this may limit
the number of duplicates that can be tolerated; however,
for small numbers of duplicates and suitably sized memory
fields, overflow will be a provably rare occurrence.

g) An Example Application: We return to our mirror
site application. An IBLT B from Alice can be used by Bob
to find filename-checksum (key-value) pairs where his file-
name has a different checksum than Alice’s. After deleting all
his key-value pairs, he lists out the contents of B to find files
that he or Alice has that the other does not. The IBLT might
not be empty at this point, however, as the listing process
might not have been able to complete due to poisoned cells,
where deletions were done for keys with values different than
Alice’s values. To discover these, Bob can re-insert each of
his key-value pairs, in turn, to find any that may unpoison
a cell in B (where he immediately deletes ones that don’t
lead to a new unpoisoned cell). If a new unpoisoned cell is
found found (using the G1 hash function as a check), then
Bob can then remove a key-value pair with the same key as
his but with a different value (that is, with Alice’s value).
Note Bob may then also be able to possibly perform more
listings of keys that might have been previously unrecovered
because of the poisoned cells. Repeating this will discover
with high probability all the key-value pairs where Alice and
Bob differ.

IV. SIMULATIONS AND EXPERIMENTS

We have run a number of simulations to test the IBLT
structure and our analysis. In these experiments we have not
focused on running time; a practical implementation could
require significant optimization. Also, we have not concerned
ourselves with issues of word-value overflow. Because of
this, there is no need to simulate the data structure becoming
overloaded and then deleting key-value pairs, as the state
after deletions is determined entirely by the key-value pairs
in the system. Instead, we focus on the success probability
of the listing of keys and, to a lesser extent, on the success
probability for a GET operation. Overall, we have found
that the IBLT works quite effectively and the performance
matches our theoretical analysis. We provide a few example
results. In all of the experiments here, we have chosen to use
five hash functions.

Orur first experiments show that our calculated asymptotic
thresholds for decoding from Table I are quite accurate even
for reasonably small values. In the setting where there are
no duplicate keys or extraneous deletions, we repeatedly
performed 20,000 simulations with 10,000 keys, and var-
ied the number of cells. Table I suggests an asymptotic

5Note that here we are making use of the assumption that the hash
locations are distinct for a key; otherwise, the count for the number of
copies at this location might not match the number of copies of the key in
all the other locations.

threshold for listing all entries near 14,250. As shown in
Figure 1(a), around this point we see a dramatic increase
in the average number of key-value pairs recovered when
performing our LISTENTRIES operation. At 14,500 cells only
two trials failed to recover all key-value pairs, and with
14,600 cells or more all trials successfully recover all key-
value pairs. We performed an additional 200,000 trials with
14,600 cells, and again all trials succeeded. Figure 1(a) also
shows results from 20,000 simulations with 100,000 keys,
where the corresponding threshold should be near 142,500.
With more keys, we expect tighter concentration around the
threshold, and indeed with 144,000 cells or more all trials
successfully recover all key-value pairs. We performed an
additional 200,000 trials with with 144,000 cells, and again
all trials succeeded.

We acknowledge that more simulations would be required
to obtain detailed bounds on the probability of failure to
recover all key-value pairs for specific values of the num-
ber of key-value pairs and cells. This is equivalent to the
well-studied problem of “finite-length analysis” for related
families of error-correcting codes. Dynamic programming
techniques, as discussed in [12] and subsequent follow-on
work, can be applied to obtain such bounds.

Our next tests of the IBLT allow duplicate keys with
the same value and extraneous deletions, but without keys
with multiple values. Our analysis suggests this should work
exactly as with no duplicate or extraneous deletions, and our
simulations verify this. In these simulations, we had each key
duplicated with probability 1/5, and each key deleted instead
of inserted with probability 1/5. Using a check on key and
value fields, in 20,000 simulations with 10,000 keys and
80,000 cells, a complete listing was obtained every time, and
GET operations were successful on average for 97.83 percent
of the keys, matching the standard analysis for a Bloom filter.
Results were similar with 20,000 runs with 100,000 keys and
800,000 cells, again with complete recovery each time and
GET operations successful on average for 97.83 percent of
the keys.

Finally, we tested the IBLT with keys that erroneously
obtain multiple values. As expected, these keys can prevent
recovery of other key-value pairs during listing, but do not
impact the success probability of GET operations for other
keys. For example, again using a check on key and value
fields, in 20,000 simulations with 10,000 keys of which 500
had multiple values and 80,000 cells, the 9500 remaining
key-value pairs were recovered 19,996 times; the remaining 4
times all but one of the 9500 key-value pairs was recovered.
With 1000 keys with multiple values, the remaining 9000
key-value pairs were recovered 19,872 times, and again the
remaining 128 times all but one pair was recovered. The av-
erage success rate for GET operations remained 97.83 percent
on the valid keys in both cases. We note that with 10,000
keys with 1,000 with multiple values, our previous back-of-
the-envelope calculation showed that each valid key would
fail with probability roughly 8.16 · 10−7; hence, with 9,000
other keys, assuming independence we would estimate the
probability of complete recovery at approximately 0.9927,

798

 0

 20

 40

 60

 80

 100

 1.38 1.4 1.42 1.44 1.46 1.48

A
vg

. P
er

ce
nt

ag
e

R
ec

ov
er

ed

Ratio: Table Size/Keys

Recovery for 10000 and 100000 Keys

10000 keys
100000 keys

(a)

 0

 2

 4

 6

 8

 10

 0 0.02 0.04 0.06 0.08 0.1

P
er

ce
nt

ag
e

In
co

m
pl

et
e

R
ec

ov
er

y

Fraction of Damaged Keys

Recovery with Damaged Keys

10000 keys
100000 keys

(b)

Fig. 1. Plot (a) gives the percentage of key-value pairs recovered around the threshold. Slightly over the theoretical asymptotic threshold, we obtain full
recovery of all key-value pairs with LISTENTRIES on all simulations, with greater concentration with more key-value pairs. Plot (b) gives the percentage
of trials with incomplete recovery with “damaged” keys that have multiple values. Each data point represents the average of 20,000 simulations.

Unrecovered Keys
0 1 2 3

Experiment 1 99.360 0.640 0.000 0.000
Experiment 2 83.505 14.885 1.520 0.090
Experiment 3 92.800 6.915 0.265 0.020

TABLE II
PERCENTAGE OF TRIALS WITH 1, 2, AND 3 KEYS UNRECOVERED.

closely matching our experimental results. More detailed
results are give in Figure 1(b), where we vary the number
keys with multiple values for two settings: 10,000 keys and
80,000 cells, and 100,000 keys and 800,000 cells. The results
are based on 20,000 trials. As can be seen complete recovery
is possible with large numbers of multiple-valued keys in
both cases, but the probability of complete recovery becomes
worse with larger numbers of keys even if the percentage of
invalid keys is the same.

We emphasize that even when complete recovery does not
occur in this setting, generally almost all keys with a single
value can be recovered. For example, in Table II we consider
three experiments. The first is for 10,000 keys, 80,000 cells,
and 1,000 keys with duplicate values. The second is the
same but with 2,000 keys with duplicate values. The third
is for 100,000 keys, 800,000 cells, and 10,000 keys with
duplicate values. Over all 20,000 trials for each experiment,
in no case were more than 3 valid keys unrecovered. The
main point is that with suitable design parameters, even when
complete recovery is not possible because of invalid keys, the
degradation is minor. We expect this level of robustness will
be useful for applications where almost-complete recovery
is acceptable.

V. CONCLUSION

We have given an extension to the Bloom filter data
structure to key-value pairs and the ability to list out its
contents. This structure is deceptively simple, but is able
to achieve functionalities and efficiencies that appear to be
unique in many respects, based on our analysis derived from
recent results on 2-cores in hypergraphs.

REFERENCES

[1] B. Bloom. Space/time trade-offs in hash coding with allowable
errors. Communications of the ACM, 13(7):422–426, 1970.

[2] F. Bonomi, M. Mitzenmacher, R. Panigrahy, S. Singh, and
G. Varghese. Beyond Bloom filters: From approximate membership
checks to approximate state machines. Proc. of ACM SIGCOMM,
pp. 315-326, 2006.

[3] A. Broder and M. Mitzenmacher. Network applications of Bloom
filters: A survey. Internet Mathematics, 1(4):485–509, 2004.

[4] B. Chazelle, J. Kilian, R. Rubinfeld, and A. Tal. The Bloomier filter:
an efficient data structure for static support lookup tables. In Proc.
of the 15th Annual ACM-SIAM Symposium on Discrete Algorithms,
pages 30–39, 2004.

[5] S. Chen, R. Wang, X. Wang, and K. Zhang. Side-channel leaks in
web applications: a reality today, a challenge tomorrow. In Proc. of
the 31st IEEE Symposium on Security and Privacy, 2010.

[6] B. Chor, E. Kushilevitz, O. Goldreich, and M. Sudan. Private
information retrieval. J. ACM, 45:965–981, November 1998.

[7] G. Cormode and S. Muthukrishnan. An improved data stream
summary: the count-min sketch and its applications. J. Algorithms,
55:58–75, April 2005.

[8] M. Dietzfelbinger, A. Goerdt, M. Mitzenmacher, A. Montanari,
R. Pagh, and M. Rink. Tight thresholds for cuckoo hashing via
XORSAT. In Proceedings of ICALP, pages 213–225, 2010.

[9] D. Eppstein and M. T. Goodrich. Straggler identification in
round-trip data streams via Newton’s identities and invertible Bloom
filters. IEEE Trans. on Knowledge and Data Engineering,
23(2):297-306, 2011.

[10] F. Bonomi, M. Mitzenmacher, R. Panigrahy, S. Singh, and
G. Varghese. What’s the Difference? Efficient Set Reconciliation
without Prior Context. Proc. of ACM SIGCOMM, pp. 218-229, 2011.

[11] M. T. Goodrich and M. Mitzenmacher. Privacy-Preserving Access of
Outsourced Data via Oblivious RAM Simulation. In Proceedings of
ICALP, pages 576–587, 2011.

[12] R. Karp, M. Luby, and A. Shokrollahi. Finite length analysis of LT
codes. In Proc. of the Intl. Symp. on Information Theory, page 39,
2004.

[13] Y. Lu, A. Montanari, B. Prabhakar, S. Dharmapurikar, and
A. Kabbani. Counter braids: a novel counter architecture for
per-flow measurement. In Proceedings of SIGMETRICS 2008, pages
121–132, 2008.

[14] M. Luby, M. Mitzenmacher, M. Shokrollahi, and D. Spielman.
Efficient erasure correcting codes. IEEE Transactions on Information
Theory, 47(2):569–584, 2001.

[15] M. Molloy. The pure literal rule threshold and cores in random
hypergraphs. In Proc. of the 15th Annual ACM-SIAM Symposium on
Discrete Algorithms, pages 672–681, 2004.

[16] E. Price. Efficient sketches for the set query problem. In Proc. of
the 22nd Annual ACM-SIAM Symposium on Discrete Algorithms,
pages 41–56, 2011.

799

