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Abstract. We describe fully retroactive dynamic data structures for ap-
proximate range reporting and approximate nearest neighbor reporting.
We show how to maintain, for any positive constant d, a set of n points
in R

d indexed by time such that we can perform insertions or deletions
at any point in the timeline in O(log n) amortized time. We support, for
any small constant ε > 0, (1 + ε)-approximate range reporting queries
at any point in the timeline in O(log n + k) time, where k is the output
size. We also show how to answer (1 + ε)-approximate nearest neighbor
queries for any point in the past or present in O(log n) time.

1 Introduction

Spatiotemporal data types are intended to represent objects that have geometric
characteristics that change over time.

The important feature of such objects is that their critical characteristics, such
as when they appear and disappear in a data set, exist in a timeline. The repre-
sentation of such objects has a number of important applications, for instance,
in video and audio processing, geographic information systems, and historical
archiving. Moreover, due to data editing or cleaning needs, spatiotemporal data
sets may need to be updated in a dynamic fashion, with changes that are made
with respect to the timeline. Thus, in this paper we are interested in methods for
dynamically maintaining geometric objects that exist in the context of a time-
line. Queries and updates happen in real time, but are indexed in terms of the
timeline.

In this paper, we are specifically interested in the dynamic maintenance of a
set of d-dimensional points that appear and disappear from a data set in terms
of indices in a timeline, for a given fixed constant d ≥ 1. Points should be
allowed to have their appearance and disappearance times changed, with such
changes reflected forward in the timeline. We also wish to support time-indexed
approximate range reporting and nearest-neighbor queries in such data sets.
That is, we are interested in the dynamic maintenance of spatiotemporal point
sets with respect to these types of geometric queries.

1.1 Related Work

Approximate Searching. Arya and Mount [3] introduce the approximate nearest
neighbor problem for a set of points, S, such that given a query point q, a
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point of S will be reported whose distance from q is at most a factor of (1 + ε)
from that of the true nearest neighbor of q. Arya et al. [5] show that such
queries can be answered in O(log n) time for a fixed constant ε > 0. Chan [9]
shows how to achieve a similar bound. Arya and Mount [4] also introduce the
approximate range searching problem for a set, S, where a range R (e.g. a sphere
or rectangle) of diameter w is given as input and every point in S that is inside
R is reported as output and no point that is more than a distance of εw outside
of R is reported. Let k be the number of points reported. Arya and Mount
show that such queries can be answered in O(log n + k) time for fixed constant
ε > 0. Eppstein et al. [18] describe the skip quadtree structure, which supports
O(log n + k)-time approximate range searching as well as O(log n)-time point
insertion and deletion.

Our approach to solving approximate range searching and approximate near-
est neighbor problems are based on the quadtree structure [28]. In this structure,
regions are defined by squares in the plane, which are subdivided into four equal-
sized squares for any regions containing more than a single point. So each internal
node in the underlying tree has up to four children and regions have optimal as-
pect ratios. Typically, this structure is organized in a compressed fashion [7],
so that paths in the tree consisting of nodes with only one non-empty child are
compressed to single edges. This structure is related to the balanced box de-
composition (BBD) trees of Arya et al. [3, 4, 5], where regions are defined by
hypercubes with smaller hypercubes subtracted away, so that the height of the
decomposition tree is O(log n). Similarly, Duncan et al. [17] define the balanced
aspect-ratio (BAR) trees, where regions are associated with convex polytopes of
bounded aspect ratio, so that the height of the decomposition tree is O(log n).

Computational Geometry with respect to a Timeline. Although we are not fa-
miliar with any previous work on retroactive d-dimensional approximate range
searching and nearest-neighbor searching, we nevertheless would like to call
attention to the fact that incorporating a time dimension to geometric con-
structions and data structures is well-studied in the computational geometry
literature.

– Atallah [6] studies several dynamic computational geometry problems, in-
cluding convex hull maintenance, for points moving according to fixed tra-
jectories.

– Subsequently, a number of researchers have studied geometric motion prob-
lems in the context of kinetic data structures (e.g., see [22]). In this frame-
work, a collection of geometric objects is moving according to a fixed set of
known trajectories, and changes can only happen in the present.

– Driscoll et al. [16] introduce the concept of persistent data structures, which
support time-related operations where updates occur in the present and
queries can be performed in the past, but updates in the past fork off new
timelines rather than propogate changes forward in the same timeline.



294 M.T. Goodrich and J.A. Simons

All of this previous work differs from the approach we are taking in this paper,
since in these previous approaches objects are not expected to be retroactively
changed “in the past.”

Demaine et al. [13] introduce the concept of retroactive data structures, which
is the framework we follow in this paper. In this approach, a set of data is
maintained with respect to a timeline. Insertions and deletions are defined with
respect to this timeline, so that each insertion has a time parameter, t, and so
does each deletion. Likewise, queries are performed with respect to the time pa-
rameter as well. The difference between this framework and the dynamic compu-
tational geometry approaches mentioned above, however, is that updates can be
done retroactively “in the past,” with the changes necessarily being propagated
forward. If queries are only allowed in the current state (i.e., with the highest
current time parameter), then the data structure is said to be partially retroac-
tive. If queries can be done at any point in the timeline, then the structure is said
to be fully retroactive. Demaine et al. [13] describe a number of results in this
framework, including a structure for fully-retroactive 1-dimensional successor
queries with O(log2 n)-time performance. They also show that any data struc-
ture for a decomposable search problem can be converted into a fully retroactive
structure at a cost of increasing its space and time by a logarithmic factor.

Acar et al. [1] introduce an alternate model of retroactivity, which they call
non-oblivious retroactivity. In this model, one maintains the historical sequence
of queries as well as insertions and deletions. When an update is made in the
past, the change is not necessarily propagated all the way forward to the present.
Instead, a non-oblivious data structure returns the first operation in the time-
line that has become inconsistent, that is an operation whose return value has
changed because of the retroactive update. As mentioned above, we only con-
sider the original model of retroactivity as defined by Demaine et al. [13] in this
paper.

Blelloch [8] and Giora and Kaplan [20] consider the problem of maintaining a
fully retroactive dictionary that supports successor or predecessor queries. They
both base their data structures on a structure by Mortensen [25], which answers
fully retroactive one dimensional range reporting queries, although Mortensen
framed the problem in terms of two dimensional orthogonal line segment inter-
section reporting. In this application, the x-axis is viewed as a timeline for a
retroactive data structure for 1-dimensional points. The insertion of a segment
[(x1, y), (x2, y)] corresponds to the addition of an insert of y at time x1 and a
deletion of y at time x2. Likewise, the removal of such a segment corresponds
to the removal of these two operations from the timeline. For this 1-dimensional
retroactive data structuring problem, Blelloch and Giora and Kaplan give data
structures that support queries and updates in O(log n) time. Dickerson et al. [15]
describe a retroactive data structure for maintaining the lower envelope of a
set of parabolic arcs and give an application of this structure to the prob-
lem of cloning a Voronoi diagram from a server that answers nearest-neighbor
queries.
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1.2 Our Results

In this paper, we describe fully retroactive dynamic data structures for approx-
imate range reporting and approximate nearest neighbor searching. We show
how to maintain, for any positive constant, d ≥ 1, a set of n points in R

d in-
dexed by time such that we can perform insertions or deletions at any point
in the timeline in O(log n) amortized time. We support, for any small constant
ε > 0, (1+ε)-approximate range reporting queries at any point in the timeline in
O(log n+k) time, where k is the output size. Note that in this paper we consider
circular ranges defined by a query point q and radius r. We also show how to
answer (1 + ε)-approximate nearest neighbor queries for any point in the past
or present in O(log n) time. Our model of computation is the real RAM, as is
common in computational geometry algorithms (e.g., see [29]).

The main technique that allows us to achieve these results is a novel, multidi-
mensional version of fractional cascading, which may be of independent interest.
Recall that in the (1-dimensional) fractional cascading paradigm of Chazelle and
Guibas [11, 12], one searches a collection of sorted lists (of what are essentially
numbers), which are called catalogs, that are stored along nodes in a search path
of a catalog graph, G, for the same element, x. In multidimensional fractional
cascading, one instead searches a collection of finite subsets of R

d for the same
point, p, along nodes in a search path of a catalog graph, G. In our case, rather
than have each catalog represented as a one-dimensional sorted list, we instead
represent each catalog as a multidimensional “sorted list,” with points ordered
as they would be visited in a space-filling curve (which is strongly related to how
the points would be organized in a quadtree, e.g., see [7]).

By then sampling in a fashion inspired by one-dimensional fractional cascad-
ing, we show1 how to efficiently perform repeated searching of multidimensional
catalogs stored at the nodes of a search path in a suitable catalog graph, such
as a segment tree (e.g., see [29]), with each of the searches involving the same
d-dimensional point or region.

Although it is well known that space-filling curves can be applied to the
problem of approximate nearest neighbor searching, we are not aware of any
extension of space-filling curves to approximate range reporting. Furthermore,
we believe that we are the first to leverage space-filling curves in order to extend
dynamic fractional cascading into a multi-dimensional problem.

2 A General Approach to Retroactivity

Recall that a query Q is decomposable if there is a binary operator � (com-
putable in constant time) such that Q(A ∪ B) = �(Q(A), Q(B)). Demaine et
al. [13] showed that we can make any decomposable search problem retroac-
tive by maintaining each element ever inserted in the structure as a line seg-
ment along a time dimension between the element’s insertion and deletion times.
1 The details for our constructions are admittedly intricate, so some details of proofs

are given in the full version of this paper [21].



296 M.T. Goodrich and J.A. Simons

Thus each point p in Rd is now represented by a line segment parallel to the
time-axis in Rd+1 dimensions. For example when extending the query to be
fully-retroactive, a one-dimensional successor query becomes a two-dimensional
vertical ray shooting query, and a one-dimensional range reporting query be-
comes a two-dimensional orthogonal segment intersection query.

Thus, we maintain a segment tree to allow searching over the segments in the
time dimension, and augment each node of the segment tree with a secondary
structure supporting our original query in d dimensions. Let S be the set of
nodes in the segment tree on a root-to-leaf path searching down for t in the
time dimension. To answer a fully-retroactive query, we perform the same d-
dimensional query at each node in S. This transformation costs an extra log n
factor in space, query time, and update time, which we would nevertheless like
to avoid.

Recall that Mortensen [25] and Giora and Kaplan [20] both solve the fully-
retroactive versions of decomposable search problems, and are both able to avoid
the extra log n factor in query and update time. Therefore inspired by their
techniques, we propose the following as a general strategy for optimally solving
the fully-retroactive version of any decomposable search problem.

1. Suppose we have an optimal data structure D for the non-retroactive problem
which supports queries in polylogarithmic time T (n).

2. Represent each d-dimensional point as a line segment in d + 1 dimensions.
3. Build a weight-balanced segment tree with polylogarithmic branching factor

over the segments as described by [20].
4. Augment the root of the segment tree with an optimal search structure D.
5. Augment each node of the segment tree with a colored dynamic fractional

cascading (CDFC) data structure.
6. Perform a retroactive query at time t by performing the non-retroactive query

on the non-retroactive data structure at the root of the segment tree, and for
each node on the search path for t in the segment tree, perform the query in
each of the CDFC structures (Figure 1).

The CDFC data structure must be cleverly tuned to support a colored (but
non-retroactive) version of the d-dimensional query in O(T (n) · log log n/ log n)
time. In a colored query, each element in the structure is given a color, and
the query also specifies a set of colors. We only return elements whose color is
contained in the query set. The colors are required because the segment tree has
high degree. Each color represents a pair of children of the current node in the
segment tree. Thus we encode which segments overlap the search path via their
colors. Since the segment tree has a polylogarithmic branching factor, we spend
T (n) time searching at the root and O(T (n) · log log n/ log n) time searching in
the CDFC structures at each of the O(log / logn log n) nodes. Therefore, the
total time required by a query is an optimal O(T (n)). Updates follow a similar
strategy, but may require us to periodically rebuild sections of the segment tree.
We can still achieve the desired (amortized) update time, and the analysis closely
follows [20].
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Fig. 1. An application of our strategy to a fully-retroactive one-dimensional range
reporting query. Shaded elements represent elements with colors indicating they are
present at time t.

One of the key difficulties in applying this strategy lies in the design of the col-
ored dynamic fractional cascading data structure, especially in problems where
the dimension d > 1. In fact, the authors are not aware of any previous applica-
tion of dynamic fractional cascading techniques to any multidimensional search
problem. However, in the following we show how techniques using space filling
curves can be applied to extend the savings of fractional cascading into a multi-
dimensional domain. First, we apply the above strategy in the simpler case when
d = 1. Then we extend this result using space filling curves to support Fully-
Retroactive range reporting queries and approximate nearest neighbor queries in
R

d. Note that in one dimension a nearest neighbor query reduces to a successor
and predecessor query.

Lemma 1. There exists a colored dynamic fractional cascading data structure
which supports updates in O(log log N) amortized time, colored successor and
predecessor queries in O(log log N) worst case time and colored range reporting
queries in O(log log N + k) worst case time, where N is the number of elements
stored and k is the number of elements reported.

Proof: We extend the generalized union-split-find structure of [20] to also sup-
port colored range queries. See [21] for details. ��

Space Filling Curves. The z-order, due to Morton [26], is commonly used to map
multidimensional points down to one dimension. By now space filling curves are
well-studied and multiple authors have applied them specifically to approximate
nearest neighbor queries [14, 10, 9, 24]. However, we extend their application to
approximate range searching as well. Furthermore, we believe that we are the first
to leverage space-filling curves to extend dynamic fractional cascading techniques
to multidimensional problems such as these.

Lemma 2. The set of points in any quadtree cell rooted at [0, 1)d form a con-
tiguous interval in the z-order.
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Proof: Due to Bern et al. [7]. Also see [21]. ��

Lemma 3. Let P be a set of points in R
d. Define a constant c =

√
d(4d+4)+1.

Suppose that we have d + 1 lists P + vj , j = 0, . . . , d, each one sorted according
to its z-order. We can find a query point q’s c-approximate nearest neighbor in
P by examining the the 2(d + 1) predecessors and successors of q in the lists.

Proof: Due to Liao et al. [24]. Also see [21] for details. ��

3 Main Results

In this section we give our primary results: data structures for fully-retroactive
approximate range queries and fully-retroactive approximate nearest neighbor
(ANN) queries. Recall that an approximate range query report(q, r, ε, t) defines
an inner range Q−, the region within a radius r of the query point q and an
outer range Q+, the area within a radius of (1 + ε)r of q. We want to return all
the points inside Q− and exclude all points outside Q+ for a particular point
in time t. Points that fall between Q− and Q+ at time t may or may not be
reported. Points not present at time t will never be reported.

Theorem 1 (Fully-Retroactive Approximate Range Queries). For any
positive constant d ≥ 1, we can maintain a set of n points in R

d indexed by time
such that we can perform insertions or deletions at any point in the timeline
in O(log n) amortized time. We support for any small constant ε > 0, (1 + ε)-
approximate range reporting queries at any point in the timeline in O(log n + k)
time, where k is the output size. The space required by our data structure is
O(n log n/ log log n).

Proof: We follow the general strategy outlined in Section 2. We augment the
root of the segment tree with a skip quadtree [18], an optimal structure for
approximate range and nearest neighbor queries in R

d. We also augment each
node of the segment tree with a specialized CDFC structure which we now
describe.

We extend the CDFC structure from Lemma 1 to maintain d-dimensional
points such that given a query set of colors Cq and d-dimensional quadtree cell,
it returns all points contained in that cell with colors in Cq. By Lemma 2, for all
points y, q, z such that y < q < z in the z-order, any quadtree cell containing y
and z must also contain q. Furthermore, for a given quadtree, each cell is uniquely
defined by the leftmost and rightmost leaves in the cell’s subtree. Therefore, the
d-dimensional cell query reduces to a one-dimensional range query in the z-
order on the unique points which define the quadtree cell (Figure 2). Thus, by
leveraging Lemma 1 and maintaining the points according to their z-order, we
support the required query in O(log log n + k) time.

The skip quadtree contains all the points ever inserted into our data structure,
irrespective of the time that they were inserted or deleted. The inner and outer
range of a query partition the set of quadtree cells into three subsets: the inner
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(0, 0)

y

x

Fig. 2. The z-order curve corresponds to the order the leaves would be visited in an
in-order traversal of the quadtree. We can store the points in a linked list in this order.
Any element between two elements i, j in the linked list must fall in the same quadtree
cell as i and j.

cells, which are completely contained in Q+, the outer cells, which are completely
disjoint from Q−, and the stabbing cells, which partially overlap Q+ and Q−.
Eppstein et al. [19] showed that a skip quadtree can perform an approximate
range query in O(log n+ε1−d) time expected and with high probability, or worst
case time for a deterministic skip quadtree. Using their algorithm we can find
the set I of O(ε1−d) disjoint inner cells in the same time bound. Based on the
correctness of their algorithm we know that the set of points we need to report
are covered by these cells. We report the points present at time t as follows: For
each cell i ∈ I, if i is a leaf, we report only the points in i, which are present
at time t in constant time. Otherwise, we find the first and last leaves y0 and
z0 according to an in-order traversal of i’s subtree in O(log n) time. Then we
perform a fully-retroactive range query on cell i in the segment tree, using z0

and y0 to guide the query on cell i in the CDFC structures. Correctness follows
since a point satisfies the retroactive range query if and only if it is in one of the
cells we examine and is present at time t.

For each of the O(ε1−d) cells in I we spend O(log n+ki) time and so the total
running time is O(ε1−d log n + k) = O(log n + k), since ε is a small constant.
The skip quadtree is linear space, and thus the space usage is dominated by the
segment tree. The total space required is O(n log n/ log log n). ��

Corollary 1 (Fully-Retroactive ANN Queries.). We can maintain, for any
positive constant, d ≥ 1, a set of n points in R

d indexed by time such that we
can perform insertions or deletions at any point in the timeline in O(log n)
amortized time. We support, for any small constant ε > 0, (1 + ε)-approximate
nearest neighbor queries for any point in the past or present in O(log n) time.
The space required by our data structure is O(n log n/ log log n).

Proof: By combining the data structure of [20] with Lemma 3 and storing the d-
dimensional points in that structure according to their z-order, we already have
a data structure for fully-retroactive c-approximate nearest neighbor queries.
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However, c is polynomial function of d, and for d = 2, c is already greater than
15. In order to support (1+ ε) nearest neighbor queries for any ε > 0, we require
the data structure of the previous theorem.

We know from Lemma 3 that we can find a c-approximate nearest neighbor
by using d + 1 different shifts of the points. Therefore, we augment our data
structure so that instead of a single CDFC structure at each segment tree node,
we keep an array of d + 1 CDFC structures corresponding to the z-order of
each of the d + 1 sets of shifted points. Given a query point q, we can find the
predecessor and successor of q at time t in each of the d+1 z-orders in O(d log n)
time. Out of these 2(d + 1) points, let p be the point that is closest to q. By
Lemma 3, p is a c-approximate nearest neighbor. Let r be the distance between
p and q. As observed by multiple authors [2, 27, 23], we can find a (1 + ε)-
approximate nearest neighbor via a bisecting search over the interval [r/c, r].
This search requires O(log(1/ε)) fully-retroactive spherical emptiness queries.
We can support a retroactive spherical emptiness query in O(log n) time with
only a slight modification to our retroactive approximate range query. Instead of
returning k points in the range, we just return the first point we find, or null if we
find none. Thus the total time required is O(d log n + log(1/ε) logn) = O(log n)
since we assume ε and d are constant. The space usage only increases by a factor
of d when we store the d + 1 shifted lists, and thus the space required is still
O(n log n/ log log n). ��
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