
External-Memory Multimaps

Elaine Angelino2,�, Michael T. Goodrich1,��,
Michael Mitzenmacher2,� � �, and Justin Thaler2,†

1 Dept. of Computer Science, University of California, Irvine
goodrich@ics.uci.edu

2 School of Engineering and Applied Sciences, Harvard University,
{michaelm,jthaler,elaine}@eecs.harvard.edu

Abstract. Many data structures support dictionaries, also known as
maps or associative arrays, which store and manage a set of key-value
pairs. A multimap is a generalization that allows multiple values to
be associated with the same key. For example, the inverted file data
structure commonly used in search engines is a type of multimap, with
words as keys and document pointers as values. We study the multimap
abstract data type and how it can be implemented efficiently online in
external memory frameworks, with constant expected I/O performance.
The key technique used to achieve our results is a combination of cuckoo
hashing using buckets that hold multiple items with a multiqueue imple-
mentation to cope with varying numbers of values per key. Our results
are provably optimal up to constant factors.

1 Introduction

A multimap is a simple abstract data type (ADT) that generalizes the map
ADT to support key-value associations in a way that allows multiple values to be
associated with the same key. Specifically, it is a dynamic container, C, of key-
value pairs, which we call items, supporting (at least) the following operations:

– insert(k, v): insert the key-value pair, (k, v). This operation allows for there
to be existing key-value pairs having the same key k, but we assume w.l.o.g.
that the particular key-value pair (k, v) is itself not already present in C.

– isMember(k, v): return true if the key-value pair (k, v) is present in C.
– remove(k, v): remove the key-value pair (k, v) from C. This operation returns

an error condition if (k, v) is not currently in C.
– findAll(k): return the set of all key-value pairs in C having key equal to k.
– removeAll(k): remove from C all key-value pairs having key equal to k.
– count(k): Return the number of values associated with key k.

� A preliminary version of this work appears as a Brief Announcement at SPAA
2011.

�� Supported in part by the NSF under grants 0724806, 0713046, and 0847968, and
by the ONR under MURI grant N00014-08-1-1015.

� � � Supported in part by the NSF grants 0915922 and 0964473.
† Supported by a DoD NDSEG Fellowship, and partially by NSF grant CNS-

0721491.

T. Asano et al. (Eds.): ISAAC 2011, LNCS 7074, pp. 384–394, 2011.
c© Springer-Verlag Berlin Heidelberg 2011



External-Memory Multimaps 385

Surprisingly, we are not familiar with any previous discussion of this abstract
data type in the theoretical algorithms and data structures literature. Never-
theless, abstract data types equivalent to the above ADT, as well as multimap
implementations, are included in the C++ Standard Template Library (STL),
Guava–the Google Java Collections Library, and the Apache Commons Col-
lection 3.2.1 API. The existence of these implementations provides empirical
evidence for the usefulness of this abstract data type. In this work we describe
efficient external-memory implementations of the multimap ADT. Due to space
constraints, this paper is abbreviated. Many more details and proofs are available
in the full version [1].

Motivation: A primary motivation for studying multimaps is that associative
data in the real world often exhibits extreme non-uniformities. For example,
many real-world data sets follow a power law with respect to data frequencies
indexed by rank. A standard example is the frequency of words in a corpus of
documents. We could use a multimap data structure to allow us to retrieve all
instances of a query word w in such a corpus, but would require one that could
handle large skews in the number of values per key. In this case, the multimap
could be viewed as providing dynamic functionality for a classic static data
structure, known as an inverted file or inverted index (e.g., see Knuth [6]).
Given a collection Γ of documents, an inverted file allows one to list, for any
word w, all the places in Γ where w appears.

Another powerful motivation for studying multimaps is graphical data [2]. A
multimap can represent a graph: keys correspond to nodes, values correspond
to neighbors, findAll operations list all neighbors of a node, and removeAll op-
erations delete a node from the graph. The degree distribution of many real-life
graphs follow a power law, motivating efficient handling of non-uniformity.

Related Work: Inverted files have standard applications in text indexing (e.g.,
see Knuth [6]), and are important data structures for modern search engines.
Several works expand inverted files to support incremental and batched inser-
tions, based on hash tables or B-trees, but many do not support fast deletions.
Büttcher and Clarke [3] consider the trade-offs for allowing for both insertions
and deletions in an inverted file, and Guo et al. [5] describe a solution for per-
forming such operations by using a type of B-tree. Blandford and Blelloch [2]
consider dictionaries on variable-length strings, but not in an external mem-
ory model. Recent work by Pagh et al. [9] studies cache-oblivious hashing, and
achieves extremely fast (expected average) query time under realistic assump-
tions on the cache, asymptotically matching known cache-aware solutions. Like
all work on hashing that assumes each key has a single value, [9] does not support
the fast findAll and removeAll operations as we do in this work.

Our work utilizes a variation on cuckoo hash tables. We assume the reader
has some familiarity with such hash tables, as originally presented by Pagh and
Rodler [8] (or as described on Wikipedia).

Finally, recent work by Verbin and Zhang [12] shows that in the external
memory model, for any dynamic dictionary data structure with query cost O(1),



386 E. Angelino et al.

the expected amortized cost of updates must be at least 1. As explained below,
this implies our data structure is optimal up to constant factors.

Our Results: Our algorithms are for the standard two-level I/O model, which
captures the memory hierarchy of modern computer architectures. In this model,
there is a cache of size M connected to a disk of unbounded size, and the cache
and disk are divided into blocks, where each block can store up to B items. Any
algorithm can only operate on cached data, and algorithms must therefore make
memory transfer operations, which read a block from disk into cache or vice
versa. The cost of an algorithm is the number of I/Os required, with all other
operations considered free. All of our time bounds hold even when M = O(B),
and we therefore omit reference to M throughout.

We provide an online implementation of the multimap abstract data type,
where each operation must completely finish executing prior to our beginning
execution of any subsequent operations. In describing our performance bounds,
we use Ō(∗) to denote an expected bound, B to denote the block size, N to
denote the number of key-value pairs, and nk to denote the number of key-value
pairs with key equal to k. All bounds are unamortized. Our bounds are O(1) for
isMember(k, v), remove(k, v), removeAll(k), and count(k); Ō(1) for insert(k, v);
and O(1+nk/B) for findAll(k). Our constructions are based on the combination
of two external-memory data structures—external-memory cuckoo hash tables
and multiqueues—which may be of independent interest.

Since we achieve query cost O(1), the lower bound of [12] implies our O(1) up-
date cost is optimal up to constant factors. That we in addition achieve efficient
removeAll and findAll operations demonstrates the strength of our results.

Finally, we simulate our suggested implementation to test our performance
guarantees. While our implementation is not especially space efficient, yielding a
memory utilization of between .32 and .39, it uses very few I/O operations, and
we believe the ideas we present will yield more effective future implementations.

2 External-Memory Cuckoo Hashing

In this section, we describe external-memory versions of cuckoo hash tables with
multiple items per bucket, which can be used to implement the map ADT when
all key-value pairs are distinct. Later we use this approach in concert with mul-
tiqueues to support multiple values for the same key for the multimap ADT.

Cuckoo hash tables that store multiple items per bucket have been studied
previously, having been introduced in [4]. Generally the analysis has been limited
to buckets of a constant size (number of items) d. For our external-memory
cuckoo hash table, each bucket can store B items, where B is a parameter
defining our block size and is not necessarily a constant.

Formally, let T = (T0, T1) be a cuckoo hash table such that each Ti consists
of γn/2 buckets, where each bucket stores a block of size B, with n = N/B. One
setting of particular interest is when γ = 1 + ε for some (small) ε > 0, so that
space overhead of the hash table is only an ε factor over the minimum possible.
The items in T are indexed by keys and stored in one of two locations, T0[h0(k)]



External-Memory Multimaps 387

or T1[h1(k)], where h0 and h1 are hash functions, and we assume for simplicity
throughout the paper that all hash functions are completely random.

It should be clarified that, in some settings, the use of a cuckoo hash function
may be unnecessary or even unwarranted. Indeed, if B > c log N for a suitable
constant c and γ = 1 + ε, we can insted use simple hash tables, with just one
choice for each item; simple tail bounds suffice to show that with high probability
all buckets will fit all the items that hash to it. Cuckoo hashing here allows us
to avoid such “wide block assumptions,” giving a more general approach.

The important feature of the cuckoo hashing implementation is the way it
may reallocate items in T during an insertion. Standard cuckoo hashing, with
one item per bucket, immediately evicts the previous (and only) item in a bucket
when a new item is to be inserted in an occupied bucket. With multiple items
per bucket, there is a choice available. We describe what is known in this setting,
and how we modify it for our use here.

Let G be the cuckoo graph, where each bucket in T is a vertex and, for each
item x currently in C, we connect T0[h0(x)] and T1[h1(x)] as a directed edge,
with the edge pointing toward the bucket it is not currently stored in. Suppose
we wish to insert an item x into bucket X . If X contains fewer than B items,
then we simply add x to X . Otherwise, we need to make room for the new item.

One approach for doing an insertion is to use a breadth first search on the
cuckoo graph. The results of Dietzfelbinger and Weidling [4] show that for suf-
ficiently large constant B, the expected insertion time is constant. Specifically,
when γ = 1 + ε and B ≥ 16 ln(1/ε), the expected time to insert a new key is
(1/ε)O(log log(1/ε)), which is a constant. (This may require re-hashing all items
in very rare cases when an item cannot be placed; the expected time remains
constant.) Notice that if B grows in a fashion that is Ω(1), then breadth first
search does not naturally take constant expected time, as even the time to look
if items currently in the bucket can be moved will take Ω(B) time. (It might
still take constant expected time, but this does not appear to follow from [4].)

For non-constant B, we can apply the following mechanism: we can use our
buckets to mimic having B/c distinct subtables for some large constant c, where
the ith subtable uses the ci/Bth fraction of the bucket space, and each item is
hashed into a specific subtable. For B = O(N δ) for δ < 1, each subtable will
contain close to its expected number of items with high probability. Further, by
choosing c suitably large one can ensure that each subtable is within a 1+ε factor
of its total space while maintaining an expected (1/ε)O(log log(1/ε)) insertion time.
Specifically, we have the following theorem:

Theorem 1. Suppose that for a cuckoo hash table T with at least (1 + ε)N/B
blocks the block size satisfies B = Ω(1) and B = O(N δ) for δ < 1. Let 0 < ε ≤ 0.1
be arbitrary and let C be a collection of N items. Suppose further we have B/c
subtables, with c = 16 ln(1/ε) with each item hashed to a subtable by a fully
random hash function, and the hash functions for each subtable are fully random.
Finally, suppose the items of C have been stored in T by an algorithm using the
partitioning process described above and the cuckoo hashing process. Then the
expected time for the insertion of a new item x using a BFS is (1/ε)O(log log(1/ε)).



388 E. Angelino et al.

As noted in [4], a more practical approach is to use random walk cuckoo hashing
in place of breadth first search cuckoo hashing, and we use random walk cuckoo
hashing in the simulations in Section 4. Finally, item lookups and removals use
a worst-case constant number of I/Os.

3 External-Memory Multimaps

We now build on the result of Section 2 to describe how to maintain a multimap
that allows fast dynamic access in external memory.

The Primary Structure: To implement the multimap ADT, we begin with a
primary structure that is an external-memory cuckoo hash table storing just the
set of keys. In particular, each record, R(k), in T , is associated with a specific
key, k, and holds the following fields:
– the key, k, itself
– the number, nk, of key-value pairs in C with key equal to k
– a pointer, pk, to a block X in a secondary table, S, that stores items in C

with key equal to k. If nk < B, then X stores all the items with key equal to
k (plus possibly some items with keys not equal to k). Otherwise, if nk ≥ B,
then pk points to a first block of items with key equal to k, with the other
blocks of such items being stored elsewhere in S.

This secondary storage is an external-memory data structure we are calling a
multiqueue.

An External-Memory Location-Aware Multiqueue: The secondary stor-
age that we need in our construction is a way to maintain a set Q of queues in
external memory. We assume the header pointers for these queues are stored
in an array, T , which in our external-memory multimap construction is the
external-memory cuckoo hash table described above.

For any queue, Q, we wish to support the following operations:
– enqueue(x, H): add the element x to Q, given a pointer to its header, H .
– remove(x): remove x from Q. We assume in this case that each x is unique.
– isMember(x): determine whether x is in some queue, Q.

In addition, we wish to maintain all these queues in a space-efficient manner, so
that the total storage is proportional to their total size. To enable this, we store
all the blocks used for queue elements in a secondary table, S, of blocks of size
B each. Thus, each header record, H in T , points to a block in S.

Our intent is to store each queue Q as a doubly-linked list of blocks from S.
Unfortunately, some queues in Q are too small to deserve an entire block in S
dedicated to storing their elements. So small queues must share their first block
of storage with other small queues until they are large enough to deserve an
entire block dedicated to their elements. Initially, all queues are assumed to be
empty; hence, we initially mark each queue as light. In addition, the blocks in
S are initially empty; hence, we link the blocks of S in a consecutive fashion as
a doubly-linked list and identify this list as being the free list, F , for S.



External-Memory Multimaps 389

We set a heavy-size threshold at B/3 elements. When a queue Q stored in a
block X reaches this size, we allocate a block from S (taking a block off the free
list F ) exclusively to store elements of Q and we mark Q as heavy. Likewise, to
avoid wasting space as elements are removed from a queue, we require any heavy
queue Q to have at least B/4 elements. If a heavy queue’s size falls below this
threshold, then we mark Q as being light again and we force Q to go back to
sharing space with other small queues. This may involve returning a block to the
free list F . In this way, each block X in S will either be empty or will have all
its elements belonging to a single heavy queue or as many as O(B) light queues.
In addition, these rules imply that O(B) element insertions are required to take
a queue from the light state to the heavy state and O(B) element removals are
required to take a queue from the heavy state to the light state.

If a block X in S is being used for light queues, then we order the elements in
X according to their respective queues. Each block for a heavy queue Q stores
previous and next pointers to the neighboring blocks in the linked list of blocks
for Q, with the first such block pointing back to the header record for Q. As
we show, this organization allows us to maintain our size and label invariants
during execution of enqueue and remove operations.

One additional challenge is that we want to support the remove(x) operation
to have a constant I/O complexity. Thus, we cannot afford to search through
a list of blocks of a queue looking for an element x we wish to remove. So, in
addition to the table S and its free list, F , and the headers for each queue in Q,
we also maintain an external-memory cuckoo hash table, D, to be a dictionary
that maps each queue element x to the block in S that stores x. This allows our
multiqueue to be location-aware, that is, to support fast searches to locate the
block in S that is holding any element x that belongs to some queue, Q.

We call any block in S containing fewer than B/4 items deficient. To ensure
that our multiqueue uses total storage proportional to its total size,we enforce
the following two rules. Together, these rules guarantee that there are O(N/B)
deficient blocks in S, and hence our multiqueue uses O(N/B) blocks of memory.

1. Each block Y in T stores a pointer d, called the deficient pointer, to a block
d(Y ); the identity of this block is allowed to vary over time. We ensure that
at all times, d(Y ) is the only (possibly) deficient block associated with Y
that stores light queues.

2. Each heavy queue Q also stores in its header block a deficient pointer d to a
block d(Q). At all times, d(Q) is the only (possibly) deficient block devoted
to storing values for Q.

For the remainder of this subsection, we describe how to implement all multi-
queue operations to obtain constant amortized expected or worst-case runtime.
We show how to deamortize these operations in the full version of the paper [1].

The Split Action. As we perform enqueue operations, a block X may overflow its
size bound, B. In this case, we need to split X in two, which we do by allocating
a new block X ′ from S (using its free list). We call X the source of the split,
and X ′ the sink of the split. We then proceed depending on whether X contains
elements from light queues or a single heavy queue.



390 E. Angelino et al.

1. X contains elements from light queues. We greedily copy elements from X
into X ′ until X ′ has size has size at least B/3, keeping the elements from
the same light queue together. Note that each light queue has less than B/3
elements, so this split will result in at least a 1/3–2/3 balance.
To maintain our invariants, we must change the header records from X to
X ′ for any queues that we just moved to X ′. We achieve this by performing a
look-up in T for each key corresponding to a queue that was moved from X
to X ′, and modifying its header record, which requires O(B) I/Os. Similarly,
to support location awareness, we must also update the dictionary D. So,
for each element x that is moved to X ′, we look up x in D and update its
pointer to now point to X ′. In total this costs O(B) I/Os.

2. X contains elements from a single heavy queue Q. In this case, we move no
elements, and simply take a block X ′ from the free list and insert it as the
head of the list of blocks devoted to Q, changing the header record H in T
to point to X ′. We also change the deficient pointer d for Q to point to X ′,
and insert into X ′ the element that caused the split. This takes O(1) I/O
operations in total.

The Enqueue Operation. Given the above components, let us describe how we
perform the enqueue and remove operations. We begin with the enqueue(x, H)
operation. We consider how this operation acts, depending on a few cases.

1. The queue for H is empty (hence, H is a null pointer and its queue is light).
We examine the block Y from T to which H belongs. If d(Y ) is null, we
first take a block X of the free list and set d(Y ) to X before continuing. We
follow the deficient pointer for Y , d(Y ), and add x to d(Y ). If this causes
the size of d(Y ) to reach B, then we split d(Y ) as described above.

2. The queue Q for H is not empty. We proceed according to two cases.
(a) If Q is a light queue, we follow H to its block X in S and add x to

X . If this brings the size of Q above B/3, we perform a light-to-heavy
transition, taking a block X ′ off the free list, moving all elements in Q
to X ′, and marking Q as heavy. If this brings the size of X below B/4,
we process X as in the remove operation below.

(b) If Q is heavy, we add x to X = d(Q), the (possibly) deficient block for
Q. If this brings the size of X to B, then we split X as described above.

Once the element x is added to a block X in S, we then add x to the dictionary
D, and have its record point to X .

The Remove and isMember Operations. In both of these operations, we look up
x in D to find the block X in S that contains x. In the isMember(x) case, we
complete the operation by simply looking for x in X . In the remove(x) operation,
we do this look up and then remove x from X if we find x. If this causes Q to
become empty, then we update its header, H , to be null. In addition, if this
operation causes the size of X to go below B/4, then we need to do some
additional work, based on the following cases:



External-Memory Multimaps 391

1. Q is a heavy queue.
(a) If X is the only block for Q, then Q should now be considered a light

queue; hence, we continue processing it according to the case listed below
where X contains only light queues. We refer to the entirety of this action
as a heavy-to-light queue transition.

(b) Otherwise, if X = d(Q), then we are done because d(Q) is allowed to be
deficient. If X �= d(Q), we proceed based on the following two cases:
i. d-alteration action: If the size of d(Q) is at least 2B/3, we simply

update Q’s deficient pointer, d, to point to X instead of d(Q).
ii. Merge action : If the size of d(Q) is less than 2B/3, then we move

all of the elements of X into d(Q) and we update the pointer in D
for each moved element. X is returned to the free list. We call X the
source of the merge, and d(Q) the sink. (Note that in this case, the
size of d(Q) becomes at most 11B/12.)

2. X contains light queues (hence, no heavy queue elements). In this case, we
visit the header H for Q. Let Y denote the block containing H .
(a) If X = d(Y ) we are done, since d(Y ) is allowed to be deficient.
(b) If X �= d(Y ), let Z be the size of d(Y ).

i. d-alteration action: If Z ≥ 2B/3 then we simply update d to point
to X instead of d(Y ).

ii. Merge action : If Z < 2B/3, then we merge the elements in X into
d(Y ), which now has size at most 11B/12, and update pointers in
D and T for the elements that are moved. We return X to the free
list. We call X the source of the merge and d(Y ) the sink.

If a block X ′ is pointed to by any deficient pointer d, it is helpful to think
of this as “protection” for X ′ from being the source of a merge. Once X ′ is
afforded this protection, it will not lose it until its size is at least 2B/3 (see the
d-alteration action). At a high level, this will allow us to argue that if X and
X ′ are respectively the source and sink of a merge action, neither X nor X ′ will
be the source of a subsequent merge or split operation until it is the target of
Ω(B) enqueue or remove operations, even though X ′ may have size very close
to the deficiency threshold B/4. This will allow us to charge the O(B) I/Os
performed in any split or merge action to the Ω(B) operations that caused one
of these blocks to shrink to size B/4 or grow to size B. We can deamortize these
operations to obtain the following theorem.

Theorem 2. Wecan implement a location-aware multiqueue so that the remove(x)
and isMember(x) operations each use O(1) I/Os, and the enqueue(x, H) operation
uses O(1+ t(N)) expected I/Os, where t(N) is the expected number of I/Os needed
to perform an insertion in an external-memory cuckoo table of size N .

It should be clear from our description that, except for trivial cases (such as hav-
ing only a constant number of elements), the space usage of our multiqueue im-
plementation is within a constant factor of the optimal. We have not attempted
to optimize this factor, though there is some flexibility in the multiqueue oper-
ations (such as when to do a split) that allow some optimization.



392 E. Angelino et al.

The blocks in S

The key-value dictionary, D

The primary
structure, T

Fig. 1. The external-memory multimap

Combining Cuckoo Hashing and Location-Aware Multiqueues: We now
describe how to construct an efficient external-memory multimap implementa-
tion by combining the data structures described above.

We store an external-memory cuckoo hash table, as described above, as our
primary structure, T , with each record pointing to a block in a multiqueue, S,
having an auxiliary dictionary, D, implemented as yet another external-memory
cuckoo hash table. The multimap ADT then functions as follows.

– insert(k, v): To insert the key-value pair (k, v) we first perform a look up for
k in T . If there is already a record for k in T , we increment its count. We
then follow its pointer to the appropriate block X in S, and add the pair
(k, v) to S, as in the enqueue multiqueue method. Otherwise we insert k into
T with a null header record and count 1 and then add the pair (k, v) to S
as in the enqueue multiqueue method.

– isMember(k, v): This is identical to the isMember(k, v) multiqueue operation.
– remove(k, v): To remove the key-value pair (k, v) from C, we perform a look

up for (k, v) in D. If there is no record for (k, v) in D, we return an error
condition. Otherwise, we follow this pointer to the appropriate block X of
S holding the pair (k, v). We remove the pair (k, v) from S and D as in the
remove multiqueue method, and decrement its count.

– findAll(k): To return all key-value pairs in C having key k, we perform a
look up for k in T , and follow its pointer to the appropriate block of S. If
this is a light queue, then we return the items with key k. Otherwise, we
return the entire block and all the other blocks of this queue as well.

– removeAll(k): We give here a constant amortized time implementation, and
provide a deamortization in [1]. To remove from C all key-value pairs having
key k, we perform a look up for k in T , and follow its pointer to the ap-
propriate block X of S. If this is a light queue, then we remove from X all
items with key k and remove all affected pointers from D; if this causes X
to become deficient, we perform a merge action or d-alteration action as in
the remove multiqueue method. If this is a heavy queue, we walk through all
blocks of this queue and remove all items from these blocks and return each
block to the free list. We also remove all affected pointers from D. Finally,



External-Memory Multimaps 393

we remove the header record for k from T , which implicitly sets the count
of k to zero as well. We charge, in an amortized sense, the work for all the
I/Os to the insertions that added these key-value pairs to C originally.

– count(k): Return nk, which we track explicitly for all keys k in T .

Theorem 3. One can implement the multimap ADT in external memory us-
ing O(N/B) blocks of memory with the following: I/O performance: O(1) for
isMember(k, v), remove(k, v), removeAll(k), and count(k); Ō(1) for insert(k, v);
and O(1 + nk/B) for findAll(k).

4 Experiments

We performed extensive simulations in order to explore how various settings of
the design parameters affect I/O complexity and space usage, for both our basic
algorithm and our deamortized algorithm. To summarize, in both versions our
memory utilization was between .32 and .39 for all parameter settings tested, and
the average I/O cost over all insert and remove operations is extremely low: never
more than about 3.5 I/Os per operation. As expected, the cost distribution in the
basic algorithm is bimodal – the vast majority (over 99.9%) of operations require
about 4 I/Os, but a small fraction of operations require several hundred, with
the maximum number of I/Os ranging between 400 and 650. In stark contrast,
the deamortized implementation never requires more than a few dozen I/Os
for any given operation; it also used slightly fewer I/Os on average. We have
tested our performance against a B-tree variant, and preliminary tests show our
performance is competitive.

References

1. Angelino, E., Goodrich, M.T., Mitzenmacher, M., Thaler, J.: External-Memory
Multimaps. CoRR abs/1104.5533 (2011)

2. Blandford, D., Blelloch, G.: Compact dictionaries for variable-length keys and data
with applications. ACM Trans. Alg. 4(2), 1–25 (2008)

3. Büttcher, S., Clarke, C.L.A.: Indexing time vs. query time: trade-offs in dynamic
information retrieval systems. In: Proc. of 14th ACM Conf. on Information and
Knowledge Management (CIKM), pp. 317–318 (2005)

4. Dietzfelbinger, M., Weidling, C.: Balanced allocation and dictionaries with tightly
packed constant size bins. Theoretical Computer Science 380, 47–68 (2007)

5. Guo, R., Cheng, X., Xu, H., Wang, B.: Efficient on-line index maintenance for
dynamic text collections by using dynamic balancing tree. In: Proc. of 16th ACM
Conf. on Information and Knowledge Management (CIKM), pp. 751–760 (2007)

6. Knuth, D.E.: Sorting and Searching. The Art of Computer Programming, vol. 3.
Addison-Wesley, Reading (1973)

7. Mitzenmacher, M., Upfal, E.: Probability and Computing: Randomized Algorithms
and Probabilistic Analysis. Cambridge University Press, New York (2005)

8. Pagh, R., Rodler, F.: Cuckoo hashing. Journal of Algorithms 52, 122–144 (2004)



394 E. Angelino et al.

9. Pagh, R., Wei, Z., Yi, K., Zhang, Q.: Cache-Oblivious Hashing. In: Proc. of PODS,
pp. 297–304 (2010)

10. Panigrahy, R.: Efficient hashing with lookups in two memory accesses. In: Proc. of
the 16th Annual ACM-SIAM Symp. on Discrete Algorithms, pp. 830–839 (2005)

11. Panigrahy, R.: Hashing, Searching, Sketching. Ph.D. thesis, Dept. of Computer
Science, Stanford University (2006)

12. Verbin, E., Zhang, Q.: The limits of buffering: a tight lower bound for dynamic
membership in the external memory model. In: Proc. STOC, pp. 447–456 (2010)


	External-Memory Multimaps
	Introduction
	External-Memory Cuckoo Hashing
	External-Memory Multimaps
	Experiments
	References




