
Sorting, Searching, and Simulation
in the MapReduce Framework

Michael T. Goodrich1, Nodari Sitchinava2, and Qin Zhang2

1 Department of Computer Science, University of California, Irvine, USA
goodrich@ics.uci.edu

2 MADALGO�, Department of Computer Science, University of Aarhus, Denmark
{nodari,qinzhang}@madalgo.au.dk

Abstract. We study the MapReduce framework from an algorithmic standpoint,
providing a generalization of the previous algorithmic models for MapReduce.
We present optimal solutions for the fundamental problems of all-prefix-sums,
sorting and multi-searching. Additionally, we design optimal simulations of the
the well-established PRAM and BSP models in MapReduce, immediately result-
ing in optimal solutions to the problems of computing fixed-dimensional linear
programming and 2-D and 3-D convex hulls.

1 Introduction

MapReduce [2,3] is a programming paradigm for designing parallel and distributed
algorithms. Building on pioneering work by Feldman et al. [6] and Karloff et al. [12],
our interest in this paper is in studying the MapReduce framework from an algorithmic
standpoint. In the MapReduce framework, a computation is specified as a sequence of
map, shuffle, and reduce steps that operate on a set X = {x1, x2, . . . , xN} of values:

– A map step applies a function, μ, to each value, xi, to produce a finite set of key-
value pairs (k, v). To allow for parallel execution, the computation of the function
μ(xi) must depend only on xi.

– A shuffle step collects all the key-value pairs produced in the previous map step,
and produces a set of lists, Lk = (k; v1, v2, . . .), where each such list consists of
all the values, vj , such that kj = k for a key k assigned in the map step.

– A reduce step applies a function, ρ, to each list Lk = (k; v1, v2, . . .), formed in
the shuffle step, to produce a set of values, y1, y2, The reduction function, ρ, is
allowed to be defined sequentially on Lk, but should be independent of other lists
Lk′ where k′ �= k.

The outputs from a reduce step can, in general, be used as inputs to another round
of map-shuffle-reduce steps. Thus, a typical MapReduce computation is described as a
sequence of map-shuffle-reduce steps that perform a desired action in a series of rounds.

� MADALGO is the Center for Massive Data Algorithmics, a center of the Danish National
Research Foundation.

T. Asano et al. (Eds.): ISAAC 2011, LNCS 7074, pp. 374–383, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Sorting, Searching, and Simulation in the MapReduce Framework 375

Evaluating MapReduce Algorithms. Since the shuffle step requires communication
among computers over the network, we desire to minimize the number of rounds in
a MapReduce algorithm (ideally, keeping it to a constant). However, there are several
metrics that one can use to measure the efficiency of a MapReduce algorithm over the
course of its execution, including the following.

– We can consider R, the number of rounds that the algorithm uses.
– If we let nr,1, nr,2, . . . denote the mapper and reducer I/O sizes for round r, so that

nr,i is the size of the inputs and outputs for mapper/reducer i in round r, then we
define the communication complexity of round r as Cr =

∑
i nr,i. We can also

define C =
∑R−1

r=0 Cr, the communication complexity for the entire algorithm.
– We can let tr denote the internal running time for round r, which is the maximum

internal running time taken by a mapper or reducer in round r, where we assume
tr ≥ maxi{nr,i}.We can also define total internal running time, t =

∑R−1
r=0 tr, for

the entire algorithm.

We can make a crude calibration of a MapReduce algorithm using the following:

– L: the latency L of the shuffle network: the number of steps that a mapper or reducer
has to wait until it receives its first input in a given round.

– B: the bandwidth of the shuffle network: the number of elements in a MapReduce
computation that can be delivered by the shuffle network in any time unit.

Given these parameters, a lower bound for the total running time, T , of an implementa-
tion of a MapReduce algorithm can be characterized as follows:

T = Ω

(
R−1∑

r=0

(tr + L + Cr/B)

)

= Ω(t + RL + C/B).

Memory-Bound and I/O-Bound MapReduce Algorithms. Note, that MapReduce allows
design of trivial one-round algorithms that are actually sequential by mapping inputs to
a single key and then implementing a sequential algorithm on the reducer with that key.
To steer the programmers away from such sequential implementations, recent algorith-
mic formalizations of the MapReduce paradigm have focused primarily on optimizing
the round complexity, R, while restricting the memory size or input/output size for re-
ducers. Karloff et al. [12] define their MapReduce model, MRC, so that each reducer’s
I/O size is restricted to be O(N1−ε) for some constant 0 < ε < 1, and Feldman et al. [6]
define their model, MUD, so that reducer memory size is restricted to be O(logc N),
for some constant c ≥ 0, and reducers are further required to process their inputs in a
single pass.

In this paper, we follow the I/O-bound approach, as it seems to correspond better
to the way reducer computations are specified, but we take a somewhat more general
characterization than Karloff et al. [12], in that we do not bound the I/O size for reducers
explicitly to be O(N1−ε), but instead allow it to be an arbitrary parameter:

– We define M to be an upper bound on the I/O-buffer memory size for all reducers
used in a given MapReduce algorithm. That is, we predefine M to be a parameter
and require that ∀r, i : nr,i ≤ M.

376 M.T. Goodrich, N. Sitchinava, and Q. Zhang

We can use M in the design and/or analysis of MapReduce algorithms. For instance, if
each round of an algorithm has a reducer with an I/O size of at most M , then we say
that this algorithm is an I/O-memory-bound MapReduce algorithm with parameter M
and we can give a simplified lower bound on the time, T , for such an algorithm as

T = Ω(R(M + L) + C/B).

Our Contributions. In Section 2 we present a BSP-like [13] computational framework
which we prove to be equivalent to the I/O-memory-bound MapReduce model. This
formulation is more familiar in the distributed algorithms community, making the de-
sign and analysis of algorithms more intuitive. The new formulation allows a simple
simulation result of the BSP algorithms in the MapReduce model with no slowdown
in the number of rounds, resulting in straightforward MapReduce implementations of a
large number of existing algorithms for the BSP model and its variants.

In Section 3 we present simulation of CRCW PRAM algorithms in our general-
ized MapReduce model, extending the EREW PRAM simulation results of Karloff et
al. [12]1 (which also holds in our generalized model). Our simulation achieves only
Θ(logM P) slowdown in the round complexity, which is asymptotically optimal for
a generic simulation. Our CRCW PRAM simulation results achieve their efficiency
through the use of an implicit data structure we call invisible funnel trees. It can be
viewed as placing virtual multi-way trees rooted at the input items, which funnel con-
current read and write requests to the data items, but are never explicitly constructed.

For problems with no known constant time CRCW PRAM solutions we show that we
can design efficient algorithms directly in our generic MapReduce framework. Specif-
ically, in Section 4 using the idea of invisible funnel trees we develop solutions to the
fundamental problems of prefix sums and randomized indexing of the input.

Finally, what is perhaps most unusual about the MapReduce framework is that there
is no explicit notion of “place” for where data is stored nor for where computations
are performed. This property is perhaps what led DeWitt and Stonebraker [4] to say
that it does not support indexed searches. Nevertheless, in Section 5 we show that the
MapReduce framework does in fact support efficient multi-searching – the problem of
searching for a number of keys in a search tree of roughly equal size.

For ease of exposition let λ = logM N . All our algorithms exhibit O(λ) round and
O(λN) communication complexities. Note, that in practice it is reasonable to assume
that M = Ω(N ε) for some constant ε > 0, resulting in λ = O(1), i.e. constant round
and linear communication complexities for all our algorithms.

2 Algorithmic Framework for I/O-memory-bound MapReduce

In this section we define a graph-based framework that can be implemented in the I/O-
memory-bound MapReduce model with the same round and communication complex-
ities and makes algorithm design simpler and more intuitive.

1 Their original proof was identified for the CREW PRAM model, but there was a flaw in that
version, which could violate the I/O-buffer-memory size constraint during a CREW PRAM
simulation. Based on a personal communication, we have learned that the subsequent version
of their paper will identify their proof as being for the EREW PRAM.

Sorting, Searching, and Simulation in the MapReduce Framework 377

Consider a set V of computing nodes. Let Av(r) be a set of items, each of constant
size (in words), associated with each node v ∈ V in round r. Av(r) defines the state
of v. Let f be a sequential function defined the same for all nodes. Function f takes as
input the state Av(r) of a node v and returns a new set Bv(r), in the process destroying
Av(r).2 Each item of Bv(r) is of the form (w, a), where w ∈ V and a is a new item.
We define the following computation which proceeds in R rounds.

At the beginning of the computation only the input nodes v have non-empty states
Av(0). The state of an input node consists of a single input item.

In round r, each node v with non-empty state Av(r) �= ∅ performs the following.
First, v applies function f on Av(r). This results in the new set Bv(r) and deletion of
Av(r). Then, for each element b = (w, a) ∈ Bv(r), node v sends item a to node w.
Note that if w = v, then v sends a back to itself. As a result of this process, each node
may receive a set of items from others. Finally, the set of received items at each node v
defines the new state Av(r+1) for the next round. The items comprising the non-empty
states Av(r) after R rounds define the outputs of the entire computation at which point
the computation halts.

The number of rounds, R, defines the round complexity of the computation. The total
number of all the items sent (or, equivalently, received) by the nodes in each round r de-
fines the communication complexity Cr of round r (in words), that is, Cr =

∑
v |Bv(r)|.

Finally, the communication complexity C of the entire computation is defined as C =∑R−1
r=0 Cr =

∑R−1
r=0

∑
v |Bv(r)|. Note that this definition implies that nodes v whose

states Av(r) are empty at the beginning of round r do not contribute to the communica-
tion complexity. Thus, the set V of nodes can be much larger than the size of the input.
But, as long as only a small number of them has non-empty Av(r) at the beginning of
each round, the communication complexity of the computation is bounded. Let Kmax

be the upper bound on such nodes in any round.
Observe that during the computation, in order for node v to send items to node w

in round r, v should know the label of the destination w, which can be obtained by v
in the following possible ways (or any combination thereof): 1) the link (v, w) can be
encoded in f as a function of the label of v and round r, 2) some node might send the
label of w to v in the previous round, or 3) node v might keep the label of w as part of
its state by constantly sending it to itself.

Thus, the above computation can be viewed as a computation on a dynamic directed
graph G = (V, E), where an edge (v, w) ∈ E in round r represents a possible commu-
nication link between v and w during that round. The encoding of edges (v, w) as part
of function f is equivalent to defining an implicit graph [11]; keeping all edges within
a node throughout the computation is equivalent to defining a static graph. For ease of
exposition, we define the following primitive operations that can be used within f at
each node v:

– create an item; delete an item; modify an item; keep item x (that is, the item x will
be sent to v itself by creating an item (v, x) ∈ Bv(r)); send an item x to node w
(create an item (w, x) ∈ Bv(r)).

2 Note that while f is defined the same for all nodes, since it takes Av(r) and, consequently, v
as input, the output of f may vary at different nodes.

378 M.T. Goodrich, N. Sitchinava, and Q. Zhang

– create an edge; delete an edge. This is essentially the same as creating an item and
deleting an item, since explicit edges are just maintained as items at nodes. These
operations will simplify exposition when dealing with explicitly defined graphs G
on which computation is performed.

The following theorem shows that the above framework captures the essence of com-
putation in the MapReduce framework.

Theorem 1. Let G = (V, E) and f be defined as above such that in each round each
node v ∈ V sends, keeps and receives at most M items. Then computation on G with
round complexity R and communication complexity C can be simulated in the I/O-
memory-bound MapReduce model with the same round and communication complexi-
ties using Kmax mappers/reducers.

Proof. We implement round r = 0 of computation on G in the I/O-memory-bound
MapReduce framework using only the Map and Shuffle steps and every round r > 0
using the Reduce step of round r − 1 and a Map and Shuffle step of round r.

1. Round r = 0: (a) Computing Bv(r) = f(Av(r)): Initially, only the input nodes
have non-empty sets Av(r), each of which contains only a single item. Thus, the
output Bv(r) only depends on a single item, fulfilling the requirement of Map. We
define Map to be the same as f , i.e., it outputs a set of key-value tuples (w, x), each
of which corresponds to an item (w, x) in Bv(r). (b) Sending items to destinations:
The Shuffle step on the output of the Map step ensures that all tuples with key w
will be sent to the same reducer, which corresponds to the node w in G.

2. Round r > 0: First, each reducer v that receives a tuple (v; x1, x2, . . . , xk) (as a
result of the Shuffle step of the previous round) simulates the computation at node
v in G. That is, it simulates the function f and outputs a set of tuples (w, x), each of
which corresponds to an item in Bv(r). We then define Map to be the identity map:
On input (w, x), output key-value pair (w, x). Finally, the Shuffle step of round r
completes the simulation of the round r of computation on graph G by sending all
tuples with key w to the same reducer that will simulate node w in G in round r+1.

Keeping an item is equivalent to sending it to itself. Thus, each node in G sends and re-
ceives at most M items implying that the above is a correct I/O-memory-bound MapRe-
duce algorithm. �	

The above theorem gives an abstract way of designing MapReduce algorithms. More
precisely, to design a MapReduce algorithm, we define graph G and a sequential func-
tion f to be performed at each node v ∈ V . This is akin to designing BSP algorithms
and is a more intuitive way than defining Map and Reduce functions.

Note that in the above framework we can easily implement a global loop primitive
spanning multiple rounds: each item maintains a counter that is updated at each round.
We can also implement parallel tail recursion by defining the labels of nodes to include
the recursive call stack identifiers.

Sorting, Searching, and Simulation in the MapReduce Framework 379

3 Simulation Results

BSP simulation. The reader may observe that the generic MapReduce model of the pre-
vious section is very similar to the BSP model of Valiant [13], leading to the following
conclusion. 3

Theorem 2. Given a BSP algorithm A that runs in R super-steps with a total memory
size N using P ≤ N processors, we can simulate A using R rounds and C = O(RN)
communication in the I/O-memory-bound MapReduce framework with reducer memory
size bounded by M =
N/P � using O(P) mappers/reducers.

CRCW PRAM simulation. In this section we present a simulation of f -CRCW PRAM
model, the strongest variant of the PRAM model, where concurrent writes to the same
memory location are resolved by applying a commutative semigroup operator f , such
as Sum, Min, Max, etc., to all values being written to the same memory address.

The input to the simulation of a PRAM algorithm A is specified by an indexed set of
P processor items, p1, . . . , pP , and an indexed set of initialized PRAM memory cells,
m1, . . . , mN , where N is the total memory size used by A. For ease of exposition we
assume that P = NO(1), i.e. logM P = O(logM N) = O(λ).

The main challenge in simulating the algorithm A in the MapReduce model is that
there may be as many as P reads and writes to the same memory cell in any given step
and P can be significantly larger than M , the memory size of reducers. Thus, we need
to have a way to “fan in” these reads and writes. We accomplish this by using invisible
funnel trees, where we imagine that there is a different implicit O(M)-ary tree that has
the set of processors as its leaves and is rooted at each memory cell. Intuitively, our
simulation algorithm involves routing reads and writes up and down these N trees. We
view them as “invisible”, because we do not actually maintain them explicitly, since
that would require Θ(PN) additional memory cells.

Each invisible funnel tree is an undirected4 rooted tree T with branching factor d =
M/2 and height L =
logd P � = O(λ). The root of the tree is defined to be at level
0 and leaves at level L − 1. We label the nodes in T such that the k-th node (counting
from the left and starting with index 0) on level l is defined as v = (l, k). Then, we can
identify the parent of a non-root node v = (l, k) as p(v) = (l − 1, �k/d) and the q-th
child of v as wq = (l + 1, k · d + q). Thus, given a node v = (j, (l, k)), i.e., the k-th
node on level l of the j-th tree, we can uniquely identify the label of its parent p(v) and
each of its d children and without maintaining the edges explicitly.

At the initialization step, we send mj to the root node of the j-th tree, i.e., mj is sent
to node (j, root) = (j, (0, 0)). For each processor pi (1 ≤ i ≤ P), we send πi, the state
of processor pi to node ui. Again, throughout the algorithm, each node keeps the items
that it has received in previous rounds until they are explicitly deleted.

Each step of the PRAM algorithm A is specified as a read sub-step, followed by a
constant-time internal computation, followed by a write sub-step performed by each of
P processors. We show how to simulate each of these sub-steps.

3 Due to space constraints, all omitted proofs can be found in the full version of the paper [9].
4 Each undirected edge is represented by two directed edges.

380 M.T. Goodrich, N. Sitchinava, and Q. Zhang

1a. Bottom-up read phase. For each processor pi that attempts to read memory loca-
tion mj , node ui sends an item encoding a read request (in the following we simply
say a read request) to the i-th leaf node of the j-th tree, i.e. to node (j, L − 1, i),
indicating that it would like to read the contents of the j-th memory cell.
For l = L − 1 downto 1 do:

– For each node v at level l, if it received read request(s) in the previous round,
then it sends a read request to its parent p(v).

1b. Top-down read phase. The root node in the j-th tree sends the value mj to child
(j, wk) if child wk has sent a read request at the end of the bottom-up read phase.
For l = 1 to L − 2 do:

– For each node v at level l, if it received mj from its parent in the previous
round, then it sends mj to all those children who have sent v read requests
during the bottom-up read phase. After that v deletes all of its items.

Each leaf v sends mj to the node ui (1 ≤ i ≤ P) if ui has sent v a read request at
the beginning of the bottom-up read phase. After that v deletes all of its items.

2. Internal computation phase. At the end of the top-down phase, each node ui

receives its requested memory item mj , performs the internal computation, updates
the state πi, and sends an item z encoding a write request to the node (j, L − 1, i)
if processor pi wants to write z to the memory cell mj .

3. Bottom-up write phase. For l = L − 1 downto 0 do:
– For each node v at level l, if it received write request(s) in the previous round,

let z1, . . . , zk (k ≤ d) be the items encoding those write requests. If v is not
a root, it applies the semigroup function on input z1, . . . , zk, sends the result
z′ to its parent, and then deletes all of its items. Otherwise, if v is a root, it
modifies its current memory item to z′.

When we have completed the bottom-up write phase, we are inductively ready for sim-
ulating the next step in the PRAM algorithm. In each round at most O(N + P) nodes
are non-empty, thus, we have the following:

Theorem 3. Given a CRCW PRAM algorithm A with write conflicts resolved accord-
ing to a commutative semigroup operator such that A runs in T steps using P proces-
sors and N memory cells, we can simulate A in the I/O-memory-bound MapReduce
framework in the optimal R = Θ(λT) rounds and with C = O(λT (N + P)) commu-
nication complexity using O(N + P) mappers/reducers.

Applications. Theorem 2 immediately implies O(λ) round and O(λN) communication
complexity MapReduce solutions for problems of sorting and computing 2-dimensional
convex hull via simulation of the BSP solutions [8,7]. In the full version of the paper [9]
we present an alternative randomized algorithm for sorting with the same complexity
but which might be simpler to implement in practice than the simulation of the compli-
cated BSP algorithm in [8].

By Theorem 3, we can simulate any CRCW (thus, also CREW) PRAM algorithm.
For example, simulation of the PRAM algorithm of Alon and Megiddo [1] for linear
programming in fixed dimensions produces a MapReduce algorithm with O(λ) round
and O(λN) communication complexities.

Sorting, Searching, and Simulation in the MapReduce Framework 381

4 Prefix Sums and Random Indexing

The best known PRAM algorithm for prefix sums runs in O(log∗ N) time on Sum-
CRCW model [5], resulting in a O(λ log∗ N) MapReduce algorithm (by Theorem 3).
In this section, we show how we can improve this result to O(λ) rounds.

The all-prefix-sum problem is usually defined on an array of integers. Since there is
no notion of arrays in the MapReduce framework, but rather a collection of items, we
define the all-prefix-sum problem as follows: given a collection of items xi, where xi

holds an integer ai and an index value 0 ≤ i ≤ N − 1, compute for each item xi a new
value bi =

∑i
j=0 aj .

Lemma 1. Given an indexed collection of N numbers, we can compute all prefix sums
in the I/O-memory-bound MapReduce framework in O(λ) round and O(λN) commu-
nication complexities.

Proof (Sketch). The classic PRAM algorithm for computing prefix sums [10] can be
viewed as a computation along a virtual binary tree on top of the inputs. To compute the
prefix sums in MapReduce we replace the binary tree with the invisible funnel tree and
perform similar 2-pass computation. The details of the algorithm are straightforward
and are presented in the full version of the paper [9]. The depth of the invisible funnel
tree is λ, resulting in the stated round and communication complexities. �	

Quite often, the input to the MapReduce computation is a collection of items with no
particular ordering or indexing. If each input element is annotated with an estimate
N ≤ N̂ ≤ N c of the size of the input, for some constant c ≥ 1, then we can modify
the all-prefix-sum algorithm to generate a random indexing for the input with high
probability as follows.5

We define the invisible funnel tree T on N̂3 leaves, thus, the height of the tree is
L =
3 logd N̂� = O(λ). In the initialization step, each input node picks a random
index i in the range [0, N̂3 − 1] and sends ai = 1 to the leaf node v = (L − 1, i)
of T , and performing prefix sums computation on these values. Note that some leaf
nodes might receive more than one item, so we make straightforward modifications to
the prefix sums algorithm to address this complication (see [9] for details).

Lemma 2. A random indexing of the input can be performed on a collection of data in
the I/O-memory-bound MapReduce framework in O(λ) round and O(λN) communi-
cation complexities with high probability.

5 Multi-searching and Sorting

Let T be a balanced binary search tree and Q be a set of queries. Let N = |T | + |Q|.
The problem of multi-search asks to annotate each query q ∈ Q with a leaf v ∈ T , such
that the root-to-leaf search path for q in T terminates at v.

5 Throughout the paper, when we say an event holds with high probability we mean the proba-
bility is at least 1 − 1/N .

382 M.T. Goodrich, N. Sitchinava, and Q. Zhang

Goodrich [7] provides a solution to the multi-search problem in the BSP model. His
solution first converts the binary search tree into a B-tree with the branching parameter
M =
N/P � (P is the number of BSP processors) in a natural way, i.e. each node
of the B-tree corresponds to a subtree of the original binary tree of height Θ(log2 M).
The height of the B-tree is Θ(λ) = Θ(logM N). Then it replicates each node to relieve
congestion during query routing by estimating the query load of each node by routing
a small sample of the queries down the B-tree. The replicated nodes are connected to
others in such a way that the set of nodes reachable from each replicated root node
comprises the “skeleton” of the original B-tree (see Goodrich [7] for details). Call the
resulting graph G. Finally, all the queries are distributed randomly across all the copies
of the root nodes and propagated down in G to the leaf nodes (and their copies).

The depth of G is Θ(λ) with each level consisting of O(|Q|/M) B-tree nodes each
containing Θ(M) routing elements. Thus, the size of G is O(|T | + λ|Q|). And by
Theorem 2, we obtain a MapReduce solution to multi-search with O(λ) round and
O(λ|T | + λ2|Q|) = O(λ2N) communication complexities.

In this section we present a solution that improves the communication complexity to
O(λN), while still achieving O(λ) round complexity; with high probability.

Multi-searching. To solve the multi-search problem in MapReduce with optimalO(λN)
communication complexity, consider a random partition of Q into λ subsets Q1, Q2, . . . ,
Qλ each containingO(N/λ) queries. By the above discussion, we clearly can construct
a search structure G based on the query set Q1, consisting of Θ(λ) levels each contain-
ing O(N/λ) routing elements, i.e. |G| = O(N). We can also implement a MapReduce
algorithm A which propagates any query set Q′ of size |Q′| = O(N/λ) down this
search structure G.

To answer the multi-search queries for all queries Q, we proceed in Θ(λ) rounds. In
round i, 1 ≤ i ≤ λ, we feed new subset Qi of queries to the O(N/λ) root nodes of G
and propagate the queries down to the leaves using algorithm A. This approach can be
viewed as a pipelined execution of λ multi-searches on G.

Finally, to implement the random partitioning of Q into λ subsets, we perform a
random indexing for Q (Lemma 2) and assign query with index j to subset Q�j/λ�. A
node v containing a query q ∈ Qi keeps q (by sending it to itself) until round i, at which
point it sends q to the appropriate source node of G.

Theorem 4. Given a binary search tree T of size N , we can perform a multi-search
of N queries over T in the I/O-memory-bound MapReduce model in O(λ) rounds with
O(λN) communication with high probability.

Proof (Sketch). Let L1, . . . , Lλ be the λ levels of nodes of G. First, all query items
in the first query batch Q1 passes (i.e., routed down) Lj (1 ≤ j ≤ λ) in one round
with probability at least 1 − O(N/λ) · N−c. This is because for each node v in Lj ,
at most M query items of Q1 will be routed to v with probability at least 1 − N−c

for any constant c (by similar analysis as in [7]). Thus v can send all those queries to
the next level in the next round without violating the output constraint. The statement
follows by taking the union of all the nodes in Lj . Similarly, we can prove that any
Qi (1 ≤ i ≤ λ) can pass Lj (1 ≤ j ≤ λ) in one round with the same probability since
all sets Qi have equal distributions. Since there are λ batches of queries and they are fed

Sorting, Searching, and Simulation in the MapReduce Framework 383

into G in a pipelined fashion, by union bound it follows that with probability at least
1 − λ2 · O(N/λ) · N−c ≥ 1 − 1/N (by choosing a sufficiently large constant c) the
whole process completes within O(λ) rounds. The communication complexity follows
directly because we only send O(|G| + |Q|) = O(N) items in each round. �	

Applications and discussion. The solution to the multi-search problem combined with
Theorem 2 immediately implies a solution to the problem of 3-dimensional convex hull
via simulation of the BSP solution [7]. In the full version of the paper [9] we also
present a simple sorting algorithm which uses the multi-searching solution and is easier
to implement in practice than the direct simulation of the BSP sorting algorithm [8]
using Theorem 2.

In [9] we also describe a queuing strategy that reduces the failure probability of The-
orem 4 from 1/N to N−Ω(M). The queuing algorithm may be of independent interest
because it removes some of the constraints of the framework of Section 2.

Acknowledgments. We would like to thank Riko Jakob for pointing out the lower
bound for our CRCW PRAM simulation.

References

1. Alon, N., Megiddo, N.: Parallel linear programming in fixed dimension almost surely in
constant time. J. ACM 41(2), 422–434 (1994)

2. Dean, J., Ghemawat, S.: MapReduce: simplified data processing on large clusters. Commun.
ACM 51(1), 107–113 (2008)

3. Dean, J., Ghemawat, S.: MapReduce: a flexible data processing tool. Commun. ACM 53(1),
72–77 (2010)

4. DeWitt, D.J., Stonebraker, M.: MapReduce: A major step backwards. Database Column
(2008),
http://databasecolumn.vertica.com/database-innovation/
mapreduce-a-major-step-backwards/

5. Eisenstat, S.C.: O(log∗ n) algorithms on a Sum-CRCW PRAM. Computing 79(1), 93–97
(2007)

6. Feldman, J., Muthukrishnan, S., Sidiropoulos, A., Stein, C., Svitkina, Z.: On distributing
symmetric streaming computations. In: Teng, S.H. (ed.) SODA, pp. 710–719. SIAM (2008)

7. Goodrich, M.T.: Randomized fully-scalable BSP techniques for multi-searching and convex
hull construction. In: SODA, pp. 767–776 (1997)

8. Goodrich, M.T.: Communication-efficient parallel sorting. SIAM Journal on Comput-
ing 29(2), 416–432 (1999)

9. Goodrich, M.T., Sitchinava, N., Zhang, Q.: Sorting, searching, and simulation in the mapre-
duce framework (2011), http://arxiv.org/abs/1101.1902

10. JáJá, J.: An Introduction to Parallel Algorithms. Addison-Wesley, Reading (1992)
11. Kannan, S., Naor, M., Rudich, S.: Implicit representation of graphs. In: 20th Annual ACM

Symposium on Theory of Computing (STOC), pp. 334–343 (1988)
12. Karloff, H., Suri, S., Vassilvitskii, S.: A model of computation for MapReduce. In: Proc.

ACM-SIAM Sympos. Discrete Algorithms (SODA), pp. 938–948 (2010)
13. Valiant, L.G.: A bridging model for parallel computation. Comm. ACM 33, 103–111 (1990)

http://databasecolumn.vertica.com/database-innovation/mapreduce-a-major-step-backwards/
http://databasecolumn.vertica.com/database-innovation/mapreduce-a-major-step-backwards/
http://arxiv.org/abs/1101.1902

	Sorting, Searching, and Simulation in the MapReduce Framework
	Introduction
	Algorithmic Framework for I/O-memory-bound MapReduce
	Simulation Results
	Prefix Sums and Random Indexing
	Multi-searching and Sorting
	References

