
Category-Based Routing in Social Networks:
Membership Dimension and the Small-World Phenomenon

David Eppstein, Michael T. Goodrich, Maarten Löffler, Darren Strash, and Lowell Trott
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Abstract. A classic experiment by Milgram shows that individuals can route messages along short
paths in social networks, given only simple categorical information about recipients (such as “he is a
prominent lawyer in Boston” or “she is a Freshman sociology major at Harvard”). That is, these net-
works have very short paths between pairs of nodes (the so-called small-world phenomenon); moreover,
participants are able to route messages along these paths even though each person is only aware of a
small part of the network topology. Some sociologists conjecture that participants in such scenarios use
a greedy routing strategy in which they forward messages to acquaintances that have more categories in
common with the recipient than they do, and similar strategies have recently been proposed for routing
messages in dynamic ad-hoc networks of mobile devices. In this paper, we introduce a network property
called membership dimension, which characterizes the cognitive load required to maintain relationships
between participants and categories in a social network. We show that any connected network has a sys-
tem of categories that will support greedy routing, but that these categories can be made to have small
membership dimension if and only if the underlying network exhibits the small-world phenomenon.
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1 Introduction

In a pioneering experiment in the 1960’s, Stanley Milgram and colleagues [16, 25, 30] empirically studied
the ability of people in real-world social networks to route messages to their acquaintances, and used their
studies to deduce properties of these networks. 296 randomly chosen individuals in Omaha, Nebraska and
Wichita, Kansas were asked to forward a letter to a lawyer in Boston by using the following rule: send the
letter to an acquaintance so that it progresses toward the recipient. Each acquaintance along the way is then
told to forward the letter by this same rule. The results of these experiments reveal that, if a message gets
to its recipient, it typically passes between at most six acquaintances1—and this observation has come to be
called the small-world phenomenon [13, 31].

What is perhaps even more surprising than the existence of these short paths is the fact that human
participants are able to efficiently route messages using only local information and simple facts about message
targets, such as gender, ethnicity, occupation, name, and location.

As a way to study how humans can route such messages, several groups of sociology researchers have
studied the importance of categories, that is, various groups to which people belong, in the small-world
phenomenon. For instance, in the early 1970’s, Hunter and Shotland [10] found that messages routed between
participants who both belonged to the same category of people in a university (such as students, faculty,
or administrators) had shorter paths than messages routed across such categories. Along these same lines,
Killworth and Bernard [12] performed a set of experiments in the late 1970’s they called reverse small-world
experiments. In these experiments, they presented each participant with a list of messages for hundreds of
targets, identified by the categories of town, occupation, ethnic background, and gender, and they asked each
such participant to whom they would send each of these messages. One of the main conclusions of this study
was that the choices people make in deciding on routes are overwhelmingly categorical in nature. In the late

1 This observation has also led to the concept of “six degrees of separation” between all people on earth and the
trivia game, “Six Degrees of Kevin Bacon,” where players take turns trying to link performers to the actor Kevin
Bacon via at most six movie collaborations.
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Fig. 1. A set of elements U (drawn arbitrarily as points in the plane). (a) The graph G on U . (b) The categories S on U .
In this example, the membership dimension is 4, because no element is contained in more than 4 groups.

1980’s, Bernard et al. [3] extended this work to identify which of twenty categories are the most important
to people from various cultures for the sake of message routing. More recently, Watts et al. [32] present
a hierarchical model for categorical organization in social networks for the sake of message routing. They
propose groups as the leaves of rooted trees, with internal nodes defining groups-of-groups, and so on. They
define an ultrametric on the vertices of each hierarchy (a distance function in which the distance between
any two participants is determined by the level in the hierarchy of the smallest category containing both
of them) and they conjecture that people use the minimum distance in one of their trees to make message
routing decisions. That is, they argue that individuals can understand their “social distance” to a target as
the minimum of the distances between them and the target in each of their hierarchical categories. Of course,
such a determination requires some global knowledge about the structures of the various group hierarchies.

Although this previous work shows the importance of categories and of hierarchies of categories in ex-
plaining the small world phenomenon, it does not explain where the categories come from or what properties
they need to have in order to allow greedy routing to work. Hence, this prior work leaves open the following
questions:

– Which social networks support systems of categories that allow participants to route messages using the
simple greedy rule of sending a message to an acquaintance who has more categories in common with
the target?

– How complicated a system of categories is needed for this purpose, how much information about this
system do individual participants need to know, and what properties of the underlying network can be
used to characterize the complexity of the category system?

Our goal in this paper, therefore, is to address these questions by studying the existence of mathematical
and algorithmic frameworks that demonstrate the feasibility of local, greedy, category-based routing in social
networks.

1.1 Our Results

Inspired by the work of Watts et al. [32], we view a social network as an undirected graph G = (U,E),
whose vertices represent people and whose edges represent relationships, taken together with a collection,
S ⊂ 2U , of categories defined on the vertices in G. Although the categories that we end up constructing in
proving our results will have a natural hierarchical structure, we do not impose such a structure as part of
our definitions. Figure 1 shows an example.

In addition, given such a social network, G = (U,E) with a category system S, we define the membership
dimension of S to be

max
u∈U
|{C ∈ S : u ∈ C}|,

that is, the maximum number of groups to which any one person in the network belongs. The membership
dimension characterizes the cognitive load of performing routing tasks in the given system of categories—if
the membership dimension is small, each actor in the network only needs to know a proportionately small
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amount of information about his or her own categories, his or her neighbors’ categories, and the categories
of each message’s eventual destination. Thus, we would expect real-world social networks to have small
membership dimension.

In this paper, we provide a constructive proof that a category system with low membership dimension
can support greedy routing. Our results are not intended to model the actual formation of social categories,
and we take no position on whether categories are formed from the network, the network is formed from
categories, or both form together. Rather, our intention is to show the close relation between two natural
parameters of a social network, its path length and its membership dimension. In particular:

– We show that the membership dimension of (G,S) must be at least the diameter of G, diam(G), for a
local, greedy, category-based routing strategy to work.

– Given any connected graph G = (U,E), we show there is a collection, S, of categories defined on the
set, U , of vertices of G, such that local, greedy, category-based routing always works. Moreover, the
membership dimension of (G,S) in this case is O((diam(G) + log |U |)2).

– We show that some dependence between the category system and the underlying graph is essential, by
proving that there does not exist a single category system that supports greedy routing regardless of its
underlying graph.

Since the earliest work of Milgram [16, 25, 30], social scientists have generally believed the so-called “small
world hypothesis” that the diameters of real-world social networks are bounded by small constants or by
slowly growing functions of the network size. Under a weak form of this assumption, that the diameter is
O(log |U |), our results provide a natural model for how participants in a social network could efficiently route
messages using a local, greedy, category-based routing strategy while remembering an amount of information
that is only polylogarithmic in the size of the network.

1.2 Previous Related Work

Greedy Routing. In addition to the greedy method described by Milgram [16, 25, 30] for routing in social
networks, geometric greedy routing [8,17] has been introduced in computer communications as a method to
leverage the geographic location of nodes in ad-hoc and sensor networks in order to reduce the computational
overhead of routing messages. In geometric greedy routing, vertices have coordinates in a geometric metric
space. They use these coordinates to calculate the distances between the destinations of a message and
their neighboring vertices; each message is routed greedily, to a neighbor that is closer to the message’s
destination. Not every geographic network has the property that this strategy will correctly route all messages
to their destinations, so a number of techniques have been developed to assist such greedy routing schemes
when they fail [4, 11, 18–20]. In a paradigm introduced by Rao et al. [29], virtual coordinates can also be
introduced to overcome the shortcomings of real-world coordinates and allow simple greedy forwarding to
function without the assistance of fallback algorithms. This approach has been explored by several other
researchers [1, 14,21,28], who study various network properties that allow coordinates to be found that will
cause greedy routing to succeed. In addition, several researchers also study the existence of succinct virtual
coordinate systems [7,9,23,26], where the number of bits needed to represent the coordinates of each vertex
is polylogarithmic in the size of the network. If an assignment of virtual coordinates is succinct in this way,
then the amount of computer memory needed to store the coordinates will be significantly smaller than
the memory needed for a complete routing table that avoids the need for greedy routing. This notion of
succinctness, and its motivation in reducing memory requirements, is closely analogous to our definition of
the membership dimension for categorical greedy routing. Just as succinct bit representation is required to
make greedy routing space-efficient, sociological routing requires low membership dimension to reduce the
cognitive load on its participants and make it feasible for them to participate.

Almost all of this previous work on greedy routing in computer networks uses vertex coordinates in 2-
and 3-dimensional Euclidean or hyperbolic spaces. However, one very recent exception to this restriction
is work by Mei et al. [24], who study category-based greedy routing as a heuristic for performing routing
in dynamic delay-tolerant networks of computing devices. Mei et al. assume that the network nodes have
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been organized into pre-defined categories based on their owners’ interests. Their experiments suggest that
using these categories for greedy routing is superior in practice to routing heuristics based on location or
simple random choices. It is possible to interpret the categorical greedy routing techniques of Mei et al.
and of this paper as being geometric routing schemes using virtual coordinates, where the coordinates of
each node represent their category memberships. In this interpretation, the membership dimension of an
embedding corresponds to the number of nonzero coordinates of each node, and our results show that such
greedy routing schemes can be done succinctly in graphs with small diameter.

The Small-World Phenomenon Through an Algorithmic Lens. Like the work of this paper, Kleinberg [13]
studies the small-world phenomenon from an algorithmic perspective. His approach takes an orthogonal
direction from our work, however, in two ways. First, he focuses exclusively on location as the critical factor
for supporting the small-world phenomenon (under a geometric metric), whereas our work focuses on greedy
routing strategies based on categories and membership dimension. Second, his study takes vertex coordinates
as a given and constructs the network from these coordinates based on geometry and random choices, whereas
our approach takes the network as a given and studies the kinds of categorical structures needed to support
category-based greedy routing.

In addition to this work by Kleinberg, many other researchers have proposed various different models
for randomly generating graphs that possess properties similar to those in real-world social networks, such
as being scale-free (obeying a power law in the degree distribution) or having small diameter. For instance,
see [5, 6, 22,27,33].

2 Routing in Networks based on Categorical Information

In this section, we introduce a mathematical model of categorical greedy routing. This model defines in a
precise way the routing strategy that we hypothesize people use to route messages in a real-world social
networks, based on prior work [3, 10, 12, 32]. Additionally, we provide some basic definitions and properties
that, when they hold for a network, allow us to guarantee the success of this routing strategy.

2.1 Basic definitions

Abstracting away the social context, let U be the universe of n people defining the potential sources, targets,
and intermediates for message routes, and let G = (U,E) be an undirected graph on U whose m edges
represent pairs of people who can send messages to each other.

Definition 1 (diameter). For any two elements s, t ∈ U , we define sp(s, t) to be the length of the shortest
path between s and t in G. Then the diameter of G, denoted diam(G), is maxs,t∈U sp(s, t), the maximum
length of any shortest path in G. That is, it is the distance between the two vertices that are farthest from
each other in G.

In the greedy routing algorithms that we study, a central concept is a neighborhood, the set of participants
that a message could be forwarded to.

Definition 2 (neighborhood). For s ∈ U , we define the neighborhood, N(s), to be the set of neighbors
of s in G, that is,

N(s) = {u ∈ U | {s, u} ∈ E}.
Moving from graphs to category systems, we define the membership dimension, a numerical measure of

the complexity of a system of categories that is fundamental to our work.

Definition 3 (membership dimension). Let S ⊂ 2U be a set of subsets of U , which represent the abstract
categories that elements of U can belong to. For a given u ∈ U , we define cat(u) ⊂ S to be the set of groups
to which u belongs:

cat(u) = {C ∈ S | u ∈ C}.

4



wu v

Fig. 2. Illustration of the routing rule. v is a viable candidate for forwarding from u because v and w share more category
memberships than u and w.

The membership dimension of S is the maximum number of elements of S that any element of U is contained
in, that is,

memdim(S) = max
u∈U
| cat(u)|.

As discussed in the introduction, there is reason to believe that in real world social networks and group
structures (G,S), both diam(G) and memdim(S) tend to be small.

2.2 The routing strategy

We now describe a simple category-based strategy to route a message from some node s ∈ U to another node
t ∈ U . The strategy is greedy, and therefore follows the greedy routing rule. We clarify the distance function
following the definition:

Definition 4 (greedy routing rule). If a node u receives a message M intended for a destination w 6= u,
then u should forward M to a neighbor v ∈ N(u) that is closer to w than u is, that is, for which d(v, w) <
d(u,w).

As mentioned above, the distance function we study is category-based, and measures the number of
shared groups of S that two nodes belong to. In particular, we define the distance d(s, t) by the formula

d(s, t) = | cat(t) \ cat(s)|.

The backslash denotes the set-theoretic difference operator, so this distance function2 measures the number
of categories of the target that the current node does not share. This number decreases as the number of
shared groups of S between the current node and the target increases. Figure 2 illustrates the routing rule.
We refer to the greedy routing strategy that uses this distance function as ROUTING.

In real-world networks for which memdim(S) is small (as we conjecture), this strategy should be easy
for participants to perform. A small memdim(S) makes it feasible for each participant to be aware of the
categories to which he himself, his neighbors, and the target belong, and therefore allows the participants in
the network to perform greedy routing with only a small cognitive load.

2.3 Successful routing

We now investigate under what conditions ROUTING can be successful in routing a message between any
pair of nodes in a network. We identify several properties of a graph G and associated group structure S
that directly influence the feasibility of the routing strategy.

For routing to be possible, G must be connected. But it seems natural to consider a stronger property,
internal connectivity, which we define below.

Definition 5 (restriction). If G is a graph, S is a category system for G, and C is a category in S, then
the restriction of G to C is the subgraph of G induced by C. That is, it is the graph with C as its vertex set
and with an edge connecting every two vertices in C that are adjacent in G.

2 Note that d might not determine a metric space, because it need not necessarily be symmetric.
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Fig. 3. Two examples with the same set of elements U = {u, v, w, x, y, z} and categories S =
{{u, v, w}, {x, y, z}, {u,w, x, z}, {u, v, y, z}, {v, w, x, y}}. (a) An example that is internally connected, but not shattered:
there is no neighbor of v that shares a region with y that v is not in. (b) An example that is shattered, but not internally
connected: the induced graph of {u,w, x, z} is not connected.

Definition 6 (internal connectivity). A pair (G,S) is internally connected if for each C ∈ S, G restricted
to C is connected.

Figure 3(a) shows an example of an internally connected pair. This is a very natural property for socio-
logical groups to exhibit. People belonging to the same group will have greater cohesiveness, and if a group
fails the condition to be internally connected, then the group can be redefined sensibly to be the set of groups
defined by their connected components.

Definition 7 (shattered). A pair (G,S) is shattered if, for all s, t ∈ U , s 6= t, there are a neighbor
u ∈ N(s) and a set C ∈ S such that C contains u and t, but not s.

Figure 3(b) shows an example of a shattered pair. Note that in this definition, u and t could be the same
node. This property falls out naturally from the instructions given in the real-world routing experiments of
Milgram and others. In order for someone to advance a letter toward a target, there must be an acquaintance
that shares additional interests with the target. Indeed, we now show that the shattered property is necessary
for ROUTING to work.

Lemma 1. If (G,S) is not shattered, then ROUTING does not correctly route messages between all pairs of
vertices.

Proof. Suppose that (G,S) is not shattered. That is, there exists a pair of vertices s and t, such that each
category C that is shared by t and a neighbor of s is also shared by s. If this is the case, then it is not
possible for any neighbor u of s to share strictly more categories with t as s does. Therefore, ROUTING will
fail to route messages from s to t. ut

Furthermore, if G is a tree, then these two properties of being shattered and of internal connectivity
together are in fact sufficient for the routing strategy to always work.

Lemma 2. If G is a tree, and (G,S) is internally connected and shattered, then ROUTING is guaranteed to
route messages correctly between every pair of vertices.

Proof. Let s and t be any two vertices in G. Since G is a tree, there is one simple path from s to t. Let (u, v)
be an edge on the path from s to t.

First, we claim that every category in S that contains both u and t also contains v. This follows from
the assumption that (G,S) is internally connected: any set C ∈ S with u, t ∈ C must also contain v, since v
is on the only path between u and t. Therefore, v is contained in at least as many sets in S with t as u is.
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Fig. 4. The ROUTING strategy does not work in this graph, even though it is internally connected and shattered. This
graph has just four vertices, U = {u, v, w, x}, connected in a cycle, taken together with the set of categories S =
{{u, v, x}, {v, w, x}, {u, v}, {v, w}, {w, x}, {u, x}}. However, ROUTING fails to route from v to x, since u is in 2 sets
with x, v is in 2 sets with x, and w is in 2 sets with x.

However, by the assumption that (G,S) is shattered, v must also share with t a category in S that does
not contain u. Therefore v shares strictly more categories with t than u does, so ROUTING will correctly
forward a message addressed to t from s to v.

Since we made no assumptions about s and t and showed that in each case ROUTING will always forward
a message to the next vertex on a path to t, it follows that ROUTING succeeds for every pair of vertices. ut

Although sufficient for routing in trees, the internally connected and shattered properties are not sufficient
for ROUTING to work on arbitrary connected graphs. Figure 4 shows a counter-example—ROUTING is unable
to route a message from the leftmost to the rightmost node, since there is no neighbor whose distance to the
target is smaller.

3 Existence of Categories

In this section, we consider the following question: Is it possible to construct the family S so that ROUTING
always works and S has low membership dimension?

We show that such a construction is always possible if we are given a connected graph as input. We also
show that it is impossible to construct an S such that ROUTING will work if the graph is not known in
advance.

3.1 Constructing S given G

Given a connected graph G = (U,E) as input, we would like to construct a family S ⊂ 2U so that ROUTING
works, and the membership dimension of S is small. We concentrate foremost on constructions of category
collections that are internally connected and shattered, because of the social significance of these properties.
Nevertheless, even without these properties, we have the following lower bound.

Lemma 3. Let G and S be a graph and a category system, respectively, such that ROUTING works for G
and S. Then memdim(S) ≥ diam(G).

Proof. Let s and t, be any two vertices of G, and let P be the path followed by ROUTING from s to t. An
edge (u, v) can only be on P if d(v, t) < d(u, t). Since d(·, ·) can only take integer values, d(u, t) ≥ d(v, t) + 1.
It follows by induction on the length of P that d(s, t) ≥ |P |.

Now, by the definition of the diameter of a graph, there exists a pair of vertices s, t ∈ U such that
sp(s, t) = diam(G). Again, let P be the path that ROUTING follows from s to t; since the length of this
path must be at least the length of a shortest path between the same two vertices, the length of P is at least
diam(G).
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Fig. 5. The sets Bv for each vertex v in the path. The sets Av are constructed symmetrically.

By definition, d(s, t) = | cat(t) \ cat(s)|, and memdim(S) is the maximum of cat(·) over all elements.
Putting these definitions together with the inequalities we have deduced between d(s, t), |P |, and diam(G),
we have

memdim(S) ≥ | cat(t)| ≥ | cat(t) \ cat(s)| = d(s, t) ≥ |P | ≥ diam(G),

as claimed. ut

For paths, this bound is tight:

Lemma 4. If G is a path, then there exists a category system S for G such that (G,S) is shattered and
internally connected and such that memdim(S) = diam(G).

Proof. Arbitrarily pick one of the two end vertices of G and let us refer to the vertices in G by their distance,
0 to n − 1, from this vertex. For each vertex i, form two sets Ai and Bi, where Ai = {0, . . . , i − 1} and
Bi = {i + 1, . . . , n− 1}, and let S =

⋃
v∈U{Av, Bv}. Figure 5 illustrates this construction.

Each set in S consists of a path of vertices and therefore S is internally connected. S is also shattered,
since for all s and t, s has a neighbor that shares either As or Bs with t, but s is not in these sets. To
calculate memdim(S), note that each vertex i is contained in sets Aj for 0 ≤ j < i and Bk for k < i ≤ n− 1.
Therefore, each vertex is in exactly n− 1 sets, which is diam(G). ut

A path is a special case of a tree. Therefore, whenever the given graph G is a path, it follows from
Lemma 2 and Lemma 4 that it is possible to construct a category system S so that ROUTING works in G
and so that the membership dimension memdim(S) equals diam(G),

There are also some other graphs, G, for which it is relatively easy to set up a category set, S, that is
shattered and internally connected in a way that supports the ROUTING algorithm. For example, in a tree
of height 1 (i.e., a star graph), with root r, we could simply create a separate category containing the root
r and each (leaf) child, plus a singleton category for each node. Every path in this tree clearly supports the
ROUTING strategy. Note, however, that the membership dimension of this category system is high, since
the root belongs to a linear number of categories. So even in this simple example, supporting the ROUTING
strategy and achieving a small membership dimension is a challenge. Moreover, this challenge becomes even
more difficult already for a tree of height 2, since navigating from any leaf, x, to another leaf, y, requires
that the parent of x belong to more categories with y than x—and this must be true for every other leaf, y.
Thus, it is perhaps somewhat surprising that we can construct a set of categories, S, for an arbitrary binary
tree that causes this network to be shattered and internally connected (so the ROUTING strategy works, by
Lemma 2) and such that S has small membership dimension.

Lemma 5. If G is a binary tree, then there exists a category system S such that (G,S) is shattered and
internally connected and such that memdim(S) = O(diam2(G)).

Proof. We show how to construct S from G. Arbitrarily pick a vertex r ∈ U of degree at most 2 and root
the binary tree at r, so each vertex v has left and right children, left(v) and right(v), and let height(v) be
the length of the longest simple path from v to any descendant of v. For each vertex v, we create a set Sv,
containing v’s descendants (which includes v). We further construct two families, Lv and Rv, using helper
sets Lv,i and Rv,i. Let Lv,i (resp., Rvi) consist of v, the vertices in v’s left (right) subtree down to depth i,
and all vertices in v’s right (left) subtree. Then define

Lv = {Lv,i | depth(v) ≤ i ≤ depth(v) + height(left(v))}.
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v

Lv

Fig. 6. Showing the collection of sets Lv for a small example subtree at v.

Figure 6 illustrates this. The family Rv is defined symmetrically. Our S is then defined as

S =
⋃
v∈U
{Sv} ∪ Lv ∪Rv.

By construction, each set in S is a connected subgraph of G and therefore S is internally connected. We can
also see that S is shattered as follows. If s is an ancestor of t, then s’s child u on the path to t is contained
in set Su which contains u, t, and not s. Otherwise, let v be the lowest common ancestor of s and t, and
assume without loss of generality that s in v’s left subtree; then s’s parent is in Lv,depth(s)−1 with t, and s
is not.

We now analyze the membership dimension of this construction. Let v be a vertex, and let ancestors(v)
be the set of v’s ancestors. For u ∈ ancestors(v), v ∈ Su, and v belongs to O(height(u)) sets of Lu and Ru.

Then v belongs to O
(∑

u∈ancestors(v) height(u)
)

sets, which is O(diam2(G)) for any v. ut

We now show how to extend this result to arbitrary trees. Our technique involves an application of weight
balanced binary trees [2, 15].

Definition 8 (weight balanced binary tree). A weight balanced binary tree is a binary tree that stores
weighted items in its leaves. If item i has weight wi, and all items have a combined weight of W then item i
is stored at depth O(log (W/wi)).

Lemma 6. Let T be an n-node rooted tree with height h. We can embed T into a binary tree such that the
ancestor–descendant relationship is preserved, and the resulting tree has height O(h + log n).

Proof. Let nu be the number of descendants of vertex u in T . For each vertex u in T that has more than
two children, we expand the subtree consisting of u and u’s children into a binary tree as follows. Construct
a weight balanced binary tree B on the children of u, where the weight of a child v is nv. We let u be
the root of B. Each child v of u in the original tree is then a leaf at depth log(nu/nv) in B. Performing
this construction for each vertex u in the tree expands T into a binary tree with the ancestor–descendant
relationship preserved from T .

Furthermore, each path from root to leaf in T is only expanded by log(n) nodes, which we can see as
follows. Each parent-to-child edge (u, v) in T is replaced by a path of length O(log(nu/nv)). Therefore for
each path P from root r to leaf l in T , our construction expands P by length O(

∑
(u,v)∈P log(nu/nv)),

which is a sum telescoping to O(log(nr/nl)) = O(log n). Therefore, the height of the new binary tree is
O(h + log n). ut

Combining this lemma with Lemma 2, we get the following theorem.

Theorem 1. Given a tree T , it is possible to construct a family S of subsets such that ROUTING works for
T and memdim(S) = O((diam(T ) + log n)2).

Proof. Arbitrarily root T and embed T in a binary tree B using the method in Lemma 6. Then B has height
O(diam(T ) + log n), and diameter diam(B) = O(diam(T ) + log n). Applying the construction from Lemma 5
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Fig. 7. Two connected graphs on the same vertex set. Given the underlying vertex set, we cannot form a set of groups so
that our greedy strategy routes from s to t in the left graph and from u to t in the right graph.

to B gives us a family SB with memdim(SB) = O((diam(T ) + log n)2). We then construct a family ST , by
removing vertices that are in B but not T from the sets in SB . By construction, (T,ST ) is shattered and
internally connected, and memdim(ST ) ≤ memdim(SB) = O((diam(T ) + log n)2). By Lemma 2, ROUTING
works on T with category sets from ST . ut

We can further extend this theorem to arbitrary connected graphs, which is the main upper bound result
of this paper.

Theorem 2. If G is a connected graph, then there exists a category system S such that ROUTING correctly
routes messages between all pairs of vertices and such that memdim(S) = O((diam(G) + log(n))2).

Proof. Compute a low-diameter spanning tree T of G. This step can easily be done using breadth-first search,
producing a tree with diameter at most 2 diam(G). We then use the construction from Theorem 1 on T . For
greedy routing to work in a graph G, note that it is sufficient to show that it works in a spanning tree of G.
Therefore, since ROUTING works in T , ROUTING also works in G. ut

3.2 An Impossibility Result

It would be nice to construct a good group structure without knowing the structure of the graph in advance.
Unfortunately, as we now show, this is impossible in general.

Theorem 3. Given a set of vertices U , it is impossible to construct a set of groups S such that our greedy
routing strategy works on all connected graphs with U as the vertex set.

Proof. Consider the two graphs in Figure 7. For ROUTING to route from s to t in the left graph, u must
share more groups with t than s does. However, to route from u to t in the right graph, s must share more
groups with t than u does. Both of these events cannot happen simultaneously with one set of groups S.
Therefore ROUTING must fail in one of these two graphs. ut

4 Conclusion and Open Problems

We have presented a construction of groups S on a connected graph G that allows a simple greedy routing
algorithm, utilizing a notion of distance on group membership, to guarantee delivery between nodes in G.
Such a construction will have membership dimension O((diam(G)+log n)2), which demonstrates a reasonably
small cognitive load for the members of G.

There are several directions for future work. For example, while we have shown that the membership
dimension must be minimally the diameter of G, it remains to be shown if the membership dimension must be
the square of the diameter plus a logarithmic factor for arbitrary graphs. We conjecture that the square term
is not strictly needed in the membership dimension in order for ROUTING to work. Our group construction
is performed for a general graph by selecting a low diameter spanning tree and using the presented tree
construction, so it may be possible that there is a group construction that has lower membership dimension
and more efficient routing if it is constructed directly in G.
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In addition, we observe that the groups that we construct in our upper-bound proofs have a natural
nesting property that may correspond to a proximity-based way that people would organically form groups.
It would be nice to verify or refute a hypothesis that people can organize themselves in such groups using
local information and simple rules about how to form groups.

Finally, we took the perspective in this paper that all categories have equal weight with respect to routing
tasks and that participants use a simple greedy routing algorithm based solely on increasing the number of
categories in common with the target. One possible direction for future work would be to define and study
a category-based routing strategy that allows participants to weight various categories higher than others,
as in the work of Bernard et al. [3]. This could include giving higher consideration to smaller or more well
connected groups. Another possible branch of further study might include analysis of the performance of
this model when actors have only partial knowledge of the categories. A comparison could then be made
between route lengths and level of category knowledge.
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