
Privacy-Preserving Group Data Access
via Stateless Oblivious RAM Simulation∗

Michael T. Goodrich † Michael Mitzenmacher‡ Olga Ohrimenko§ Roberto Tamassia§

Abstract

Motivated by cloud computing applications, we study
the problem of providing privacy-preserving access to
an outsourced honest-but-curious data repository for a
group of trusted users. We show how to achieve effi-
cient privacy-preserving data access using a combina-
tion of probabilistic encryption, which directly hides
data values, and stateless oblivious RAM simulation,
which hides the pattern of data accesses. We give a
method with O(log n) amortized access overhead for
simulating a RAM algorithm that has a memory of size
n, using a scheme that is data-oblivious with very high
probability. We assume that the simulation has access
to a private workspace of size O(nν), for any given fixed
constant ν > 0, but does not maintain state in between
data access requests. Our simulation makes use of pseu-
dorandom hash functions and is based on a novel hier-
archy of cuckoo hash tables that all share a common
stash. The method outperforms all previous techniques
for stateless clients in terms of access overhead. We
also provide experimental results from a prototype im-
plementation of our scheme, showing its practicality. In
addition, we show that one can eliminate the depen-
dence on pseudorandom hash functions in our simula-
tion while having the overhead rise to be O(log2 n).

1 Introduction

Companies offering outsourced data storage services
are defining a growing industry, with competitors that
include Amazon, Google, and Microsoft, which are
providing outsourced data repositories for individual or
corporate users, with prices that amount to pennies per
gigabyte stored.

Clearly, the customers of such cloud computing ser-
vices have an interest in security and privacy, particu-
larly for proprietary data. As a recognition of this in-

∗This research was supported in part by the National Science

Foundation under grants 0721491, 0915922, 0953071, 0964473,

1011840, and 1012060, and by the Kanellakis Fellowship at Brown
University.
†Dept. of Computer Science, University of California, Irvine.
‡Dept. of Computer Science, Harvard University.
§Dept. of Computer Science, Brown University.

terest, we note that, as of November 2010, the Amazon
S3 and Microsoft Azure cloud platform have achieved
ISO 27001 certification and Google’s cloud computing
service has SAS70 certification. In spite of these certi-
fications, the companies that provide outsourced data
services nevertheless often have commercial interests in
learning information about their customers’ data. Thus,
the users of such systems should also consider technolog-
ical solutions for maintaining the privacy of their out-
sourced data in addition to the assurances that come
from certifications and formal audits.

Of course, a key component for users to maintain
the privacy of their data is for them to store their
data in encrypted form, e.g., using a group key known
only to the set of users. Simply encrypting the group’s
data is not sufficient to achieve privacy, however, since
information about the data may be leaked by the
pattern in which the users access it. Moreover, in a
multi-user scenario the owner of the data repository
can infer which customers are collaborating on the same
documents. Indeed, such information is leaked even if
the contents of the communications between the users
and the data repository is encrypted.

1.1 Group Access to Outsourced Data. We are
interested in technological solutions to the problem of
protecting the privacy of a group’s data accesses to an
outsourced data storage facility. In this framework, we
assume that a trusted group, G, of users shares a secret
group key, K, with which they encrypt all their shared
data that is stored at a semi-trusted data outsourcer,
Bob. Furthermore, we assume that the users access
their data according to a public indexing scheme, which
Bob knows; hence, we can model Bob’s memory, M , as
in the standard RAM model (e.g., see [1, 8, 16, 18]).

Each time a user, Alice, in G, accesses Bob’s mem-
ory, she specifies an index, i, and Bob responds by re-
turning the contents of the ith memory location, C =
M [i]. Alice then performs the following (atomic) se-
quence of operations:

1. She decrypts C using K, producing the plaintext
value, P = DK(C), that was stored in encrypted
form at index i by Bob.

157 Copyright © SIAM.
Unauthorized reproduction of this article is prohibited.

2. She optionally changes the value of P , depending
on the computation she is performing, producing
the plaintext value, P ′.

3. She encrypts P ′ using a probabilistic encryption
scheme based on K, producing ciphertext C ′ =
EK(P ′).

4. She returns C ′ to Bob and directs him to assign
M [i]← C ′.

By using a probabilistic encryption scheme, the users in
the group G ensure that Bob is computationally unable
to determine the plaintext of any memory cell from that
cell’s contents alone. Also, it is unfeasible for Bob to
determine whether two memory cells store encryptions
of the same plaintext.

1.2 Stateless Oblivious RAM Simulation. In ad-
dition to using probabilistic encryption, the users in the
group G also need to hide their data access patterns
from Bob, so as to avoid inadvertent information leaks.
To facilitate such information hiding, we formulate the
privacy objective of the users in G in terms of the state-
less oblivious RAM simulation problem.

In this framework, we model the group G as a single
user, Alice, who has a register holding the key K and
a CPU with a private memory (which is used only as
a “scratch space”). Alice’s interactions with Bob occur
in discrete episodes in which she reads and writes a set
of cells in his memory, using probabilistic encryption,
as described above, to hide data contents. Alice’s local
memory may be used as a private workspace during any
episode, but it cannot store any information from one
episode to the next. This requirement is meant to model
the fact that Alice is representing a group of users who
do not communicate outside of their shared access to
Bob’s memory. That is, each episode could model a
consecutive set of accesses from different users in the
group G. Moreover, this requirement is what makes this
framework “stateless,” in that no state can be carried
from one episode to the next (other than the state that
is maintained by Bob).

To allow Alice, to perform arbitrary computations
on the data outsourced to Bob, we assume that Alice
is simulating a RAM computation. We also assume
the service provider, Bob, is trying to learn as much
as possible about the contents of Alice’s data from the
sequence and location of all of Alice’s memory accesses.
As mentioned above, however, he cannot see the content
of what is read or written (since it is probabilistically
encrypted). Moreover, Bob has no access to Alice’s
private memory. Bob is assumed to be an honest-but-
curious adversary [11], in that he correctly performs all
protocols and does not tamper with data.

We say that Alice’s sequence of memory accesses
is data-oblivious if the distribution of this sequence
depends only on n, the size of the memory used by the
RAM algorithm she is simulating, the size of her private
memory, M , and the length of the access sequence
itself. In particular, the distribution of Alice’s memory
accesses should be independent of the data values in
the input. Put another way, this definition means
that Pr(S |M), the probability that Bob sees an access
sequence, S, conditioned on a specific configuration of
his memory, M , satisfies Pr(S |M) = Pr(S |M ′), for
any memory configuration M ′ 6= M such that |M ′| =
|M |.

Examples of data-oblivious access sequences for an
array, A, of size n, in Bob’s memory, include the
following:

• Scanning A from beginning to end, accessing each
item exactly once, for instance, to compute the
minimum value in A, which is then stored in A[1].

• Simulating a Boolean circuit, C, with its inputs
taken in order from the bits of A.

• Accessing the cells of A according to a random hash
function, h(i), as A[h(1)], A[h(2)], . . ., A[h(n)], or
random permutation, π(i), as A[π(1)], A[π(2)], . . .,
A[π(n)].

Examples of computations on A that would not be data-
oblivious include the following:

• Scanning A from beginning to end, accessing each
item exactly once, to compute the index i of the
minimum value in A, and then reading A[i] and
writing it to A[1].

• Using a standard heap-sort, merge-sort, or quick-
sort algorithm to sort A. (None of these well-known
algorithms is data-oblivious.)

• Using values in A as indices for a hash table, T ,
and accessing them as T [h(A[1])], T [h(A[2])], . . .,
T [h(A[n])], where h is a random hash function. For
example, consider what happens if the values in A
are all equal and how unlikely the resulting collision
in T would be.

Note that this last example access pattern actually
would be data-oblivious if the elements in A were always
guaranteed to be distinct, assuming the random hash
function, h, satisfies the standard assumptions of the
random oracle model (e.g., see [6]).

1.3 Related Prior Results. Data-oblivious sort-
ing is a fundamental problem (e.g., see Knuth [19]),

158 Copyright © SIAM.
Unauthorized reproduction of this article is prohibited.

with deterministic schemes giving rise to sorting net-
works, such as the impractical O(n log n) AKS net-
work [3, 4, 26, 30] as well as practical, but theoretically-
suboptimal, sorting networks [21, 29]. Randomized
data-oblivious sorting algorithms running in O(n log n)
time and succeeding with high probability1 are stud-
ied by Leighton and Plaxton [22] and Goodrich [13].
In addition, data-oblivious sorting is finding applica-
tions to privacy-preserving secure multi-party computa-
tions [33], and it is used in all the known oblivious RAM
simulation schemes (including the ones in this paper).

In early work on the topic of oblivious simulation,
Pippenger and Fischer [28] show that one can simulate a
Turing machine computation of length n with an obliv-
ious Turing machine computation of length O(n log n),
that is, they achieve an amortized O(log n) time and
space overhead for this oblivious simulation.

More recently, Goldreich and Ostrovsky [12] show
that a RAM computation using space n can be simu-
lated with an oblivious RAM with an amortized time
overhead of O(log3 n) per step of the original RAM al-
gorithm and space overhead of O(log n). Goodrich and
Mitzenmacher [14] improve this result by showing that
any RAM algorithm, A, can be simulated in a data-
oblivious fashion, with very high probability, in an out-
sourced memory so that each memory access performed
by A has a time overhead of O(log2 n), assuming Al-
ice’s private memory has size O(1). Their scheme has a
space overhead of O(1). Incidentally, Pinkas and Rein-
man [27] also claim an oblivious RAM simulation result
having a time overhead of O(log2 n), but there is a flaw
in this version of their scheme, as recently shown by
Kushilevitz et al. [20], who also show that techniques
from [14] can be extended to obtain an overhead of
O(log2 n/ log logn).

In addition to these stateless oblivious RAM sim-
ulation schemes, Williams and Sion [34] show how to
simulate a RAM computation with an oblivious RAM
where the data owner, Alice, has a stateful private mem-
ory of sizeO(

√
n), achieving an expected amortized time

overhead of O(log2 n) using O(n log n) memory at the
data provider. In addition, Williams et al. [35] claim
a method that uses an O(

√
n)-sized private memory

and has O(log n log logn) amortized time overhead, but
Pinkas and Reinman [27] have raised concerns with the
assumptions and analysis of this result.

A few recent approaches consider a stateful RAM
simulation, i.e. where Alice maintains a state from one
episode to another. A RAM simulation by Goodrich
and Mitzenmacher [14] achieves an overhead of O(log n)

1In this paper, we take the phrase “with very high probability”

to mean that the probability is at least 1−O(1/nd), for any given

fixed constant d ≥ 1.

and is oblivious with very high probability assuming a
private cache of size O(nν), for any given fixed constant
ν > 0, which maintains state for Alice. Boneh et al. [7]
propose a scheme that achieves an amortized overhead
of O(1) but using a cache of size O(

√
n log n), which also

maintains state. The scheme in [32] incurs O(log2 n)
amortized cost but isO(

√
n) in the worst case. However,

maintaining a state is essential to the efficiency of
all three of these simulation schemes. Thus, these
methods are not applicable to the problem of providing
privacy-preserving group access to an outsourced data
repository.

Returning to stateless oblivious RAM simulation,
we note that Ajtai [2] has a recent oblivious RAM sim-
ulation result that shows that a polylogarithmic factor
overhead in time and space is possible without cryp-
tographic assumptions about the existence of random
hash functions, as is done in the previous oblivious RAM
simulation cited above. Damg̊ard et al. [9] improve this
result further, showing that a time overhead ofO(log3 n)
is possible for oblivious RAM simulation without using
random functions.

We also note that subsequent to this work,
Goodrich et al. [15] and Shi et al. [31] provide ORAM so-
lutions that target reducing the worst-case access over-
head. In [15] the authors deamortize the oblivious RAM
construction from this paper and achieve O(log n) over-
head on every access. Shi et al. [31] provide a novel
construction that uses O(n log n) server storage and in-
curs O(log3 n) overhead on each access.

In addition to the above-mentioned upper-bound
results, Beame and Machmouchi [5] show that if the
additional space utilized in the simulation (besides the
space for the data itself) is sufficiently sublinear, then
the overhead for oblivious RAM simulation has a super-
logarithmic lower bound. Such bounds don’t apply, of
course, to a simulation that uses O(n) additional mem-
ory, as is common in the efficient schemes mentioned
above.

We provide a summary of the Oblivious RAM
simulation schemes and compare with ours in Table 1.
Note that the schemes that maintain a state cannot be
used to hide a pattern of access by a group of users
which is one of the challenges we address in this paper.

1.4 Our Results. We give an efficient method for
simulating any RAM algorithm, A, in a stateless fash-
ion with a time overhead of O(log n), using an access
sequence that is data-oblivious with very high proba-
bility, where n is the size of the RAM memory. This
result improves a previously best known time overhead
of O(log2 n/ log logn) by Kushilevitz et al. [20] for the
stateless user scenario. Our methods assume that Al-

159 Copyright © SIAM.
Unauthorized reproduction of this article is prohibited.

Table 1: Comparison of schemes for oblivious RAM simulation.

User
Memory

User State
Size

Server Storage
Amortized Access

Overhead

Goldreich-Ostrovsky [12] O(1) - O(n log n) O(log3 n)

Williams-Sion [34] O(
√
n) O(

√
n) O(n log n) O(log2 n)

Goodrich-Mitzenmacher [14] O(1) - O(n) O(log2 n)

Kushilevitz et al. [20] O(1) - O(n) O(log2 n/ log logn)

Stefanov et al. [32] O(
√
n) O(

√
n) O(n) O(log2 n)

Goodrich-Mitzenmacher [14] O(nν) O(nν) O(n) O(log n)

Boneh et al. [7] O
(√
n log n

)
O
(√
n log n

)
O(n) O(1)

Our result O(nν) - O(n) O(logn)

Our result (w/o random oracle) O(nν) - O(n) O(log2 n)

ice has a private memory of size O(nν), for any given
fixed constant ν > 0, but she uses this storage only as
a private “scratch space” to support computations she
performs during each episode (previous methods did not
use such a private memory or assumed such a storage
could hold a considerable amount of state). Alice is not
allowed to maintain state in her private memory from
one episode to the next. Thus, this simulation scheme
is applicable to the problem of simulating access to a
shared data repository by a group of cooperating users
that all share a secret key. Moreover, the assumption
about the size of Alice’s scratch space is motivated by
the fact that even handheld devices have a reasonable
amount of local memory. For example, if we were to
set ν = 1/4, then our simulation would allow a collec-
tion of devices having memories with sizes on the order
of one megabyte to support privacy-preserving access to
an outsourced data repository whose size is on the order
of one yottabyte.

Like the previous oblivious RAM simulation
schemes mentioned above, our scheme uses a hierarchy
of hash tables, together with a small set of pseudoran-
dom hash functions, to obfuscate the access pattern of
the algorithm A (which need not be specified in ad-
vance). The main idea of our scheme is to maintain
these hash tables as cuckoo hash tables that all share a
single stash of size O(log n). While conceptually simple,
this approach requires a new, non-trivial analysis for a
set of cuckoo tables sharing a common stash. The idea
of a shared stash is novel to this paper but has already
been cited in recent work by [14] and [20] for a single-
user scenario. In addition, an important technical detail
that simplifies our construction is that we make no use
of so-called “dummy” elements, whereas the previous
schemes used such elements.

In practice, the set of pseudorandom hash functions
could be implemented using, e.g., keyed SHA-256 func-
tions [10]. Nevertheless, we also show that our con-
struction can be used to simulate a RAM computation
with an overhead of O(log2 n) without the use of pseu-
dorandom functions, which may be of some theoretical
interest.

Finally, we provide experimental results for a simu-
lation of our scheme, which show the practical effective-
ness of our approach. In particular, our experimental
prototype simulates the interaction between a user and
a data repository allowing us to compare the theoret-
ical overhead of our approach of O(log n) to what we
can expect in practice. We show that amortized over-
head of each request does not exceed 2 logn additional
accesses to data repository for n ≥ 105 items. Addition-
ally, we give the threshold values at which the shared
stash becomes effective for our scheme.

2 Theory Background

For our results, we rely on general methods for data-
oblivious simulation of a non-oblivious algorithm on
a RAM. As mentioned above, the seminal theoretical
framework for such simulations was presented by Gol-
dreich and Ostrovsky [12], who store keys in a hierarchy
of hash tables of increasing size, each being twice the
size of the previous one. For n items there are O(log n)
levels, each level being a standard hash table with 2i

buckets for some i, and each bucket containing up to
O(log n) keys in order to cope with collisions within the
hash table. In this construction the total size of all the
tables is O(n log n). To perform a lookup, the first level
is scanned sequentially, and in each of the other levels,
a bucket chosen by the hash function for that level act-
ing on the key (or, if the item is found at an earlier

160 Copyright © SIAM.
Unauthorized reproduction of this article is prohibited.

level, a random dummy key) is scanned. The item is
subsequently re-encrypted and re-inserted into the first
level. It is important to note that at all levels a bucket
is scanned even if the key is found early, to maintain
obliviousness. As levels fill, keys must be shifted down
to subsequent levels. The details of the original scheme
are rather complex; for further details see the original
paper [12].

Recently, a more efficient simulation approach for
this problem was outlined by Goodrich and Mitzen-
macher [14]. The primary difference in this new line
of work is the use of cuckoo hash tables in place of the
standard hash tables used originally in [12]. We there-
fore now present some background on cuckoo hashing.

As introduced by Pagh and Rodler [25], in standard
cuckoo hashing we utilize two tables, each with m cells,
with each cell capable of holding a single key. We make
use of two hash functions h1 and h2 that we assume
can be modeled as completely random hash functions.
The tables store up to n items, where m = n(1 + ε) for
some constant ε > 0, yielding a load of (just) less than
1/2; keys can be inserted or deleted over time as long as
this restriction is maintained. A key x (which we may
also refer to as an “item” or “element”) that is stored
in the hash tables must be located at either h1(x) or
h2(x). As there are only two possible locations for a
key, lookups take constant time. To insert a new key x,
we place x in the cell h1(x). If the cell had been empty,
the operation is complete. Otherwise, key y previously
in the cell is moved to h2(y). This may in turn require
another key to be moved, and so on, until a key is placed
in an empty cell. We say that a failure occurs if, for an
appropriate constant c, after c log n steps this process
has not successfully terminated. Suppose we insert an
nth key into the system. It is known that the expected
time to insert a new key is bounded above by a constant
and the probability that a new key causes a failure is
Θ(1/n2) (both results depend on ε).

There are several natural variations of cuckoo hash-
ing, many of which are described in a survey article by
Mitzenmacher [23]. For our purposes, it suffices to un-
derstand standard cuckoo hashing, along with the idea
of a stash [17].

A stash represents additional memory where keys
that would cause a failure can be placed in order to avoid
the failure; with a stash, a failure occurs only if the stash
itself overflows. As shown in [17], the failure probability
when inserting the nth key into a cuckoo hash table can
be reduced to O(1/nk+2) for any constant k by using
a stash that can hold k keys. Using this allows us to
use cuckoo hash tables for any polynomially bounded
number of inserts and deletions using only a constant-
sized stash. To search for an item, we must search both

the two table locations and the k stash locations. In the
context of oblivious simulation, we can search the stash
simply by reading each stash location.

As we have stated, however, in order to perform our
oblivious simulation, we will make use of a hierarchy of
cuckoo tables to hold n items. The smallest of these
hash tables may be much smaller than n, which can
lead to a potential leakage of information in our setting
if we are not careful. For example, if the smallest hash
table is of size x, then even using a stash of size k
leads to a failure probability of O(1/xk+2). If x is for
example polylogarithmic in n, then for any constant k,
the failure probability is Ω(1/n), and therefore over the
insertion of n items, we would expect failures to occur.
Our solution to this problem is to introduce a stash that
is shared by all the cuckoo tables; any one of them can
utilize a great deal of this stash, but as we show in the
following theorem, it is nevertheless highly unlikely that
the collective overflows from all the cuckoo tables will
also overflow this stash.

Theorem 2.1: Given a hierarchy of cuckoo hash tables
T1, . . . , T`, where Ti contains O(2i log n) elements and
` = O(log n), a shared stash of size O(log n) is enough
to avoid overflows with high probability.

Proof. The probability that the stash for a cuckoo hash
table of size x cells (where x is Ω(log7 n)) exceeds a
total size s is x−Ω(s) [14]. Further, as long as the hashes
for a cuckoo hash table at each level are independent,
we can treat the required stash size at each level as
independent, since the number of items placed in the
stash at a level is then a random variable dependent
only on the number of items appearing in that level.

Now consider any point of our construction and let
Si be the number of items at the ith level that need
to be put in the stash. It is apparent that Si has
mean less than 1 and tails that can be dominated by
a geometrically decreasing random variable. This is
sufficient to apply standard Chernoff bounds. Formally,
let X1, X2, . . . , X` be independent random variables
with mean 1 geometrically decreasing tails, so that Xi =
j with probability 1/2j for j ≥ 1. Then the calculations
of [14] imply that the Xi stochastically dominate the
Si, and we can now apply standard Chernoff bounds for
these random variables. Specifically, noting that Xi can
be interpreted as the number of fair coin flips until the
first heads, we can think of the sum of the Xi as being
the number of coin flips until the `th head, and this
dominates the number of items that need to be placed
in the stash at any point. Since ` = O(log n) then for
any constant γ1 there exists a corresponding constant
γ2 such that the `th head occurs by the (γ2 log n)’th flip
with probability at least 1 − 1/nγ1 . (See, for example,

161 Copyright © SIAM.
Unauthorized reproduction of this article is prohibited.

[24, Chapter 4].) Hence,

Pr

(∑̀
i=1

Si > `

)
≤ 1−Pr

(∑̀
i=1

Xi ≤ γ2 log n

)
≤ 1/nγ1 .

Therefore we can handle any polynomial number of
insertions with high probability, using a stash of size
only O(log n) that holds items from all levels of our
construction.

3 Simulating a RAM Algorithm Obliviously

In this section, we describe and analyze two schemes for
stateless oblivious RAM simulation.

3.1 Simulation Using Pseudorandom Func-
tions. We begin with a construction that uses pseudo-
random functions and is secure against a polynomially
bounded adversary.

Given a RAM algorithm, A, the main goal of our
oblivious simulation of A is to hide the pattern of
memory accesses that are made by A. As mentioned in
Section 2, we follow the general framework introduced
by Goldreich and Ostrovsky [12], which uses a hierarchy
of hash tables.

Let n be the number of memory cells of the RAM.
We view each such cell as an item consisting of a pair
(x, v), where x ∈ {0, · · · , n − 1} is the index and v is
the corresponding value. Our data structure stored at
the server has three components, illustrated in Figure 1.
The first component is a cache of size O(log n), denoted
by Q. The second component is a hierarchy of cuckoo
hash tables, T = (T1, . . . , TL), where the size of T1 is
twice the size of Q, each table Ti+1 is twice the size of
table Ti, and TL is the first table in the sequence of size
greater than or equal to n. Thus, L is O(log n). The
third component is a stash, S, shared between all the
above cuckoo tables.

RAM items are stored in the data structure in en-
crypted form. We use a semantically secure probabilis-
tic encryption scheme, which results in a different ci-
phertext for the same item each time it is re-encrypted.
Also, the server is unable to determine whether two ci-
phertexts correspond to the same item. The stash S is
handled in a similar manner whenever we search in it
for an item.

We use a family of pseudorandom functions param-
eterized by a secret value, ki, for each table, Ti, such
that no value ki is revealed to the server. In particular,
ki is stored in encrypted form for each table Ti, so that
each user can read ki, decrypt it, and then use it to pro-
vide the two hash functions, hi1 and hi2, employed by the
cuckoo table, Ti, to determine the location of items. In
particular, a memory item (x, v) is mapped to locations
hi1(x) and hi2(x) in Ti by the cuckoo scheme (and stored

in one of these two locations or in the common stash,
S).

The data structure is initialized by storing all the n
RAM items into cuckoo table TL. Each memory access
defined by algorithm A corresponds to an episode in our
simulation. An episode consists of two phases, an access
phase and a rebuild phase.

Suppose algorithm A calls for an access to memory
item (x, v). The access phase consists of a search for
x in the cache, Q, then in the stash, S, and continues
with a two-cell cuckoo lookup in each of T1 to TL until
we find the first item with index x. Once we have found
this item, we have achieved the goal of our search, of
course. Nevertheless, for the sake of obliviousness, we
simulate continuing the search throughout the entire
data structure. Namely, we always traverse completely
Q and S, and we perform two-cell cuckoo accesses
in tables T1 through TL. However, after the item
is found, we simply access two distinct, independent
uniformly chosen random locations in each remaining
cuckoo table.

Once we have completed the access phase, which
takes O(log n) time, we then switch to the rebuild phase.
We begin by adding or replacing a copy of the found
item into cache Q, possibly changing its value in the
case of a write operation. To assure obliviousness, we
exhaustively scan Q in a sequential manner and re-
encrypt and rewrite all its items. Thus, the server
cannot distinguish which item was accessed and whether
it was modified.

We note briefly that if the item is in the stash, we
can obliviously remove it from the stash when placing
it into Q, to help make sure the stash does not overflow.
One natural approach is to have stash cells have an
associated “clean” or “dirty” bit, which is encrypted
along with the rest of the item. A clean cell can store
an item; a dirty cell is currently being utilized. When
an item is found and replaced into Q, we can set the cell
to clean in the stash.

After adding enough items, cache Q will eventually
overflow. We remedy the overflow by moving all the
elements of Q to cuckoo table T1, including those
associated with empty locations. However, in order to
maintain obliviousness, we do not wait for an overflow
to occur and instead perform the move after a number
of accesses equal to the size of Q. The moving down of
elements cascades down through the hierarchy of cuckoo
tables at a fixed schedule by periodically moving the
elements of level i − 1 into Ti at the earliest time Ti−1

could have become full. Note that this may include
moving some of the elements from stash S, i.e. elements
that did not fit in Ti−1 the last time it was built. Now
suppose that we are going to move elements into table Ti

162 Copyright © SIAM.
Unauthorized reproduction of this article is prohibited.

Q Scache shared stash

cu
ck

o
o

 t
ab

le
s

…

T1

T2

T3

T4

Figure 1: Illustration of the data structure stored at the server for oblivious RAM simulation using pseudorandom
functions. In the access phase of the simulation, all the items in the cache, Q and the stash, S, plus two items
for each cuckoo table Ti are read by the server. The locations accessed by the server are visualized as gray-filled
rectangles.

for the second time, then we instead move the elements
into table Ti+1. Moreover, we continue applying this
rule for i = 1, 2, . . ., until we are copying the elements
into a table for the first time or we reach TL. Thus, the
process of copying elements into a cuckoo table occurs
at deterministic instances, depending only on the place
we currently are at in the access sequence specified by
algorithm A.

In order to move m elements from level i into a
cuckoo hash table Ti+1 obliviously, we use an algorithm
of [14] to obliviously sort the items using O(m) accesses
to the outsourced memory, assuming we have a private
workspace of size O(nν), for some constant ν > 0, and
m ≥ log n, which is always true in our case. This
allows us to remove duplicate items and use another
algorithm of [14] to obliviously construct a cuckoo
table of size m and an associated stash, S′, of size
O(log n) in O(m) time, with very high probability, while
utilizing the private workspace of size O(nν). Given this
construction, we then read S and S′ into our private
workspace, remove any duplicates and merge them into
a single stash S (which will succeed with very high
probability, based on Theorem 2.1), and write S back
out in a straightforward oblivious fashion. Note that
in order to assure obliviousness in subsequent lookups,
table Ti+1 is rebuilt using two new pseudorandom hash
functions selected by the client by replacing parameter
ki+1 with a new secret value.

Theorem 3.1: Our data-oblivious RAM simulation of
memory of size n using pseudorandom functions has an
amortized time overhead of O(log n), with very high
probability, using O(1) space overhead and assuming

that a client has access to private workspace of size
O(nν), ν > 0.

3.2 Simulation Without Pseudorandom Func-
tions. We can adapt our simulation to avoid the use of
random functions by employing an elegant trick due to
Damg̊ard et al. [9], albeit now further simplified to avoid
the use of dummy nodes, which would add an extra level
of complication that our scheme doesn’t require.

The main idea is to place a complete binary tree, B,
on top of all the memory cells used in the algorithm A,
and access each memory cell x by performing a binary
search from the root of B to the leaf node corresponding
to x. That is, we associate each memory cell item used
by A with a leaf of B, define B to have height dlog ne,
and include information at each internal node v of B so
that a search for x can determine in O(1) time whether
to proceed with the left child or right child of v. In our
case, we store each of the nodes of B in our hierarchy
of tables, similar to what is described above, with the
shared stash, S, the cache, Q, and the set of cuckoo
tables, T1 to TL. (See Figure 2.)

The main difference of this scheme with that given
above is that in this case we no longer use random
hash functions, hi1 and hi2, to determine the locations
of each element x in a cuckoo table Ti. Instead,
we simply choose two distinct, independent uniformly
random locations, i1 and i2, in the respective two sides
of Ti and associate these with x as a tuple (x, i1, i2),
which now represents the element x in our table.

Initially, all the nodes of B are stored in this way
in TL, and for each such internal node v, we include

163 Copyright © SIAM.
Unauthorized reproduction of this article is prohibited.

Q Scache shared
stash

cu
ck

o
o

 t
ab

le
s

…

T1

T2

T3

T4 …

B:r root r

Memory addresses for the RAM algorithm, A

Figure 2: Illustration of the data structure stored at the server for oblivious RAM simulation without using
pseudorandom functions. The binary tree is shown conceptually on the right and in terms of the storage locations
of its nodes on the left. The storage locations for the nodes of the binary tree, B, are visualized as gray-filled
rectangles. In the access phase of the simulation for a non-root node, all the items in the cache, Q and the stash,
S, plus two items for each cuckoo table Ti are read by the server.

in v’s record pointers to the two random indices (and
table index) for v’s left child and pointer to the two
random indices (and table index) for v’s right child.
Such pointers can be built obliviously by O(1) calls
to oblivious sorting once we have placed all the nodes
into TL. Moreover, we will maintain such pointers
throughout our simulation. In addition, we store the
root r of B separately, as it is accessed in every step of
our simulation.

Let us consider, therefore, how an access now
occurs. The critical property, which we maintain
inductively, is that, for each node v in B, which, say,
is stored in Tj as its earliest (highest) location in our
hierarchy, all the ancestors of B are stored in the tables
T1, . . . , Tj , or in r, S, or Q.

Our access for a memory cell x now occurs as a
root-to-leaf search in B. We begin by searching in r
to identify the two random indices and the table index
for each of r’s children. Based on the value of x, we
need to search next for either the left or right child of
r, so let i1 and i2 be the two random indices for this
node, w, and let j be the index of the highest table Tj
storing w (with j = 0 if w ∈ Q and j = −1 if w ∈ S).
We next search in S and Q for w, and then proceed in
T1 through TL. Of course, we already know the table
where we will find w. So, for each table Tk, k 6= j, we
simply access two random locations in Tk for the sake of
obliviousness. For Tj itself, we look in locations Tj [i1]
and Tj [i2] to find the cell containing the record for w. If
w is not a leaf node, we repeat the above lookup search

for the appropriate child of w that will lead us to the
node storing x.

Once we have done our lookup for x, and
have accessed a root-to-leaf set of nodes, W =
{w1, w2, . . . , wlogn} in the process, we perform a rebuild
phase for W , as in the above construction based on ran-
dom hash functions, except that we use random loca-
tions for all the nodes we move rather than use random
functions. Note that by our induction hypothesis, if we
move a set of nodes into a table Ti, then all the point-
ers for these nodes are either in Ti itself (hence, can
be identified after O(1) calls to oblivious sorting, which
takes O(n) memory accesses by the algorithm of [14])
or at lower levels in the hierarchy (hence, these pointers
don’t change by our move into Ti). Moreover, all the
nodes of W move as a group. Thus, any root-to-leaf
path in B must be stored in the tables T1 to TL, plus
the queue Q and stash S, in a way that satisfies our
induction hypothesis.

The lookup for an element x now requires searching
for O(log n) nodes of B in our hierarchy, which costs
an amortized overhead of O(log n) time each. Thus,
each lookup costs us an amortized overhead of O(log2 n)
time. The obliviousness of this simulation follows
from an argument similar to that given above for
the obliviousness for our method that uses random
hash functions. Therefore, we can perform a stateless
oblivious RAM simulation without using random hash
functions with an amortized time overhead of O(log2 n),

164 Copyright © SIAM.
Unauthorized reproduction of this article is prohibited.

assuming a private workspace of size O(nν) for some
constant ν > 0.

Theorem 3.2: Our data-oblivious RAM simulation of
memory of size n without pseudorandom functions has
an amortized time overhead of O(log2 n), with very high
probability, using O(1) space overhead and assuming
that a client has access to private workspace of size
O(nν), ν > 0.

4 Performance

In this section, we discuss the practical performance of
our oblivious RAM simulation scheme.

4.1 ORAM Simulator. We have implemented a
prototype of our method for oblivious RAM simulation
based on pseudorandom functions (Section 3.1) with the
goal of estimating the access overhead associated with
every request in practice.

Our prototype simulates an interaction between a
user and a data repository. The user outsources n data
items to the data repository and issues a sequence of
item requests. Each data item is of size b and the
user is assumed to have a private workspace that can
fit p = O(

√
n) items. This space is used only during

rebuilds hence our system can be extended to a multi-
user case. We recall that we store into the repository
a stash S of size s log n, a cache Q of size log n and
a hierarchy of O(log n) cuckoo hash tables, T1, · · · , TL,
where L is the smallest i such that 2i−1 log n ≥ n. Each
table Ti, i < L, consists of two hash tables of size
(1+ε)2i−1 log n with hash functions hi1 and hi2. Table TL
contains two hash tables of size (1+ε)n, enough to store
all n items. We have selected parameters ε = 0.1 and
s = 2 based on our stash experiments below. We use
algorithms from [14] to implement oblivious external-
memory merge sort and oblivious construction of a
cuckoo hash table via map-reduce simulation.

Our prototype is implemented in Java. To generate
hash functions we use a variation of a method recom-
mended in [10], where

hi1(x) = SHA256(x || seed1
i) mod n,

and similarly for hi2. The seeds are 64-bit long and
are obtained using a SHA256 hash chain starting from
an initial seed. The simulation starts with all n items
placed in the last cuckoo table TL. The user then
generates a sequence of random requests that ends after
the reshuffle of the last table, TL, is performed. During
the simulation, we count the number of read and write
accesses by the user to the data repository. In Table 2a,
we compare the average number of accesses for several
values of n versus log n, the amortized asymptotic

overhead of our approach. From the experimental
results, we see that for n ≥ 105 average overhead per
request is less than 2 logn. Since the performance
of oblivious sort depends on the size of the user’s
workspace, p, we experiment with p =

√
n and p = 2

√
n.

Finally, we compare the amortized overhead of our
method with the results reported by Stefanov et al. [32]
in Table 2b. First, note that our method was targeted to
a multi-user scenario and hence clients are not allowed
to maintain a state between requests while this is not
the case for the stateful method in [32]. We observe that
our stateless approach achieves practical results that are
comparable to those obtained in [32] using the more
powerful stateful model. Moreover, since the size of the
state impacts the performance of the method of [32],
they use blocks of size up to 16MB in their simulation
to achieve a smaller overhead.

4.2 Stash Size. In this section we estimate the size of
the stash S needed to avoid failures during the rebuild
phase. A failure can happen when we move elements
from tables T1, . . . , Ti−1 to Ti and the stash overflows,
in which case we need to build table Ti again. We show
that for a small constant s, a stash of size s log n, is
enough to avoid failures.

We ran our simulation for up to n = 106 items and
a varying number of requests. We use a value of ε of 0.1
and 0.2. For each experiment, we recorded the lowest
size of the shared stash, S, that is needed to avoid a
failure. In Figure 3, we show the fraction of trials (out
of 2000) that result in a stash overflow. We have that
overflows happen more frequently with ε = 0.1 than
with ε = 0.2, as one would expect since smaller tables
lead to more collisions. For both values of ε we found
that a stash of size less than log n was enough to avoid
overflows completely. For the implementation above, we
pick ε = 0.1 and s = 2 since the rebuild of larger tables,
i.e. with ε > 0.1, is more expensive than reading a stash
of size 2 log n on every request.

References

[1] A. V. Aho, J. E. Hopcroft, and J. D. Ullman. Data
Structures and Algorithms. Addison-Wesley, Reading,
MA, 1983.

[2] M. Ajtai. Oblivious RAMs without cryptographic
assumptions. In Proc. ACM Symposium on Theory of
Computing (STOC), pages 181–190. ACM, 2010.

[3] M. Ajtai, J. Komlós, and E. Szemerédi. An O(n logn)
sorting network. In Proc. ACM Symposium on
Theory of Computing (STOC), pages 1–9, 1983.

[4] M. Ajtai, J. Komlós, and E. Szemerédi. Sorting in
c logn parallel steps. Combinatorica, 3:1–19, 1983.

165 Copyright © SIAM.
Unauthorized reproduction of this article is prohibited.

n log n
Avg request overhead
p =
√
n p = 2

√
n

10,000 14 42 29
100,000 17 31 25

1,000,000 20 28 25
10,000,000 24 28 27

(a)

n
Avg request overhead
[32] Our Result

216 18.4 22
218 19.9 23
220 21.5 24
222 23.2 26

(b)
Table 2: Average number of accesses made by our stateless ORAM simulator with n data items and private
workspace of size p on a random request sequence that ends as soon as last table TL is rebuilt. Each data item
is of size b = 10KB. (a) Influence of the size of the private workspace on the performance. (b) Comparison with
results from a stateful RAM simulation in [32] using p = 4

√
n.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 2 4 6 8 10

F
a
il

u
re

 r
a
te

Stash size

n=10K r=10K

n=10K r=20K

n=100K r=100K

n=100K r=200K

n=1000K r=1000K

n=1000K r=2000K

(a) ε = 0.1

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 1 2 3 4 5 6 7 8 9

F
a
il

u
re

 r
a
te

Stash size

n=10K r=10K

n=10K r=20K

n=100K r=100K

n=100K r=200K

n=1000K r=1000K

n=1000K r=2000K

(b) ε = 0.2

Figure 3: Failure rate in 2000 trials for n items and r requests with (a) ε = 0.1 and (b) ε = 0.2. The variable K
in the charts denotes 1000.

[5] P. Beame and W. Machmouchi. Making RAMs
oblivious requires superlogarithmic overhead.
Electronic Colloquium on Computational Complexity,
Report TR10-104, 2010.
http://eccc.hpi-web.de/report/2010/104/.

[6] M. Bellare and P. Rogaway. Random oracles are
practical: a paradigm for designing efficient protocols.
In Proc. ACM Conference on Computer and
Communications Security (CCS), pages 62–73, New
York, NY, USA, 1993. ACM.

[7] D. Boneh, D. Mazieres, and R. A. Popa. Remote
oblivious storage: Making oblivious RAM practical.
Technical report, 2011.
http://dspace.mit.edu/handle/1721.1/62006.

[8] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and
C. Stein. Introduction to Algorithms. MIT Press,
Cambridge, MA, 2nd edition, 2001.

[9] I. Damg̊ard, S. Meldgaard, and J. B. Nielsen.
Perfectly secure oblivious RAM without random
oracles. In 8th Theory of Cryptography Conference
(TCC), pages 144–163, 2011.

[10] Y. Dodis and P. Puniya. Getting the best out of
existing hash functions; or what if we are stuck with

SHA? In Applied Cryptography and Network Security
(ACNS), pages 156–173, 2008.

[11] O. Goldreich, S. Micali, and A. Wigderson. How to
play ANY mental game. In Proc. ACM Symposium
on Theory of Computing (STOC), pages 218–229,
New York, NY, USA, 1987. ACM.

[12] O. Goldreich and R. Ostrovsky. Software protection
and simulation on oblivious RAMs. J. ACM,
43(3):431–473, 1996.

[13] M. T. Goodrich. Randomized Shellsort: A simple
oblivious sorting algorithm. In Proc. ACM-SIAM
Symposium on Discrete Algorithms (SODA), pages
1–16. SIAM, 2010.

[14] M. T. Goodrich and M. Mitzenmacher.
Privacy-preserving access of outsourced data via
oblivious RAM simulation. In Proceedings of ICALP,
2011. to appear.

[15] M. T. Goodrich, M. Mitzenmacher, O. Ohrimenko,
and R. Tamassia. Oblivious RAM simulation with
efficient worst-case access overhead. CoRR,
abs/1107.5093, 2011. To appear in Proc. ACM Cloud
Computing Security Workshop (CCSW) 2011.

[16] M. T. Goodrich and R. Tamassia. Algorithm Design:

166 Copyright © SIAM.
Unauthorized reproduction of this article is prohibited.

Foundations, Analysis, and Internet Examples. John
Wiley & Sons, New York, NY, 2002.

[17] A. Kirsch, M. Mitzenmacher, and U. Wieder. More
robust hashing: cuckoo hashing with a stash. SIAM
J. Comput., 39:1543–1561, 2009.

[18] J. Kleinberg and E. Tardos. Algorithm Design.
Addison-Wesley, Inc., Boston, MA, USA, 2005.

[19] D. E. Knuth. Sorting and Searching, volume 3 of The
Art of Computer Programming. Addison-Wesley,
Reading, MA, 1973.

[20] E. Kushilevitz, S. Lu, and R. Ostrovsky. On the
(in)security of hash-based oblivious RAM and a new
balancing scheme. Cryptology ePrint Archive, Report
2011/327, 2011. http://eprint.iacr.org/. To
appear in SODA 2012.

[21] F. T. Leighton. Introduction to Parallel Algorithms
and Architectures: Arrays, Trees, Hypercubes.
Morgan-Kaufmann, San Mateo, CA, 1992.

[22] T. Leighton and C. G. Plaxton. Hypercubic sorting
networks. SIAM J. Comput., 27(1):1–47, 1998.

[23] M. Mitzenmacher. Some open questions related to
cuckoo hashing. In Proc. European Symposium on
Algorithms (ESA), pages 1–10, 2009.

[24] M. Mitzenmacher and E. Upfal. Probability and
Computing: Randomized Algorithms and Probabilistic
Analysis. Cambridge University Press, New York,
NY, USA, 2005.

[25] R. Pagh and F. Rodler. Cuckoo hashing. Journal of
Algorithms, 52:122–144, 2004.

[26] M. Paterson. Improved sorting networks with
O(logN) depth. Algorithmica, 5(1):75–92, 1990.

[27] B. Pinkas and T. Reinman. Oblivious RAM revisited.
In T. Rabin, editor, Advances in Cryptology
(CRYPTO), volume 6223 of Lecture Notes in
Computer Science, pages 502–519. Springer, 2010.

[28] N. Pippenger and M. J. Fischer. Relations among
complexity measures. J. ACM, 26(2):361–381, 1979.

[29] V. R. Pratt. Shellsort and sorting networks. PhD
thesis, Stanford University, Stanford, CA, USA, 1972.

[30] J. Seiferas. Sorting networks of logarithmic depth,
further simplified. Algorithmica, 53(3):374–384, 2009.

[31] E. Shi, H. Chan, E. Stefanov, and M. Li. Oblivious
RAM with O((logN)3) worst-case cost. Cryptology
ePrint Archive, Report 2011/407, 2011.
http://eprint.iacr.org/. To appear in AsiaCrypt
2011.

[32] E. Stefanov, E. Shi, and D. Song. Towards Practical
Oblivious RAM. CoRR, abs/1106.3652, June 2011.

[33] G. Wang, T. Luo, M. T. Goodrich, W. Du, and
Z. Zhu. Bureaucratic protocols for secure two-party
sorting, selection, and permuting. In Proc. ACM
Symposium on Information, Computer and
Communications Security (ASIACCS), pages
226–237, New York, NY, USA, 2010. ACM.

[34] P. Williams and R. Sion. Usable PIR. In NDSS. The
Internet Society, 2008.

[35] P. Williams, R. Sion, and B. Carbunar. Building
castles out of mud: practical access pattern privacy

and correctness on untrusted storage. In Proc. ACM
Conference on Computer and Communications
Security (CCS), pages 139–148, New York, NY, USA,
2008. ACM.

167 Copyright © SIAM.
Unauthorized reproduction of this article is prohibited.

