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Abstract. We study the question of how to shuffle n cards when faced with an
opponent who knows the initial position of all the cards and can track every card
when permuted, except when one takes K < n cards at a time and shuffles
them in a private buffer “behind your back,” which we call buffer shuffling. The
problem arises naturally in the context of parallel mixnet servers as well as other
security applications. Our analysis is based on related analyses of load-balancing
processes. We include extensions to variations that involve corrupted servers and
adversarially injected messages, which correspond to an opponent who can peek
at some shuffles in the buffer and who can mark some number of the cards. In
addition, our analysis makes novel use of a sum-of-squares metric for anonymity,
which leads to improved performance bounds for parallel mixnets and can also
be used to bound well-known existing anonymity measures.

1 Introduction

Suppose an honest player, Alice, is playing cards with a card shark, Bob, who has a
photographic memory and perfect vision. Not trusting Bob to shuffle, Alice insists on
shuffling the deck for each hand they play. Unfortunately, Bob will only agree to this
condition if he gets to scan through the deck of n cards before she shuffles, so that he
sees each card and its position in the deck, and if he also gets to watch her shuffle. It
isn’t hard to realize that, even though several well-known card shuffling algorithms, like
random riffle shuffling [1], top-to-random shuffling [4], and Fisher-Yates shuffling [10],
are great at placing cards in random order, they are terrible at obscuring that order from
someone like Bob who has memorized the initial ordering of the cards and is watching
Alice’s every move. Thus, these algorithms on their own are of little use to Alice. What
she needs is a way to shuffle that can place cards in random order in a way that hides
that order from Bob. We refer to this as the anonymous shuffling problem. Our goal in
this paper is to show that, as long as Alice has a private buffer where she can shuffle a
subset of the cards, she can solve the anonymous shuffling problem.

Our main motivation for studying the anonymous shuffling problem in this paper
comes from the problem of designing efficient parallel mixnets. A parallel mix network
(or mixnet) is a distributed mechanism for connecting a set of n inputs with a set of
n outputs in a way that hides the way the inputs and outputs are connected. This con-
nection hiding is achieved by routing the n inputs as messages through a set of M mix
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Fig. 1. (a) A parallel mixnet with n = 16 inputs and M = 4 mix servers. Shaded boxes illustrate
mix servers, whose internal permutations are hidden from the adversary. The adversary is allowed
to see the global permutation performed in each round. (b) A corrupted parallel mixnet, where
s = 3 servers are not colluding with the adversary, who has injected f = 3 fake messages into
the network.

servers in a series of synchronized rounds. In each round, the n inputs are randomly as-
signed to servers so that each server is assigned K = n/M messages. Then, each server
randomly permutes the messages it receives and performs an encryption operation so
that it is computationally infeasible for an eavesdropper watching the inputs and out-
puts of any (honest) server to determine which inputs are matched to the outputs. The
mixnet repeats this process for a specific number of rounds. The goal of the adversary
in this scenario is to determine (that is, link) one or more of the input messages with
their corresponding outputs, while the mixnet shuffles so as to reduce the linkability
between inputs and outputs to an acceptably small level. (See Figure 1a.)

Each of the servers is assumed to run the mixnet protocol correctly, which is
enforced using cryptographic primitives and public sources of randomness (e.g.,
see [2,6,9,12,13]). In some cases, we also allow for a corrupted parallel mixnet, where
some number s ≥ 1 of the servers behave properly, but the remainingM−s servers col-
lude with the adversary so as to reveal how they are internally permuting the messages
they receive. In addition, the adversary may also be allowed to inject some number,
f < n, of fake messages that are marked in a way that allows the adversary to deter-
mine their placement at any point in the process, including in the final output ordering.
(See Figure 1b.) In this paper, we are interested in studying a class of algorithms for
anonymous shuffling, to show how the analysis of these algorithms can lead to im-
proved protocols for uncorrupted and corrupted parallel mixnets.

1.1 Previous Related Work

Chaum [3] introduced the concept of mix networks for achieving anonymity in messag-
ing, and this work has led to a host of other papers on the topic (e.g., see [12,13]).

Golle and Juels [6] study the parallel mixing problem, where mix servers process
messages synchronously in parallel rounds, and discuss the cryptographic primitives
sufficient to support parallel mixnet functionality. Their scheme has a total mixing time
of 2n(M − s + 1)/M and a number of parallel mixing rounds that is 2(M − s + 1),
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assuming that M2 divides n. It achieves a degree of anonymity “close” to n− f , using
a specialized anonymity measure, Anont, that they define (which we discuss in more
detail in Section 2). Note that if s is, say, M/2, then their protocol requires as many
rounds as the number of servers, which diminishes the potential benefits of a parallel
mixnet. In particular, their approach uses sequences of round-robin permutations (cyclic
shifts) rather than the standard parallel mixing protocol described above and illustrated
in Figure 1. Even then, Borisov [2] shows that their scheme can leak linkages between
inputs and outputs (as can the standard parallel mixing protocol if the number of rounds
is too small) if the vast majority of inputs are fake messages introduced by the adversary.
Thus, it is reasonable to place realistic limits on how large f can be, such as f ≤ n/2,
and require that the number of parallel mixing rounds is high enough to guarantee a
high degree of anonymity. Klonowski and Kutylowski [9] also study the anonymity of
parallel mixnets, characterizing it in terms of variation distance (which we discuss in
the next section) for honest servers and for the case of a single corrupted server. They
do not consider an adversary who can inject fake messages, however, and they only
treat the case when M2 is much less than n.

Goodrich, Mitzenmacher, Ohrimenko, and Tamassia [7] study a simple variant of
the anonymous shuffling problem with no corrupted servers or fake cards, addressing a
problem similar to parallel mixing in the context of oblivious storage. They show that
when the number of cards per server each round is K = n1/c, then c + 1 rounds are
sufficient to hide any specific initial card, so that the adversary can guess its location
with probability only 1/n + o(1/n). The current work provides a much more general
and detailed result, using much more robust techniques.

Our techniques are based on work in dynamic load balancing by Ghosh and Muthukr-
ishnan [5]. In their setting, tasks are balanced in a dynamic network by repeatedly
choosing random matchings and balancing tasks across each edge. Here, we extend
this work by choosing random subcollections of K cards and balancing weights, cor-
responding to probabilites of a specific card being one of those K , among the K cards
via the shuffling.

1.2 Our Results

We study the problem of analyzing parallel mixnets in terms of a buffer-based solu-
tion to the anonymous shuffling problem, assuming, as with other works on parallel
mixnets [2,6,7,9], that cryptographic primitives exist to enforce re-encryption for each
mix server, along with public sources of randomness and permutation verification so
that servers must correctly follow the mixing protocol even if corrupted.

In the buffer shuffling algorithm [7,9], Alice repeatedly performs a series of shuffling
rounds, as in the parallel mixnet paradigm. That is, each round begins with Alice per-
forming a random shuffle that places the cards in random order (albeit in a way that the
adversary, Bob, can see). Then she splits the ordered cards into M piles, with each pile
getting K = n/M cards. Finally, she randomly shuffles each pile, using a private buffer
that Bob cannot see into. Once she has completed her private shuffles, she stacks up her
piles, which become the working deck for the next round. She repeats these rounds until
she is satisfied that the deck is sufficiently shuffled for the adversary. Note that during
her shuffling, Bob can see cards go in and out of her buffer, but he cannot normally see
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Table 1. Summary of our results. We compare with the solutions of Golle and Juels [6],
Klonowski and Kutylowski [9], and Goodrich et al. [7]. The server restriction column refers to
the parameter c in the inequality K ≥ n1/c. The bounds of “medium” and “high” for corruption
tolerance are made more precise in the statement of the theorems.

Solution Corruption Server Allows for Allows for Rounds
Tolerance Restriction Corrupt Servers Fake Messages

GJ [6] high c = 2 only
√ √

O(M)

KK [9] only one c = 2 only
√ − O(log n)

GMOT [7] none const. c − − O(1)

Our Theorem 2 medium const. c
√ − O(1)

Our Theorem 3 high const. c
√ √

O(log n)

cards while they are in the buffer. As we describe in more detail shortly, Alice’s goal
is to prevent Bob from being able to track a card; that is, Bob should only be able to
guess the location of a card with probability 1/n+o(1/n), where generally we take the
o(1/n) term to be O(1/nb) for some b ≥ 1.

To characterize the power of the adversary in the parallel mixnet framework, we
consider buffer shuffling in a context where, for M − s specific uses of Alice’s buffer
within each round, Bob is allowed to see how the cards are shuffled inside it. Likewise,
we assume he is allowed to mark f < n of the cards in a way that lets him determine
their position in the deck at any time. We provide a novel analysis of this framework,
and show how this analysis can be used to design improved methods for designing
parallel mixnets. For instance, we show that buffer shuffling achieves our goal with
O(1) rounds even if the number of servers is relatively large and that buffer shuffling can
be performed in O(log n) rounds even for high degrees of compromise. We summarize
our results and how they compare with the previous related work in Table 1.

2 Anonymity Measures

We can model the anonymous shuffling problem in terms of probability distributions.
Without loss of generality, we can assume that the initial ordering of cards is [n] =
(1, 2, . . . , n). After Alice performs t rounds of shuffling, let wi(t, c) denote the prob-
ability from the point of view of the adversary that the card in position i at time t is
the card numbered c, and let W (i, t) denote the distribution defined by these probabil-
ities (we may drop the i and t if they are clear from the context). The ideal is for this
probability to be 1/n for all i and c, which corresponds to the uniform distribution, U .

A natural way to measure anonymity is to use a distance metric to determine how
close the distributionW is to U , for any particular card i or in terms of a maximum taken
over all the cards. The goal is for this metric to converge to 0 quickly as a function of t.

Maximum difference. The maximum-difference metric, which is also known as the L∞
metric, specialized to measure the distance between W and U , is
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α(t) = max
i,c

|wi(t, c)− 1/n| .

As mentioned above, the goal is to minimize α(t), getting close to 0 as quickly as
possible.

Note that, in the case of buffer shuffling, the formula for α(t) can be simplified. In
particular, since Alice starts each round with a random permutation,wi(t, c) = wi(t, 1).
Thus, in our case, we can drop the c and focus on wi(t), the probability that the i-th
card is 1. In this case, we can simplify the definition as

α(t) = max
i

|wi(t)− 1/n|.

The Anon measure of Golle and Juels. In the context of parallel mixing, Golle and
Juels [6] define a measure for anonymity, which, using the above notation, would be
defined as follows:

Anont = min
i

(
max

c
wi(t, c)

)−1

,

which they try to maximize. Note that maxc wi(t, c) ≥ 1/n for all i, so, to be consis-
tent with the goals for other anonymity measures, which are all based on minimizations,
we can use the following Anon′t definition for an anonymity measure equivalent to that
of Golle and Juels:

Anon′t = max
i

(
max

c
wi(t, c)

)
= max

i,c
wi(t, c) = (Anont)

−1.

TheAnon′t measure is not an actual distance metric, with respect to U , however, since
its smallest value is 1/n, not 0. In addition, it is biased towards the knowledge gained
by the adversary for positive identifications and can downplay knowledge gained by
ruling out possibilities. To see this, note that, if we let W+ denote all the wi(t, c)’s that
are at least 1/n and W− denote all the wi(t, c) values less than 1/n, then

α(t) = max{ max
wi(t,c)∈W+

{wi(t, c)− 1/n} , max
wi(t,c)∈W−

{1/n− wi(t, c)}}

= max{Anon′t − 1/n , max
wi(t,c)∈W−

{1/n− wi(t, c)}}.

Therefore, we prefer to use anonymity measures that are based on metrics and are un-
biased measures of the distance from W to the uniform distribution, U .

Variation Distance. Li et al. [11] introduce a notion of anonymity called threshold
closeness or t-closeness. For categorical data, as in card shuffling and mixnets, this
metric amounts to the variation distance between the W -distribution defined by Alice’s
shuffling method and the (desired) uniform distribution,U , where each card occurs with
probability 1/n (see also [9]). In particular, this metric would be defined as follows for
buffer shuffling:

β(t) =
1

2

n∑
i=1

|wi(t)− 1/n|,

which is the same as half the L1 distance between the W -distribution and the uniform
distribution, U . As with other distance metrics, the goal is to minimize β(t).
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The sum-of-squares metric. For this paper, we have chosen to focus on a metric for
anonymity that is derived from a simple measure that is well-known for its sensitivity to
outliers (which are undesirable in the context of anonymity). In this, the sum-of-squares
metric, we take the sum of the squared differences between the given distribution and
our desired ideal. In the context of buffer shuffling, this would be defined as follows:

Φ(t) =
n∑

i=1

(wi(t)− 1/n)2,

which can be further simplified as follows:

Φ(t) =

n∑
i=1

(w2
i (t)− 2wi(t)/n+ 1/n2)

=

(
n∑

i=1

w2
i (t)

)
− 1/n.

This amounts to the square of the L2-distance between the W -distribution and the uni-
form distribution, U . The goal is to minimize Φ(t).

Relationships between anonymity measures. Another benefit of the Φ(t) metric is that
it can be used to bound other metrics and measures for anonymity, by well-known
relationships among the Lp norms. For instance, we can derive upper bounds for other
metrics (which we leave as exercises for the interested reader), such as

α(t) ≤ Φ(t)1/2 and β(t) ≤ (nΦ(t))1/2/2.

In addition, even though Anon′t is not a metric, we can derive the following bound for
it, since Anon′t ≤ α(t) + 1/n:

Anon′t ≤ Φ(t)1/2 + 1/n.

So, for the remainder of this paper, we focus primarily on the Φ(t) metric.

3 Algorithms and Analysis

Our parallel mixing algorithm repeats the following steps:

1. Shuffle the cards, placing them according to a uniform permutation.
2. Under this ordering, divide the cards up into consecutive groups of K = n/M

cards.1

3. For each group of K cards, shuffle their cards randomly, hidden from the adversary.

1 As we also study, we could alternatively assign each card uniformly at random to one of the
M = n/K piles, with each group getting K = n/M cards in expectation.
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We refer to each repetition of the above steps as a round. In the parallel mixnet setting,
each group of K cards would be shuffled at a different server.

Let wi(t) be the probability that the ith card after t rounds is the first card from time
0 from the point of view of the adversary. (We drop the dependence on t where the
meaning is clear.) Initially, w1 = 1, and w2 . . . wn are all 0. Motivated by [5], let Φ(t)
be a potential function Φ(t) = (

∑
wi(t)

2) − 1
n , based on the sum-of-squares metric,

and let ΔΦ(t) = Φ(t)− Φ(t+ 1). (Again, we drop the explicit dependence on t where
suitable.)

Our first goal is to prove the following theorem.

Theorem 1. A non-corrupted parallel mixnet, designed as described above, has
E[Φ(t)] ≤ K−t. In particular, such a mixnet, with K ≥ n1/c, can mix messages
in t = bc rounds so that the expected sum-of-squares error, E[Φ(t)], between card-
assignment probabilities and the uniform distribution is at most 1/nb, for any fixed
b ≥ 1.

Before proving this theorem, we note some implications. From Theorem 1 and
Markov’s inequality, using t = 2bc rounds, we can bound the probability that Φ(t) >
1/nb to be at most 1/nb, for any fixed b ≥ 1. So, taking b = 2 implies αt ≤ 1/n with
probability 1 − 1/n2, taking b = 3 implies βt ≤ 1/n with probability 1 − 1/n3, and
taking b = 2 implies Anon′t < (n − 1)−1, with probability 1 − 1/n2, which achieves
the anonymity goal of Golle and Juels [6] (who only treat the case c = 2). Therefore,
a constant number of rounds suffices for anonymously shuffling the inputs in a parallel
mixnet, provided servers can internally mix K ≥ n1/c items, for some constant c ≥ 1.

We now move to the proof. Let ΔΦ∗ represent how the potential changes when a
group of K cards is shuffled during a round. For clarity, we examine the cases of K = 2
and 3 before the general case.

– For 2 cards with incoming weights wi and wj (outgoing weights are the average):

ΔΦ∗ = w2
i + w2

j − 2((wi + wj)/2)
2

= (wi − wj)
2/2.

– For 3 cards with incoming weights wi, wj , and wk:

ΔΦ∗ = w2
i + w2

j + w2
k − 3((wi + wj + wk)/3)

2

= (wi − wj)
2/3 + (wj − wk)

2/3 + (wk − wi)
2/3.

– For K cards with weights wi1, wi2, . . . , wiK :

ΔΦ∗ =

K∑
k=1

w2
ik −K

(∑K
k=1 wik

K

)2

=
1

K

K∑
1≤j<k≤K

(wij − wik)
2
.
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We now proceed to bound E[Φ(t)] by making use of ΔΦ.

E[ΔΦ] =
1

K

∑
1≤i<j≤n

Pr ((i, j) are in the same set of K cards) (wi − wj)
2

=
K − 1

K(n− 1)

∑
i<j

(wi − wj)
2

=
K − 1

2K(n− 1)

∑
1≤i,j≤n

(wi − wj)
2.

Also,

E[ΔΦ/Φ] =
K − 1

2K(n− 1)

∑
i,j ((wi − 1/n)− (wj − 1/n))

2

∑
k (wk − 1/n)2

.

Let xi = wi − 1/n to get

E[ΔΦ/Φ] =
K − 1

2K(n− 1)

∑
i,j(xi − xj)

2

∑
k x

2
k

.

Interestingly, when K = n, we should have mixing in one step, so in this case E[ΔΦ/Φ]
should be 1. Notice if that is the case, then perhaps surprisingly the above expression is
independent of the actual xi values, and then we have immediately:

E[ΔΦ/Φ] =
n(K − 1)

K(n− 1)
.

We can in fact confirm this easily. Since
∑

k xk = 0, we have

∑
i,j

(xi − xj)
2 =

∑
i,j

(xi − xj)
2 + 2

(∑
k

xk

)2

= 2n
∑
k

x2
k,

and cancellation gives the desired result.
This analysis also gives us fast convergence to the uniform distribution in the general

case. Let γ = n(K−1)
K(n−1) , and note γ ≤ 1. In particular,

1− γ =
n−K

K(n− 1)
<

1

K
.

Also note Φ(0) < 1. So we have

E[Φ(t+ 1)] = (1− γ)E[Φ(t)],

and a simple induction yields

E[Φ(t)] = (1− γ)tΦ(0) ≤ K−t.

The rest of the theorem follows easily.
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3.1 Extensions to Mixnets with Corrupted Servers

In the case of there being corrupted servers, Bob will know the permutation for the cards
assigned to each such server. In terms of the analysis, we can treat the permutation
for each corrupted server as the identity operation, since Bob can simply undo that
permutation. Let us suppose, then, that there are M = n/K servers, so that each obtains
K cards in each round, and that 1 ≤ s ≤ n/K servers are uncorrupted. Following our
previous analysis, we find

E[ΔΦ] =
1

K

∑
1≤i<j≤n

Pr ((i, j) are in the same uncorrupted server) (wi − wj)
2

=
(K − 1)

K(n− 1)

s

n/K

∑
i<j

(wi − wj)
2

=
s(K − 1)

2n(n− 1)

∑
1≤i,j≤n

(wi − wj)
2.

Again, based on our previous analysis, we have

E[ΔΦ/Φ] =
s(K − 1)

n− 1
.

Now let γ′ = s(K−1)
(n−1) ; if, for example, s = ε n−1

K−1 then 1− γ′ = 1− ε. In that case,

E[Φ(t)] = (1− ε)t.

Theorem 2. A corrupted parallel mixnet, designed as described above, with s ≥ ε(n−
1)/(K − 1) non-corrupted servers, for ε ≥ 1/2, can mix messages in t = b logn
rounds so that the expected sum-of-squares error, E[Φ(t)], between card-assignment
probabilities and the uniform distribution is at most 1/nb, for any fixed b ≥ 1. Likewise,

if there are at most n−1/c(n−1)
K−1 − n−K

K(K−1) corrupted servers, with K ≥ n1/c for some

constant c ≥ 1, then in t = bc rounds it is also the case that E[Φ(t)] is at most 1/nb,
for any fixed b ≥ 1.

Thus, by Markov’s inequality, using t = 2b logn or t = 2bc rounds, depending on the
number of uncorrupted servers, s, we can bound the probability that Φ(t) > 1/nb to
itself be at most 1/nb, for any fixed b ≥ 1.

As an instructive specific example, suppose K = M =
√
n, and there are a constant

z servers that are corrupted. Then

1− ε = 1− (
√
n− z)

K − 1

n− 1
= 1−

√
n− z√
n+ 1

=
z + 1√
n+ 1

.

Hence, in this specific case,

E[Φ(t)] =

(
z + 1√
n+ 1

)t

<
(z + 1)t

nt/2
,
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and for any constant b after 4b rounds we have that Φ(t) ≤ n−b with probability
P (n−b).

As our expressions become less clean in our remaining settings, we state a general
theorem which can be applied to these settings in a straightforward way:

Theorem 3. Given a parallel mixnet with corrupted servers or adversarially generated
inputs, let γ = E[ΔΦ/Φ] in that setting. Then in t = b log1/(1−γ) n rounds the expected
sum-of-squares error, E[Φ(t)], between card-assignment probabilities and the uniform
distribution is at most 1/nb, for any fixed b ≥ 1. In particular, if γ ≥ 1/2, at most
b logn rounds are required; if γ ≥ 1− n−1/c, at most bc rounds are required.

3.2 Extensions to Mixnets with Corrupted Inputs

For the case of corrupted inputs, Bob will be able to track those cards throughout the
shuffle process. In the shuffling setting, we can think of some number of the cards as
being marked—no matter what we do, Bob knows the locations of those cards. In terms
of the analysis, we can treat this in the following way: when we have a group of K
cards, it is as though we are shuffling only K ′ ≤ K cards, where K ′ is the number of
unmarked cards in the collection of K cards. Let us suppose that f ≤ n − 2 cards are
marked. Note that we may think of wi as being 0 for any cards in a marked position;
alternatively, without loss of generality, let us calculate at each step as though wi is
non-zero only for i = 1 to n − f . (Think of wi as being the appropriate value for the
ith unmarked card.) Note that, for consistency, we must have

Φ(t) =

(
n−f∑
i=1

wi(t)
2

)
− 1

n− f
.

Following our previous analysis, we find

E[ΔΦ] =

K∑
K′=2

1

K ′
∑

1≤i<j≤n−f

Pr
(
(i, j) are in the same set of K ′ out
of K unmarked cards

)
(wi − wj)

2

=
K∑

K′=2

(
n−f
K′
)(

f
K−K′

)
(
n
K

) K ′ − 1

K ′(n− 1)

∑
i<j

(wi − wj)
2

=

K∑
K′=2

(
K
K′
)(

n−K
n−f−K′

)
(
n
f

) K ′ − 1

K ′(n− 1)

∑
i<j

(wi − wj)
2

=
1

2(n− 1)
(
n
f

)
(

K∑
K′=2

(
K

K ′

)(
n−K

n− f −K ′

)
K ′ − 1

K ′

) ∑
1≤i,j≤n−f

(wi − wj)
2.

We can then compute E[ΔΦ/Φ] as

1

2(n− 1)
(
n
f

)
(

K∑
K′=2

(
K

K ′

)(
n−K

n− f −K ′

)
K ′ − 1

K ′

) ∑
1≤i,j≤n−f (xi − xj)

2

∑
1≤k≤n−f x

2
k

.
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Following the same computations as previously, we have

E[ΔΦ/Φ] =
n− f

(n− 1)
(
n
f

)
(

K∑
K′=2

(
K

K ′

)(
n−K

n− f −K ′

)
K ′ − 1

K ′

)
.

Note the n− f term in the numerator in place of an n.
Now let ν equal the right hand side above; then we have

E[Φ(t)] = (1 − ν)t.

In particular, it is clear that ν ≤ n(K−1)
K(n−1) , so the convergence of E[Φ(t)] to 0 happens

more slowly than in the case without corrupted inputs, as expected. Nevertheless, we
can still derive a theorem analogous to Theorem 2 using Theorem 3 and the above
characterization of E[Φ(t)]. We omit a full restatement for space reasons.

3.3 Extensions to Mixnets with Corrupted Servers and Inputs

One nice aspect of our analysis is that combinations of corrupted servers and inputs are
entirely straightforward. In this setting, we have

E[ΔΦ] =

K∑
K′=2

1

K ′
∑

1≤i<j≤n−f

Pr

⎛
⎝

(i, j) are in the same set of K ′ out
of K unmarked cards at an uncor-
rupted server

⎞
⎠ (wi − wj)

2

=

K∑
K′=2

s

n/K

(
n−f
K′
)(

f
K−K′

)
(
n
K

) K ′ − 1

K ′(n− 1)

∑
i<j

(wi − wj)
2

=
sK

n(n− 1)

K∑
K′=2

(
K
K′
)(

n−K
n−f−K′

)
(
n
f

) K ′ − 1

K ′
∑
i<j

(wi − wj)
2

=
sK

2n(n− 1)
(
n
f

)
(

K∑
K′=2

(
K

K ′

)(
n−K

n− f −K ′

)
K ′ − 1

K ′

) ∑
1≤i,j≤n−f

(wi − wj)
2.

Hence

E[ΔΦ/Φ] =
sK(n− f)

n(n− 1)
(
n
f

)
(

K∑
K′=2

(
K

K ′

)(
n−K

n− f −K ′

)
K ′ − 1

K ′

)
.

Given this bound, we can then derive a theorem analogous to Theorem 2 for the case
when mix servers can be corrupted and the adversary can inject fake messages using
Theorem 3. We omit a full restatement for space reasons.

In a more complete version of this paper [8], we extend this analysis further to show
how to derive bounds for the case when the assignment of messages to servers is done
uniformly at random rather than in way that assigns exactly K = n/M messages per
server.



560 M.T. Goodrich and M. Mitzenmacher

4 Conclusion and Open Problems

In this paper, we have provided a comprehensive analysis of buffer shuffling and shown
that this leads to improved algorithms for achieving anonymity and unlinkability in
parallel mixnets. An interesting direction for future research could be to extend this
analysis to other topologies, including hypercubes and expander graphs.
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