
Generalized Sweep Methods for Parallel Computakional Geometry
(Preliminary Version)

Michael T. Goodrich’*t Mujtaba R. Ghouset Jonathan Brightt

Dept. of Computer Science, The Johns Hopkins Univ., Baltimore, MD 21218

Summary of Results
In this paper we give efficient parallel

algorithms for a number of problems from
computational geometry by using generalized
versions of parallel plane sweeping. We illus-
trate our approach with a number of appli-
cations, which include

genersl hidden-surface elimination (even
if the overlap relation contains cycles),

CSG boundary evaluation,

computing the contour of a collection of
rectangles, and

hidden-surface elimination for rectan-
gles.

Our algorithms are for the CREW PRAM.

1 Introduction

There are a number of algorithms in computational ge-
ometry that rely on the “sweeping” paradigm (e.g., see
[15, 24, 321). The generic framework in this paradigm
is for one to traverse a collection of geometric objects
in some uniform way while maintaining a number of
data structures for the objects that belong to a “cur-
rent” set. For example, the current set of objects could
be defined by all those that intersect a given vertical
line as it sweeps across the plane, those that intersect a
line through a point p as the line rotates around p, or
those that intersect a point p as it moves through the
plane. The problem is solved by updating and querying
the data structures at certain stopping points, which are
usually called “events”. We are interested in the problem
of parallelizing sweeping algorithms.

Most previous approaches to parallelizing sweeping
algorithms have been to abandon the sweeping approach
all together and solve the problem using a completely
different paradigm. Examples include the line-segment
intersection methods of Riib [36] and Goodrich [18], the

*This research WM supported by the Nsrional Science Founda-
tion under Grant CCR8610568.

+Thir rercarch was supported by the NSF and DARPA under
Grant CCR8908092.

Permission to copy without fee all or palt of this material is granted pro-
vided that the copies are not made or distributed for direct commercial
advantage, the ACM copyright notice and the tide of the publication and
its date appear, and notice is given that copying is by permission of the
Association for Computing Machinery. To copy otherwise, or to republish,
requires a fee and/or specific permission.

0 1990 ACM 089791-370-l/90/0007/0280 $1 SO 280

trapezoidal decomposition algorithm of Atallah, Cole,
and Goodrich [4], the method of Aggarwal, Chazelle,
Guibas, 6 Dlinlaing, and Yap [2] for constructing
Voronoi diagrams, and the method of Chow [ll] for
computing rectangle intersections. A notable exception,
which kept with the plane sweeping approach, were the
methods of Atallah, Cole, and Goodrich [4] for %-set
dominance counting, visibility from a point, and com-
puting S-dimensional maxima points. In each of these
algorithms, Atallah et al. parallelized sweeping methods
that sweep the objects with a vertical line, maintaining
the set of objects cut by the line, and computing an asso-
ciative function (such as “plus” or “min”) on the current
set of objects for each event.

In this paper we give general methods for paralleliz-
ing various types of sweeping algorithms. Specifically,
we address problems where the sweep can either be de-
scribed as a single sequence of data operations or a re-
lated collection of operation sequences. The technique
does not depend on the sweep being defined by moving
a vertical line across the plane, nor any other specific
geometric object for that matter. We study cases where
the sweep involves moving a point around a planar sub-
division and cases where the sweep can be viewed as
involving a number of coordinated line sweeps. We mo-
tivate our approach by giving efficient parallel algorithms
for a number of computational geometry problems. In
particular, we derive the following results:

hidden-surface elimination. One is given a collec-
tion of opaque polygons in @ and asked to de-
termine the portion of each polygon that is vis-
ible from (O,O,+oo) [17, 37, 383. We show that
this problem can be solved in O(logn) time using
O((n + I)log’ n) work (i.e., O((n + I) logn) pro-
cessors) in the CREW PRAM model, where n is
the number of edges and I is the number of edge
intersections in the projections of the polygons to
the zy-plane.

CSG evaluation. One is given a collection of prim-
itive objects, which are either polygons (in the 2-D
case) or polytopes (in the 3-D case), and a tree T
such that each leaf of T has an object associated
with it and each internal node of T is labeled with
a boolean operation (such as union, intersection,
exclusive-union, or subtraction) [35, 40, 411. The
problem is to construct a boundary representation
for the object described by the root of T. We show

that the 2-D version of this problem can be solved
in O(logn) time using O((n + I) log’ n) work, and
we also show how to extend this method to 3-D
CSG evaluation.

0 Constructing rectangle contours. One ,is given a
collection of iso-oriented rectangles in the plane
and asked to determine the edges of the contour
of their union [9, 25, 43, 441. We show that
this problem can be solved in O(logn) time US-
ing O(nlogn + h) work (which is optimal), where
k is the size of the output.

l Rectilinear hidden-surface elimination. One is
given a collection of opaque iso-oriented rectan-
gles in 32’ and asked to determine the portion of
each rectangle that is visible from (O,O, +oo) [7,
17, 20, 22, 27, 331. We show that this problem can
be solved in O(log2 n) time using O((n + k) log n)
work, where k is the size of the output.

One of the main ingredients in each of our solutions is
the use of a parallel data structure of Atallah, Goodrich,
and Kosaraju [5] called the array-of-trees. We apply this
data structure in a variety of ways in order to solve each
of the above problems.

The computational model we use for our algorithms is
the CREW PRAM. Recall that processors in this model
act in a synchronous fashion and use a shared memory
space, where many processors may simultaneously ac-
cess the same memory location only if they are all read-
ing that location. Many of our results use the paradigm
that the pool of virtual processors can grow as the com-
putation progresses, provided the allocation occurs glob-
ally [18, 361. In this scheme one allows 7 new processors
to be allocated in time t only if one has already con-
structed an r-element array that stores pointers to the
r tasks these processors are to begin performing in step
t + 1. This is essentially the same as the traditional
CREW PRAM model, except that in the traditional
model one performs only one request, at the beginning
of the computation (to allocate a number of processors
that usually depends on the input size, e.g., n or a’).

2 Parallel Persistence

We begin our discussion by reviewing a parallel data
structure called the array-of-trees, and presenting two
extensions to this structure. All of the structures we
describe here can be viewed as parallel examples of the
persistence paradigm of Driscoll et al. [14]. In our frame-
work one is given a linked data structure D, an initial
assignment of values to the nodes of D, and a sequence u
of m update operations that operate on the nodes of D,
but do not add new links’ to D. The interpretation of

1 In the sequential setting one is also allowed to change links [14].

the sequence u is that operation i updates the structure
resulting from performing operations 1,2, ..,i - 1. The
problem is to produce an auxiliary structure, A, such
that A allows a single processor to perform a “query in
the past” on D, i.e., a query on the instance of D as
it appeared after some update operation i. We show in
this section that, for a variety of “skeleton” structures,
D, if one is given the entire sequence u in advance, then
one can solve this problem quickly in parallel.

2.1 The Array-of-Trees

Atallah, Goodrich, and Kosaraju [5] were the first to
address this problem in a parallel setting, and give a
solution for the case where the underlying data structure
is a complete n-node binary tree T and each operation in
u is either an enable(u), which “turns on” the leaf u and
updates the nodes from u to the root to reflect this, or
a disable(u), which turns off the leaf v and updates the
nodes from v to the root to reflect this. The updating
action here is allowed to include, for each node v involved
in the update, the computation of a constant number of
labeling functions on the children of v. Their method
runs in O(log n) time and O(mlog n) space2, using O(n+
m) processors in the CREW PRAM model, where m =
IQ]. The resulting data structure is called the array-of-
trees [5].

The array-of-trees, which we will denote by B(r),
is defined recursively on the nodes in T (v is the root
of T). In each leaf node z of T one stores u(z), the
subsequence of u consisting of all operations that have
z as their argument (in the order that they appear in
u). With each operation ut in u(z) one associates a
record (t, uala, left, right), where t is the position of
this operation in u (i.e., its ?ime of execution”), uoZ8
is a list of values for Z, and left and right are pointers
(which are null for leaf 2). The values stored in the
vaZ8 list depend only on 2 and ut. For example, if one
is interested in counting active leaves, then uals could
store Ucount = 0” if ut = disable(z) and “count = 1” if
ut = enabZe(a). Also, we include a record in E(2) for
the initial assignment of 2, giving it a time-value t = 0.
Intuitively, B(2) represents the history of u when one
restricts attention to the operations in u(2). That is,
if we let (tl, t2, tp(a)l) denote the list of t-values in
B(2), then each record (ti, uals, null, null) in B(2) can
be thought of as representing a (trivial) binary tree rep-
resenting the portion of T related to 2 from time ti to
time ti+l - 1.

For each internal node v one defines B(v) in terms
of B(u) and B(w), w h ere u and w are the children of v.
There is a record in B(v) for each record in B(u)UB(w),
and these are sorted by t-values (i.e., a sorted merging of

3If alI future queries need go no deeper than the root of T, then
the space CM be reduced to O(m) [S].

281

B(u) and B(w)), removing the duplicate for Z = 0. For a
record a = (t, uaZd, left, right) in B(v), the pointers left
and right point to the records 01 and c+ in B(u) and
B(w), respectively, with the largest t-value less than or
equal to t (one of these records will have the same t-value
as a). The values ‘in the vals list for a is defined by a
combination rule (specified by the application) applied
to al and a,. For example, if one is interested in counting
active leaves, then one could have a count field in vals
that is computed by taking the sum of count fields in
al and a,. By a simple inductive argument, if we let
(w2, 21n(~)l) denote the list of t-values in B(v), then
each record in B(v) represents the root of the subtree of
T rooted at v from time ti to time ii+1 - 1.

As a simple example of a use of the array-of-trees,
consider the problem of counting the number of inter-
sections between a set of vertical line segments and a
set of horizontal line segments. In this case the skele-
ton tree T is a complete binary tree built on top of
the wcoordinates of the horizontal segments, and the
z-coordinates of the segment endpoints define the ac-
tions, left endpoints corresponding to enable operations
and right endpoints corresponding to disable operations.
The only information that needs to be stored in vala list
for a node v is the count of the number of active leaf de-
scendants of v. Given this data structure, one solves the
problem by assigning a processor to each vertical seg-
ment and using that processor to search in the “copy” of
2’ for the z-coordinate of s. The search for 8 is a simple
l-dimensional range-query based on the y-coordinates of
the endpoints of u.

One can also use more complicated types of combin-
ing rules. For example, Goodrich [18] employs a com-
premed version of the array-of-trees where the combining
rule affects both the values stored in the vals list and the
Zeft and right pointers, In particular, if one is combining
two records or and (Y, to define a new record a (where
a is for a node v and or and a, are for v’s left and right
children, respectively), then, in addition to computing a
count label of the number of active leaf descendants for
v, he adds the following test:

If al .count = 0 then a.Zeft = a,.Zeft
and aright = a,.right, else, if a,.count =
0 then a.Zeft = cq.Zeft and aright =
al.tight. Also, if a.count = 0, then a.Zeft =
might = null.

Note that by adding this simple rule, each record a in
a B(v) list represents the root of a tree with a.count
leaves, i.e., a compressed binary tree built upon the ac-
tive leaves that are descendants of v in T. Goodrich uses
this approach to derive an optimal parallel algorithm for
enumerating all intersections between a set of vertical
segments and a set of horizontal segments.

2.2 Extending th.e Array-of-Trees

In this paper we make ap:plications of a number of further
extensions of the array-of-trees data structure. The first
extension we add is that, we allow each internal node v
in the skeleton tree, T, to store data elements as well
as the values of combining rules applied to v’s children.
Thus, we allow the operations in u to enable and disable
internal nodes of T as well as leaves. In the full version of
the paper we show that :it is easy to extend the method
of Atallah, Goodrich, and Kosaraju [5] to construct this
version of the array-of-trees with the same performance
as before, i.e., O(log n) time and O(n log n) space using
O(n) processors.

We also allow one to define a “pruned” version of the
compressed array-of-trees [18]. In particular, we assume
the existence of a O/l-valued prune function, n(a,v),
and modify Goodrich’s combining rule so that we use
*(al, u) * a,.count and ~(a,, w) * a,.count instead of
arxount and a, .count, respectively. Intuitively, if, say,
A(CY~,ZL) = 0, then we are “pruning” away the subtree
rooted at or, and not passing it up to be a part of the
subtree rooted at Q. Note, however, that we do not de-
stroy the tree rooted at or; it is still accessible from B(u).
Thus, in this case, each record a in B(v) corresponds to
the root of a binary tree containing the number of active
descendent nodes of v in T that “survived” the pruning
function at least as far up T as v.

The final extension we make to the array-of-trees is
to generalize the skeleton data structure upon which it is
defined, so as to be something other than a complete bi-
nary tree. In particular, we allow the skeleton structure
to be an order-k pseudo-tree, for fixed k. A pseudo-tree
is a directed acyclic graph G = (V, E) such that the
nodes in V have been partitioned into VI, Vz, V, with
the q’s forming the nodes of a tree T. For each edge
(v, w) E E, either v, w E K for some i or (V;-, Vi) is an
edge in T and v E Vi and w E Vj. A pseudo-tree is
of order k if]Vi] 5 k for each i E (1,2, m}. Thus,
if G is a tree, it is an order-l pseudo-tree. For our ap
plications, we assume that the underlying tree, T, is a
binary tree with height O(logn), and that G is an order-
k pseudo-tree with k being O(1). In the final version
of this paper we show that one can use the cascading
merge scheme of Goodrich and Kosaraju [21], which is
based on linked-lists inst,ead of arrays, to construct this
“array-of-pseudo-trees” data structure in O(log n) time
and O(nlogn) space using O(n) processors. Note: the
method of Atallah, Goodrich, and Kosaraju [5] cannot be
applied here, because their method is based on a cascade
merging with arrays that would introduce a potentially
large number of duplicate entries.

282

2.3 Off-Line Expression Evaluation

As an application of our extensions to the array-of-trees
data structure, consider the following problem. Suppose
one is given an n-node binary tree T such that each
leaf represents a value taken from some universe U and
each internal node v is labeled with a binary function
f. : U x U -+ U taken from a family of functions 3. The
height of T is allowed to be as large as O(n). The ezpres-
sion evaluation problem is to determine the value repre-
sented by the root of T based on a bottom-up evaluation.
To make the problem tractable in a parallel setting, we
assume the functions in 3 and the universe U form a
contractable algebraic structure, i.e., an algebraic struc-
ture that satisfies the composition, closure, and combi-
nation properties of Miller and Teng [29]. Intuitively,
an algebraic structure (U,3) is contractable if one can
apply the parallel tree-contraction schemes of Brent [8]
or Miller and Reif [28] t o evaluate T in O(logn) time
using O(n) processors (which can in fact be reduced to
O(n/ log n) [l, 231). For example, any semi-ring is con-
tractable [8, 281, and so is the algebraic structure defined
by the boolean operations used in CSG evaluation (on
the universe {O,l}) [19].

Suppose that, in addition to the expression tree T,
one is given a sequence tr of m update operations for
the leaves of T. That is, each t-th operation, a:, in
u is an assignment of the form 2j := u, where zj is
a leaf of T and u is value taken from U. The ofl-line
expression-evaluation problem is to determine for each
t E (1, 2, ..-) m} the value that would be defined by
the root of T after sequentially performing the assign-
ments ~1, us, ut, given the initial values assigned to
the leaves of T.

Using the methods of Abrahamson et al. [l] or
Kosaraju and Delcher [23] one can convert T into an
equivalent circuit C, where C has O(logn) depth and
is, in fact, an order-4 pseudo-tree. The time needed
for this conversion is O(logn) using O(n/ logn) proces-
sors [l, 231. G iven this circuit, and the initial dues
associated with its “leaves”, we then apply the array-
of-pseudo-trees construction described above. This re-
quires an additional O(log n) time using O(n/ log n + m)
processors, and gives us a solution to the off-line expres-
sion evaluation problem (by simply reading off the values
stored at the “root” of C for each time instance in u).
Moreover, since we are only interested in the value of
the “root” of C, we need not store all portions of the
array-of-pseudo-trees, and can implement the construc-
tion using only O(n + m) space [21]. Thus, we have the
following lemma:

Lemma 2.1: Given an n-node binary expression tree
T whose operations are taken from a contractable alge-
braic structure, and an m-operation sequence u of leaf-
update operations, one can determine the value sssoci-

ated with the root of T after performing each operation
in u (as in a sequential evaluation) in O(log n) time using
O(n/ log n + m) processors.

In the next two sections we address a number of ap-
plications of our extensions to the array-of-trees.

3 Sweeping Arrangements

There are a number of sequential algorithms that fol-
low an approach of constructing an arrangement [15]
and traversing that arrangement to solve the problem
at hand. We address this approach from a parallel per-
spective. One of the main subproblems that we must
solve in each application is the construction of a span-
ning tree in a planar subdivision, which the following
lemma addresses:

Lemma 3.1: Given a connected planar subdivision R,
one can construct a spanning tree on R in O(log n) time
using O(n/ log n) processors.

Proof: (Sketch) For each face f in R one removes
the edge on f that leads, in a counter-clockwise list-
ing, into the vertex on f with smallest z-coordinate
(and largest y-coordinate among those, if there are ties).
This can easily be implemented in O(logn) time using
O(n/ logn) processors by performing what are essen-
tially list-ranking procedures [3, 131. In the final version
of this paper we prove that this scheme does, in fact,
produce a spanning tree for R. 0

3.1 Hidden-Surface Elimination

The first application we address is the hidden-surface
elimination problem. Suppose one is given a collection
of polygonal faces in ?3Z3 that do not intersect (except pos-
sibly at boundaries). The problem is to determine the
portions of each polygon that are visible from (0, 0, +oo)
assuming each polygonal face is opaque. For simplicity of
expression we assume that no two polygon edges (resp.,
vertices) project to the same edge (resp., vertex) in the
projection plane (the zy-plane). One can easily modify
our method for the more general case by using paral-
lel prefix computations where appropriate. Our method
for solving this problem follows the general approach of
Goodrich [17] and Schmitt [37], and consists of the fol-
lowing six steps:

Step 1. In this step we construct the polygon ar-
rangement R of S projected to the zwplane. This is the
connected graph whose nodes are the polygon vertices
and the intersection points between pairs of polygonal
edges (in the zy-plane), as well as the “shadows” formed
by projecting the vertex on each polygon with small-
est z-coordinate in the negative y-direction until it hits

283

some other polygonal edge. Using the parallel segment-
intersection algorithm of Goodrich [lS], this arrangement
can be constructed in O(logn) time using O((n+I)logn)
processors.

Step 2. In this step we construct a spanning forest
F of R using the method of Lemma 3.1, which implies
that this step can be implemented in O(log n) time using
O((n + I)/ log n) processors.

Step 3. In this step we prepare for an application
(in Step 4) of a generalization of the Euler-tour tech-
nique of Tarjan and Vishkin [39] to operation sequences,
by constructing an Euler tour of each tree of F. For
each connected component of F we make the first edge
in the tour of that component be an edge leaving the
(unique) vertex with smallest z-coordinate. In addition,
with each edge ei in a tour we associate a point pi on ei
in the zy-plane (we will be using these points in Step 4).
Let U denote the union of these tours. We can easily per-
form this step in O(logn) time using O((n + I)/logn)
processors.

Step 4. In this step, from U, we construct a m
quence of operations u = (uo, ~1, urn) that operate on
a binary tree T such that each leaf of T is associated
with a polygon P. For each edge ei in U we associate an
operation ~4, where ai is enable(P) (resp., disable(P))
if in traversing e one would enter (resp., leave) the in-
terior of P. In addition to enabling the polygon P, the
enable(P) operation assigns the name of a point p on
ei to a label rep in the uola list for P (this is the rep-
reaentative for P for as long as P is active). We also
maintain a rnoz label for each node v in T (stored in
the uaZ# list for a record in B(v)), which returns the
polygon-representative pair (P, p), where P is the “high-
est” polygon when comparisons are based on the follow-
ing rule R: Given the query “(P,p) > (Q,q)?“, return
“yes” if and only if the projection of point p onto the
plane containing face P is above the projection of p onto
the plane containing face Q (we do not use q in the com-
parison). This step can easily be implemented by per-
forming a list-ranking procedure within the individual
tours in U. Using the methods of Cole and Vishkin [13]
or Anderson and Miller [3], this requires O(logn) time
using 0((n + I) log n) processors.

Comment: A vertex with smallest x-coordinate in
its component is not contained inside the interior of any
polygon projection in the zyplane. Thus, for each ciir
the set of active polygons at “time” i consists of all the
polygons that contain the edge ei in their interior, since
we start with 0 for each such tour.

Step 5. In this step we perform an array-of-trees
construction on Q using the labels listed above (with
comparison rule 72). This step requires O(logn) time
and O(n + I) space using O(n + I) processors. We show
below that even if the overlap relationship contains cy-
cles, the computation of the moz labels still proceeds

correctly.
Step 6. For each edge ei in F, with associated op-

eration Ui, the max label associated with the record for
time i stored at the root of T stores the name of the
polygon visible along ei (i.e., the “highest” polygon). If
ei is on or above this pol,ygon, then ei is visible; other-
wise, ei is invisible. In this step we remove from R all
the edges that are invisible, and indicate for each visi-
ble edge ei the polygons of S that are visible on each
side of e;. Given the information computed in previous
steps, this step can easily be implemented in O(logn)
time using O((n + I)/ log n) processors.
End of Algorithm.

The correctness of the above algorithm depends cru-
cially on the consistency of the relation ‘R, even in the
face of possible cycles and gaps in the overlap relation-
ship. The next two lemmas establish this consistency.

Lemma 3.2: For any i E (0, 1, m}, if P and Q
are both active at time i, then (P,p) > (Q, q) implies
(Q, q) < (P, q), where p and q are the respective repre-
sentatives for P and Q at time i.

Proof: Suppose, for the sake of contradiction, that
there are two polygon-representative pairs (P, q) and
(Q, q) active at time i, with (P, q) > (Q, q) and (Q, q) >
(P, p). That is, P is above Q at p and Q is above P at
q. Since P and Q do not intersect, this implies that in
the path from p to q in U we must either (i) leave Q and
reenter Q along an edge not containing q or (ii) leave
P and re-enter P along an edge not containing p. But
this implies that, in the activations of P and Q at time
i, either Q is not paired with Q or P is not paired with
p, which is a contradiction. 0

Thus, for any two active polygon-representative pairs
(P, P) and (Q,d, tb e result of their comparison is the
same regardless of whether one uses the point p or the
point q to determine it. The next lemma shows that our
comparison rule satisfies the transitive rule.

Lemma 3.3: For any i E (0, 1, m), if three polygons,
P, Q, and R, are active at time i, then (P,p) > (Q,q)
and (Q, q) > (R, r) imply that (P,p) > (R, T), where p,
q, and T are the respective representatives for P, Q, and
R at time i.

Proof: Similar to the proof of Lemma 3.2. We omit
the details here. •I

Thus, the comparison procedure used in Step 5 is
consistent; hence, the max label associated with each
record in the B list for the root in T stores the name
of the polygon visible along the edge ei, where i is the
time value associated with that record. Thus, we have
the following theorem:

Theorem 3.4: Given a collection S of non-intersecting
polygons in P’, one can solve the hidden-surface elimina-
tion problem for S in O(log n) time using O((n+I) log n)

284

processors in the CREW PRAM model, where n is the
total number of edges and I is the number of edge inter-
sections in the projection plane.

3.2 Arrangement Queries

The arrangement sweeping technique can also be used to
build various geometric data structures in parallel. The
main idea is to build the arrangement, an operation se-
quence for that arrangement, use the array-of-trees data
structure to evaluate the sequence, and then perform
queries for this sequence to solve the problem.

Let us illustrate this with an example. Suppose one
is given a collection of line segments in the plane and
one wishes to construct a data structure that allows one
to quickly count or report the segments that are inter-
sected by a query line I, or return a line that intersects
the most number of line segments. Using a well-known
point-line duality [16, 301, the set of all lines intersecting
a line segment dualizes to the set of all points lying in
a certain double-wedge (a region defined by all points
between two intersecting lines). Thus, this is equivalent
to the problem where one is given a collection of double-
wedges and asked to build a data structure that counts
or reports all double-wedges containing a query point 1.

We can solve this problem as follows. First, we
can easily construct the arrangement formed by all the
double-wedges, compute a spanning tree of this arrange-
ment, and build an Euler tour of this tree in O(logn)
time using O(n’) processors. We then can construct
a skeleton binary tree T, whose leaves correspond to
double-wedges, and an operation sequence u for the Eu-
ler tour, where the operations are enable(r), which
corresponds to entering the double-wedge for 8, and
disable(s), which corresponds to leaving the double-
wedge for 8. Building the compressed array-of-trees data
structure for this T and u allows both counting and re-
porting queries to be performed in O(logn) time (where
in the reporting case, we first determine the number, k,
of answers, and then allocate rk/ log nl processors to the
task of enumeration). To find a maximum stabbing line
one could then perform O(n2) queries on the array-of-
trees (one for each face in the arrangement), followed by
a maximum computation to find the line that stabs the
most line segments.

In the next subsection we give an application of ar-
rangement sweeping via off-line expression evaluation.

3.3 CSG Boundary Evaluation

Suppose one is given a collection of Uprimitiven polyg-
onal shapes and an expression tree T such that each
leaf of T has a primitive object associated with it and
each internal node of T is labeled with a boolean op-
eration, such as union, intersection, exclusive-union, or

subtraction (a CSG representation [35]). The problem
we address in this subsection is that of constructing a
boundary representation for the object defined by the
root of T.

Let us first address the s-dimensional version of the
problem, where the primitive objects are simple poly-
gons. Using the approach of Goodrich [18], we can solve
this problem in parallel as follows. We construct the
arrangement of the polygons that define the primitives,
find a spanning forest for this arrangement, and build
an Euler tour of each tree in this forest in O(logn) time
using O((n + I) log n) p rocessors, where 1 is the number
of edge intersections. We then build an instance of the
off-line expression evaluation problem by assigning a “0”
to each leaf of T, where “0” at leaf i represents “outside
of primitive i” and a “1” represents “inside primitive i”.
The update operations for each edge in a tour are also
based on this convention. By then applying the off-line
expression evaluation theorem of the previous section,
we can evaluate T for each cell of the polygon arrange-
ment. Constructing a boundary representation of the
defined region is then a simple matter, since a cell of the
arrangement is inside the defined region iff it is labeled
with a “1”. This gives us the following theorem:

Theorem 3.5: One can perform 2-D CSG evaluation
in O(log n) time using O((n + I) log n) processors, where
n is the total number of primitive edges and I is the
number of edge intersections in the polygon arrangement
(which is O(n2) in the worst case).

We can also extend this approach to 3-dimensional
CSG evaluation. The method is similar to that in the
2-dimensional case, except that the arrangement to be
formed is a polytope arrangement, and the Euler tour
traversal now occurs in a spanning forest of this 3-
dimensional arrangement. We omit the details here, de-
riving the following theorem in the final version:

Theorem 3.6: Given a CSG representation built upon
polyhedral primitives, one can perform the CSG bound-
ary evaluation in O(log2 92) time using O(n2 + I) proces-
sors, where n is the total number of edges and I is the
number intersection points in the polyhedral arrange-
ment (which is O(n3) in the worst case).

4 Sweeping Through a Set of
Rectangles

In this section we address the situation when one wishes
to perform a number of coordinated sweeps in parallel,
which together define a sweep through a set of rectangles.
We motivate our approach with two important applica-
tions: computing the contour of a collection of rectangles

285

in the plane, and performing hidden-surface elimination
on a collection of rectangles in 31’.

In keeping with our notion of parallel persistence,
one of the paradigms we use in our algorithms is that
of an event list. An event list E is a list representing
the history of some variable e. Each record in E cor-
responds to a change in the value of e, and stores both
the new value of e and the “time” at which the change
occurred (where time refers to the position in the opera-
tion sequence of the operation that caused the change).
Both of our methods depend on the use of a number of
additional parallel techniques, which we discuss in the
following two subsections.

4.1 Some Algorithmic Tools

The first algorithmic tool we review is for performing
fractional cascading [lo] in parallel [4]. Given a directed
graph G = (V, E), where each node v in G contains
a sorted list C(v), the problem is to construct a data
structure so that given a walk (~1, ~1, vm) and an ar-
bitrary element z, one processor can locate z in all of the
C(v)‘8 in O(logn+ mlog d) time where d is the degree of
G [lo]. Atallah, Cole and Goodrich [4] show how to per-
form the construction in O(log N) time with O(N) space
and N/log N processors on a CREW PRAM, where N

is Ivl+IEl+c,~v IC(v)I. Given the C(v) lists at a node
and at the neighbors of that node, an auxiliary list A(v)
is constructed that contains C(v) and some fraction e of
the elements from all the A lists at the neighbors of v.
Each element of A(v) stores its rank in C(v) and in the
A lists at the neighbors of v. Thus, given the rank of an
element c in some A(v) list, the rank of c in A(w) can
be found in constant time (for a neighbor w of v), by
checking at most l/e of the elements to one side of c in
A(v), to find one that occurs in A(w) (which implicitly
gives the rank of c in C(w)).

This technique is quite useful for reducing the time
complexity for performing a sequence of similar searches.
In some instances, it is convenient to allow the collec-
tion of similar searches to grow as the computation pro-
gresses. The next lemma shows that the cost of allowing
for this extension is essentially free (in terms of the work
needed to simulate it).

Lemma 4.1 (Goodrich [18]): Given an algorithm A
designed for a PRAM model Lhat uses local processor
allocation3, one can simulate A on an analogous PRAM
with global all ocation in a work-preserving fashion with
a logpfactor slow-down, where p is the final number of
processors.

51.n a local allocation scheme, in any rtep t, each processor
can, if desired, spawn another processor to begin, in step t + 1,
performing a specified task [34].

In the final version of this paper we give an example
use of both of these techniques for the problem of build-
ing a parallel data structure to compute all the intersec-
tions between a line and a polygon in time O(log2 n)
using 0(1 -t k/logn) processors, where k is the size
of the output. The method involves building essen-
tially the same data structure as that of Charelle and
Guibas [lo] for this probl.em, but by implementing our
method in parallel, using the a-level array structure of
Wagener 1421, our constructing requires O(log n) time us-
ing only O(n/ logn) processors. This actually improves
the sequential complexity of building this structure, as
the method of Chazelle and Guibas runs in O(nlogn)
time [lo].

Returning to the problem of sweeping through a set
of rectangles, in the following subsection we review an
important data structure, which our algorithms use as
the skeleton structure for an array-of-trees construction.

4.2 The Segment Tree

Let S = {dl, 82,. . . , I,} be a set of vertical line seg-
ments in the plane, and let Y = (m,vz, . . . ,vs,,) be the
(non-decreasing) sorted list of the p-coordinates of the
endpoints of the segments in S. Let T be the complete
binary tree whose 2n + 1 leaves, in left to right order,
correspond to the intervals (-co,mj, [a,~], [ya,gss],
**-I [Ym-1, Yml, [Ym, +=J), respectively. Associated with
each internal node v E T is a closed interval 1, = [s, yj]
which is the union of the intervals associated with the
descendants of v. Let II, denote the horizontal slab
I, x (--oo,+w). We say a segment 8: coverr a node
v E T if it spans II,, but not llpo+rnt(a). Clearly, no seg-
ment covers more than 2 nodes of any level of 2’; hence,
every segment covers at most O(logm) nodes of T. For
each node v E T we define two sets, Cover(v), End(v):

l Covep(v) is the set of segments in S that cover v.

l End(v) is the set of all segments that do not span
II, but have an endpoint in II,.

The tree T together with the above lists constructed
for each node in T constitutes the segment tree for S [6].

4.3 Computing the Contour

Given a set of isothetic rectangles, we consider the prob-
lem of computing and reporting the contour of the union
of the rectangles. Sequentially, this problem was first
studied by Lipski and Preparata [25], and time optimal-
ity was achieved by Wood [44]. Time and space optimal-
ity was subsequently achieved by Widmayer and Wood
[43]. In the parallel domain, Chandran and Mount [9]
produced a CREW PRAM algorithm that runs with
O(n) processors in O(k,,,) time, where kmcrz is the

286

largest number of output subsegments associated with
any one line segment.

We achieve O(log n) time with O(n + k/log n) pro-
cessors (which is optimal), where k is the size of the
output. Our method reports the edges of the contour.
If one desires the contour cycles, then the work bound
of our method becomes O(nlogn + b(k)), where b(m)
is the work for performing stable bucket sorting of m
elements*. We use the following procedure to determine
all the vertical line segments of the contour, then repeat
it, exchanging the roles of the Z- and y-axes, to obtain
the horizontal segments.

Step 1. In this step we build the segment tree, com-
plete with all the Cower(v) and End(v) lists constructed
for each node, where the vertical segments come from
the rectangle vertical boundaries and are sorted by the
z-coordinates. We view each Cover(u) as an event list
where z coordinates act as the “time” field. Using the
method of Atallah, Cole and Goodrich [4], we can imple-
ment this step in O(logn) time with O(n) processors.

Step 2. For each node v, we construct an event list,
C(u), such that for each entry ai = (zi,ci) in C(v),
ci is the number of segments that couer u during the
interval [2(,2i+l). The 2 values (2{,2+1) in this case
are determined by the z-coordinates of the segments in
Cover(u). Given the Cover(v) lists, this construction is
essentially just a collection of parallel prefix computa-
tions. We then construct the fractional cascading auxil-
iary lists for these C(v) lists, using the method of Atal-
lah, Cole and Goodrich [4], which runs in O(logn) time
with O(n) processors (since the total size is O(nlogn)).

Step 3. For each node u, we construct an event list,
H(v), such that for each entry pi = (zc,hi), hi is the
number of (maxima) rectangular regions in II, that ex-
tend horizontally from Zi to Zi+l and do not intersect
the interior of any rectangle in Cover(v) U End(u). The
a+coordinates that determine the “times” in H(v) cor-
respond to the z-coordinates of the vertical boundaries
of the rectangles in Cover(v) U End(v). We also define
two flags, top and bottom, for each entry in an I-I list, to
mark whether one of the segments in II, continues into
the respective slab-neighbor of II,.
Implementation: We can construct the H(v) lists at the
leaves immediately from the entries in C(v). Specifi-
cally, if (2i, ci) is the i-th value in C(v), then (zi, hi)
is the i-th value in H(u), where hi = 1 if ci = 0, and
hi = 0 otherwise. We construct the other H(v) lists
by a bottom-up procedure. Assume, for some node 11,
we have already constructed the respective H lists for
v’s children, u and w, and we have a list of sorted 2-

coordinates-, each of which is determined by the vertical
boundary of a rectangle in Cove+(v) U End(v). Also

4Matias and Vi&kin [26] give a randomieed method running in
O(logmloglogm) expected time with O(mloglogm) work on M
arbitrary-CRCW PRAM.

assume (by the fractional cascading auxiliary pointers),
that, for each element 8 in this list, we have a pointer
to the elements cy, /3, and 7, in C(v), H(u), and H(w),
respectively, that have the largest z-coordinate less that
or equal to a’s z-coordinate. We define the (xi, hi) pair
in H(v) for r so that 2; is the x-coordinate of s, and hi is
defined as follows: Let Q = (2,~). If c = 1, then hi = 0.
If c = 0, then hi is the sum of h, and h, (taking top
and bottom flags into account), where p = (z,, h,) and
7 = (%, h,). We give the details in the final version,
showing that this step can be implemented in O(logn)
time with O(n) processors.

Step 4. In this step, we construct the pruned array-
of-trees. Given an entry ai = (zi, hi) in H(u), the
pruning function n(ai, u), which determines whether a
pointer to ai occurs in B(u), where v is the parent of u,
is equal to 1 iff both of the following hold: (i) the record
in C(v) with largest z-value less than or equal to xi has
c-value equal to 0, and (ii) hi > 0. We calculate this, and
in so doing, construct the pruned array-of-trees, level-by-
level, starting at the leaves, as in Section 2.2. This step
runs in O(logn) time using O(n) processors.

Step 5. In this step we determine for each vertical
line segment L in S, all the subsegments of L that are
part of the contour. Starting at the root, we search down
the tree for the subsegments of L, checking the H list at
each node, searching with the z-coordinate of L for un-
covered intervals through which L might be seen. If the
active h-value in the H list is zero, then we stop search-
ing down this branch as no output can result. Once each
node, v, covered by L is located, for each such v, we de-
termine the total number k, of uncovered subsegments
of L in the subtree rooted at v, by examining the H lists
at v’s children. Then, we request [k, / log n] new pro-
cessors, which start at the children of u, and search the
compressed trees rooted there (in the pruned array-of-
trees) for all pieces of the output that are on L in II,.
This completes the algorithm.

4.4 Hidden-Surface Removal

Given a set of n opaque iso-oriented rectangles paral-
lel to the zy-plane, we wish to determine all of the
portions of each rectangle that are visible from view-
ing at (O,O, +oo). Sequentially, this problem was first
studied by Giiting and Ottmann [22], with more effi-
cient algorithms being recently reported by Goodrich,
Atallah, and Overmars [20], Bern [7], Goodrich [17],
Mehlhorn [27], and Preparata, Vitter, and Yvinec [33].
The best sequential bound (optimizing for the term in-
volving only n) is O((n + k) log n), where k is the size of
the output [20, 7, 271. We show how to solve this prob-
lem in O(log2 n) time using O((n + k) log n) work. Our
algorithm description assumes a local-allocation scheme
and runs in O(log n) time using O(n + k) processors; we

287

apply Lemma 4.1 to derive the claimed bounds.
As in the previous algorithm, we use a segment tree

to store the vertical edges of the rectangles. For each
node v in this tree, we define the restricted subscene for
v to consist of all vertical edges e such that e belongs
to a rectangle in Cover(v) U End(v), but e’s intersection
with II(v) is more than a single point. Our method uses
three event lists built for each node v: Top(v), High(v),
and Low(v), where there is an entry in Top(v) for each
vertical segment in CoveT(v), and an entry in High(v)
and Low(v) for each vertical edge of the restricted sub-
scene for V. Their meanings are as follows: If (zi, top<)
is an element in Top(v), then topi is the maximum z-
coordinate of the rectangles in Cove?(v) that intersect
the plane z = zi. If (2i, highi) is an element in High(v),
then highi is the maximum z-coordinate of the rectan-
gles in the restricted subscene for v that intersect the
plane 2 = 2;. If (zi, low;) is an element in Lozu(v), then
lowi is the minimum z-coordinate of the rectangles in the
restricted subscene for v that intersect the plane z = zi
and are visible from (0, 0, +m).

1. We construct the segment tree, together with all
the Cover(v) and End(v) lists, sorted by z-coordinates
of the vertical segments.

2. We construct Top(v) for all nodes v, in O(logn)
time with O(n) processors by a parallel implementation
of a method of Goodrich et OZ. [20]; we give the details
in the final version.

3. From the Covet(v) and End(v) lists, we construct
the lists of z-coordinates for the High and Low arrays,
and apply fractional cascading to these arrays and the
Top arrays constructed in the previous step. Also, given
the Top(v) values previously constructed, we can con-
struct the event lists for Low and High by a simple
bottom-up procedure. Constructing these lists for the
leaves is straightforward, SO suppose we have already
computed the High and Low lists for the children EL
and w of v. Consider an x-coordinate, 2, for which we
wish to compute its corresponding high and low values.
Let high, and high, be the elements of High(u) and
High(w) that are active at “time” Z. Similarly, define
low,, and low,. Also, let top be the element of Top(v)
active at 2. Then, high, = max{high,, high,, top} and
low0 = max{min{low,,low,}, top} [7]. Thus, we can
compute high and Zow in O(1) time given these other
values (which we can maintain during our bottom-up
procedure). Therefore, this construction takes O(log n)
time using O(n) processors.

4. In this step we determine all the visible vertical
edges. We assign a processor P to every vertical edge e
of a input rectangle. P visits every node in the segment
tree which e covers, searching down from the root of the
segment tree, and spawns as many extra processors as
needed to output the pieces of e that are visible.
Comment: Let v be a node such that e spans II,. Note

that if z(e) < 10~1, where low is the value associated with
the entry in Low(v) active at Z(e), then e is completely
obscured by rectangles with edges in the restricted sub-
scene for v. Also, if z(e) > high, where high is the active
value in High(v), th en no rectangle with an edge in the
restricted subscene for v :is higher than e. This doesn’t
imply that e is visible in II,, however. For e to be visible
in II, we must also have that z(e) is larger than all the
active top values in Top(v’) lists, where v’ is an ancestor
ofv.

Implementation of Step 4: Let P be the processor
assigned to a vertical edge e on some rectangle. We as-
sociate with P a single piece of e, which we have found to
be visible (although we haven’t output it yet). Assume
the processor is at a node v that e covers. If e is com-
pletely obscured in II, (which P can determine by the
above tests’), then P outputs 1 and sets I = 0. If e is
completely visible in II,, then P “grows” I to include the
part of e in II,. If, on the other hand, P determines that
e is only partially visible (because low < z(e) < high),
then P spawns a new processor P’, which descends into
the tree below to find the visible parts of e. P’ inherits
the interval I from P, and P continues it search for the
other nodes that e covers (after re-setting its copy of I
to 8). The task for P’ is to output the visible parts of
e in II,, together with the piece of e (corresponding to
I) which P had previously determined to be visible, but
had not output. We omit the details here. This step
runs in O(log n) time using O(n + k) processors.

5. If one also wishes to output the visible surfaces,
then for every visible line segment we need to determine
the visible rectangles that are immediately to the left
and right of the segment. This step is similar to the
previous one; we give its details in the final version.

6. A11 of the line segments corresponding to a vertical
edge of a rectangle have been found. We then run the
algorithm once more (with the roles of the z-axis and
waxis reversed) to find the visible horizontal edges.

References

PI

PI

[31

PI

Abrahamson, K., Dadoun, N., Kirpatrick, D.A., and
Przytycka, T., “A Simple Parallel Tree Contraction
Algorithm,” TR 87-30, Dept. of Comp. Sci., Univ. of
British Columbia, 1987.

A. Aggarwal, B. Chazelle, L. Guibaz, C. 6’Dtiaing,
and C. Yap, “Parallel Computational Geometry,” Al-
gorithmica, S(3), 1988, 293-328.

R.J. Anderson and G.L. Miller, “Deterministic Par-
allel List Ranking,” Lecture Nottr 319: AWOC 88,
Springer-Verlag, 1988, 81-90.

M.J. Atallah, R. Cole, and M.T. Goodrich, “Cascading
Divide-and-Conquer: A Technique for Designing Par-
allel Algorithms,” SIAM J. on Comput., 18(3), 1989,
499-532.

5Note that P must maintain the maximum z-coordinate of ac-
tive top values from t to the root, but this is easy to do.

288

[5] M.J. Atallah, M.T. Goodrich, and S.R. Kosaraju,
“Parallel Algorithms for Evaluating Sequences of Set-
Manipulation Operations,” Lecture Notes 319: AWOC
88, Springer-Verleg, 1988, l-10.

[6] J.L. Bentley and D. Wood, “An Optimal Worst Case
Algorithm for Reporting Intersections of Rectangles,”
IEEE !!bans. on Computers, C-20(7), 1980, 571-576.

[7] M. Bern, “Hidden Surface Removal for Rectangles,”
4th ACM Symp. on Comp. Geom., 1988, 183-192.

[8] R.P. Brent, “The Parallel Evalutation of General
Arithmetic Expressions,” J. ACM, 21(Z), 1974, 201-
206.

[9] Char&an, S., and Mount, D., “Shared memory al-
gorithms and the medial axis transform”, 2987 IEEE
Workshop on Computer Arch. for PAMI.

[lo] B. Chaselle and L.J. Guibas, “Fractional Cascading:
I. A Data Structuring Technique,” Algorithmica, l(2),
133-162.

[ll] A. Chow, “Parallel Algorithms for Geometric Prob-
lems,” Ph.D. thesis, Comp. Sci., Univ. of Illinois, 1980.

[12] R. Cole, “Parallel Merge Sort,” SIAM J. Cornput.,
17(4), 1988, 770-785.

[13] R. Cole and U. Vi&kin, “Approximate Scheduling,
Exact Scheduling, and Applications to Parallel Algo-
rithms,” 27th FOCS, 1986, 478-491.

[14] Driscoll, J.R., Sarnak, N., Sleator, D.D., Tarjan, R.E.,
“Making Data Structures Persistent,” 18th STOC,
1986, 109-121.

[15] H. Edelsbrunner, Algorithms in Combinotoriul Geom-
etry, Springer-Verlag, 1987.

[16] H. Edelsbrunner, H.A. Maurer, F.P. Preparata,
A.L. Rosenberg, E. Welzl, and D. Wood, “Stabbing
Line Segments,” BIT, 22, 1982, 274-281.

[17] M.T. Goodrich, “A Polygonal Approach to Hidden-
Line Elimination,” 25th Allerton Conference on
Comm., Control, and Comput., 1987, 849-858.

[18] M.T. Goodrich, “Intersecting Line Segments in Parallel
with an Output-Sensitive Number of Processors,” 1989
SPAA, 127-137.

[19] M.T. Goodrich, “Applying Parallel Processing Tech-
niques to Classification Problems in Constructive Solid
Geometry,” 1st ACM-SIAM Symp. Disc. Alg., 1990,
118-128.

[ZO] M.T. Goodrich, M.J. Atallah, and M. Overmars,
“An Input-Size/Output-Size Bade-Off in the Time-
Complexity of Rectilinear Hidden Surface Removal,”
to appear in ICALP ‘90.

[21] M.T. Goodrich and S.R. Kosaraju, “Sorting on a Par-
allel Pointer Machine with Applications to Set Expres-
sion Evaluation,” 29th FOCS, 1989, 190-195.

[22] R.H. Giiting and T. Ottmann, “New Algorithms For
Special Cases of the Hidden Line Elimination Prob-
lem,” Symp. on Theo. A8pects of camp. hi., 1985,
161-171.

[23] Kosaraju, S.R., and Delcher, A.L., “Optimal Parallel
Evaluation of Tree-Structured Computations by Rak-
ing,” Lecture Notes 319: AWOC 88, Springer-Verlag,
1988, 101-110.

[24] D.T. Lee and F.P. Preparata, UComputational
Geometry-A Survey,” IEEE Tmnr. on Computers, C-
33(12), 1984, 872-1101.

[25] W. Lipski, Jr. and F.P. Preparata, “Finding the Con-
tour of a Union of &o-Oriented Rectangles,” J. Algo-
rithms, 1, 1980, 235-246.

[26] Matias Y., Vi&kin U., “On Parallel Hashing and In-
teger Sorting”, Report UMIACS-TR-90-13, Inst. for
Adv. Computer Studies, Univ. of Maryland, 1990.

[27] K. Mehlhorn, personal communication, October 1989.

[28] G.L. Miller and J.H. Reif, “Parallel Tree Contraction
and its Application,” 26th FOCS, 1985, 478-489.

[29] G.L. Miller and S.H. Teng, “Dynamic Parallel Com-
plexity of Computational Circuits,” f 9th STOC, 1987,
254-263.

[30] D.E. Muller and F.P. Preparata, “Finding the Inter-
section of Two Convex Polyhedra,” Theo. Comp. Sci.,
7(2), 1978, 217-236.

[31] M.S. Paterson and F.F. Yao, “Binary Partitions with
Applications to Hidden Surface Removal and Solid
Modeling,” 5th Symp. on Comp. Geom., 1989, 23-32.

[32] F.P. Preparata and M.I. Shamos, Computational Ge-
ometry: An Introduction, Springer-Verlag, 1985.

1331 F.P. Preparata, J.S. Vitter, and M. Yvinec, “Com-
putation of the Axial View of a Set of Isothetic Par-
allelepipeds,” Lab. d’brformatique de L’Ecole Normal
SupCrieure, DCpt. de Math. et d’brfo., Report LIENS-
88-1, 1988.

[34] J.H. Reif and S. Sen, “An Efficient Output-Sensitive
Hidden-Surface Removal Algorithm and Its Parallelisa-
tion,” 4th Symp. on Comp. Geom., 193-200, 1988.

[35] A.A.G. Requicha, “Representations for Rigid Solids:
Theory, Methods, and Systems,” ACM Computing
Supvey8,12(4), 1980, 437-464.

[36] C. Riib, “Parallel line segment intersection reporting,”
manuscript, 1989.

[37] A. Schmitt, “On the Time and Space Complexity of
Certain Exact Hidden Line Algorithms,” Univ. Karl-
sruhe, Fakultiit fiir Informatik, Report 24/81, 1981.

[38] I.E. Sutherland, R.F. Sproull, and R.A. Schumacker,
“A Characterization of Ten Hidden-Surface Algo-
rithms,” Computing Surueys, 6(l), March 1974, l-25.

[39] R.E. Tarjan and U. Viihkin, “Finding Bicormected
Components and Computing Tree Functions in Log-
arithmic Parallel Time,” SIAM J. Comput., 14, 1985,
862-874.

[40] R.B. Tilove, “Set Membership Classification: A Unified
Approach to Geometric Intersection Problems,” IEEE
Tmna. on Computers, C-29(10), 1980, 874-883.

[41] R.B. Tilove, UA Null-Object Detection Algorithm for
Constructive Solid Geometry,” Comm. ACM, 27(7),
1984, 684-694.

[42] H. Wagener, “Optimally Parallel Algorithms for Con-
vex Hull Determination,” manuscript, 1985.

[43] Widmayer, P., and Wood, D., “Time and Space-
Optimal Contour Computation For a Set of Rectan-
gles”, Info. hoc. Let., 24, 1987, 335-338.

[44] Wood, D., “The Contour Problem For Rectilinear
Polygons”, Ino. Proc. Let., 19, 1984, 1984, 229-236.

289

