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Summary of Results 
In this paper we give efficient parallel 

algorithms for a number of problems from 
computational geometry by using generalized 
versions of parallel plane sweeping. We illus- 
trate our approach with a number of appli- 
cations, which include 

genersl hidden-surface elimination (even 
if the overlap relation contains cycles), 

CSG boundary evaluation, 

computing the contour of a collection of 
rectangles, and 

hidden-surface elimination for rectan- 
gles. 

Our algorithms are for the CREW PRAM. 

1 Introduction 

There are a number of algorithms in computational ge- 
ometry that rely on the “sweeping” paradigm (e.g., see 
[15, 24, 321). The generic framework in this paradigm 
is for one to traverse a collection of geometric objects 
in some uniform way while maintaining a number of 
data structures for the objects that belong to a “cur- 
rent” set. For example, the current set of objects could 
be defined by all those that intersect a given vertical 
line as it sweeps across the plane, those that intersect a 
line through a point p as the line rotates around p, or 
those that intersect a point p as it moves through the 
plane. The problem is solved by updating and querying 
the data structures at certain stopping points, which are 
usually called “events”. We are interested in the problem 
of parallelizing sweeping algorithms. 

Most previous approaches to parallelizing sweeping 
algorithms have been to abandon the sweeping approach 
all together and solve the problem using a completely 
different paradigm. Examples include the line-segment 
intersection methods of Riib [36] and Goodrich [18], the 
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trapezoidal decomposition algorithm of Atallah, Cole, 
and Goodrich [4], the method of Aggarwal, Chazelle, 
Guibas, 6 Dlinlaing, and Yap [2] for constructing 
Voronoi diagrams, and the method of Chow [ll] for 
computing rectangle intersections. A notable exception, 
which kept with the plane sweeping approach, were the 
methods of Atallah, Cole, and Goodrich [4] for %-set 
dominance counting, visibility from a point, and com- 
puting S-dimensional maxima points. In each of these 
algorithms, Atallah et al. parallelized sweeping methods 
that sweep the objects with a vertical line, maintaining 
the set of objects cut by the line, and computing an asso- 
ciative function (such as “plus” or “min”) on the current 
set of objects for each event. 

In this paper we give general methods for paralleliz- 
ing various types of sweeping algorithms. Specifically, 
we address problems where the sweep can either be de- 
scribed as a single sequence of data operations or a re- 
lated collection of operation sequences. The technique 
does not depend on the sweep being defined by moving 
a vertical line across the plane, nor any other specific 
geometric object for that matter. We study cases where 
the sweep involves moving a point around a planar sub- 
division and cases where the sweep can be viewed as 
involving a number of coordinated line sweeps. We mo- 
tivate our approach by giving efficient parallel algorithms 
for a number of computational geometry problems. In 
particular, we derive the following results: 

hidden-surface elimination. One is given a collec- 
tion of opaque polygons in @ and asked to de- 
termine the portion of each polygon that is vis- 
ible from (O,O,+oo) [17, 37, 383. We show that 
this problem can be solved in O(logn) time using 
O((n + I)log’ n) work (i.e., O((n + I) logn) pro- 
cessors) in the CREW PRAM model, where n is 
the number of edges and I is the number of edge 
intersections in the projections of the polygons to 
the zy-plane. 

CSG evaluation. One is given a collection of prim- 
itive objects, which are either polygons (in the 2-D 
case) or polytopes (in the 3-D case), and a tree T 
such that each leaf of T has an object associated 
with it and each internal node of T is labeled with 
a boolean operation (such as union, intersection, 
exclusive-union, or subtraction) [35, 40, 411. The 
problem is to construct a boundary representation 
for the object described by the root of T. We show 



that the 2-D version of this problem can be solved 
in O(logn) time using O((n + I) log’ n) work, and 
we also show how to extend this method to 3-D 
CSG evaluation. 

0 Constructing rectangle contours. One ,is given a 
collection of iso-oriented rectangles in the plane 
and asked to determine the edges of the contour 
of their union [9, 25, 43, 441. We show that 
this problem can be solved in O(logn) time US- 
ing O(nlogn + h) work (which is optimal), where 
k is the size of the output. 

l Rectilinear hidden-surface elimination. One is 
given a collection of opaque iso-oriented rectan- 
gles in 32’ and asked to determine the portion of 
each rectangle that is visible from (O,O, +oo) [7, 
17, 20, 22, 27, 331. We show that this problem can 
be solved in O(log2 n) time using O((n + k) log n) 
work, where k is the size of the output. 

One of the main ingredients in each of our solutions is 
the use of a parallel data structure of Atallah, Goodrich, 
and Kosaraju [5] called the array-of-trees. We apply this 
data structure in a variety of ways in order to solve each 
of the above problems. 

The computational model we use for our algorithms is 
the CREW PRAM. Recall that processors in this model 
act in a synchronous fashion and use a shared memory 
space, where many processors may simultaneously ac- 
cess the same memory location only if they are all read- 
ing that location. Many of our results use the paradigm 
that the pool of virtual processors can grow as the com- 
putation progresses, provided the allocation occurs glob- 
ally [18, 361. In this scheme one allows 7 new processors 
to be allocated in time t only if one has already con- 
structed an r-element array that stores pointers to the 
r tasks these processors are to begin performing in step 
t + 1. This is essentially the same as the traditional 
CREW PRAM model, except that in the traditional 
model one performs only one request, at the beginning 
of the computation (to allocate a number of processors 
that usually depends on the input size, e.g., n or a’). 

2 Parallel Persistence 

We begin our discussion by reviewing a parallel data 
structure called the array-of-trees, and presenting two 
extensions to this structure. All of the structures we 
describe here can be viewed as parallel examples of the 
persistence paradigm of Driscoll et al. [14]. In our frame- 
work one is given a linked data structure D, an initial 
assignment of values to the nodes of D, and a sequence u 
of m update operations that operate on the nodes of D, 
but do not add new links’ to D. The interpretation of 

1 In the sequential setting one is also allowed to change links [14]. 

the sequence u is that operation i updates the structure 
resulting from performing operations 1,2, ..,i - 1. The 
problem is to produce an auxiliary structure, A, such 
that A allows a single processor to perform a “query in 
the past” on D, i.e., a query on the instance of D as 
it appeared after some update operation i. We show in 
this section that, for a variety of “skeleton” structures, 
D, if one is given the entire sequence u in advance, then 
one can solve this problem quickly in parallel. 

2.1 The Array-of-Trees 

Atallah, Goodrich, and Kosaraju [5] were the first to 
address this problem in a parallel setting, and give a 
solution for the case where the underlying data structure 
is a complete n-node binary tree T and each operation in 
u is either an enable(u), which “turns on” the leaf u and 
updates the nodes from u to the root to reflect this, or 
a disable(u), which turns off the leaf v and updates the 
nodes from v to the root to reflect this. The updating 
action here is allowed to include, for each node v involved 
in the update, the computation of a constant number of 
labeling functions on the children of v. Their method 
runs in O(log n) time and O(mlog n) space2, using O(n+ 
m) processors in the CREW PRAM model, where m = 
IQ]. The resulting data structure is called the array-of- 
trees [5]. 

The array-of-trees, which we will denote by B(r), 
is defined recursively on the nodes in T (v is the root 
of T). In each leaf node z of T one stores u(z), the 
subsequence of u consisting of all operations that have 
z as their argument (in the order that they appear in 
u). With each operation ut in u(z) one associates a 
record (t, uala, left, right), where t is the position of 
this operation in u (i.e., its ?ime of execution”), uoZ8 
is a list of values for Z, and left and right are pointers 
(which are null for leaf 2). The values stored in the 
vaZ8 list depend only on 2 and ut. For example, if one 
is interested in counting active leaves, then uals could 
store Ucount = 0” if ut = disable(z) and “count = 1” if 
ut = enabZe( a). Also, we include a record in E(2) for 
the initial assignment of 2, giving it a time-value t = 0. 
Intuitively, B(2) represents the history of u when one 
restricts attention to the operations in u(2). That is, 
if we let (tl, t2, . . . . tp(a)l) denote the list of t-values in 
B(2), then each record (ti, uals, null, null) in B(2) can 
be thought of as representing a (trivial) binary tree rep- 
resenting the portion of T related to 2 from time ti to 
time ti+l - 1. 

For each internal node v one defines B(v) in terms 
of B(u) and B(w), w h ere u and w are the children of v. 
There is a record in B(v) for each record in B(u)UB(w), 
and these are sorted by t-values (i.e., a sorted merging of 

3If alI future queries need go no deeper than the root of T, then 
the space CM be reduced to O(m) [S]. 
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B(u) and B(w)), removing the duplicate for Z = 0. For a 
record a = (t, uaZd, left, right) in B(v), the pointers left 
and right point to the records 01 and c+ in B(u) and 
B(w), respectively, with the largest t-value less than or 
equal to t (one of these records will have the same t-value 
as a). The values ‘in the vals list for a is defined by a 
combination rule (specified by the application) applied 
to al and a,. For example, if one is interested in counting 
active leaves, then one could have a count field in vals 
that is computed by taking the sum of count fields in 
al and a,. By a simple inductive argument, if we let 
(w2, . . . . 21n(~)l) denote the list of t-values in B(v), then 
each record in B(v) represents the root of the subtree of 
T rooted at v from time ti to time ii+1 - 1. 

As a simple example of a use of the array-of-trees, 
consider the problem of counting the number of inter- 
sections between a set of vertical line segments and a 
set of horizontal line segments. In this case the skele- 
ton tree T is a complete binary tree built on top of 
the wcoordinates of the horizontal segments, and the 
z-coordinates of the segment endpoints define the ac- 
tions, left endpoints corresponding to enable operations 
and right endpoints corresponding to disable operations. 
The only information that needs to be stored in vala list 
for a node v is the count of the number of active leaf de- 
scendants of v. Given this data structure, one solves the 
problem by assigning a processor to each vertical seg- 
ment and using that processor to search in the “copy” of 
2’ for the z-coordinate of s. The search for 8 is a simple 
l-dimensional range-query based on the y-coordinates of 
the endpoints of u. 

One can also use more complicated types of combin- 
ing rules. For example, Goodrich [18] employs a com- 
premed version of the array-of-trees where the combining 
rule affects both the values stored in the vals list and the 
Zeft and right pointers, In particular, if one is combining 
two records or and (Y, to define a new record a (where 
a is for a node v and or and a, are for v’s left and right 
children, respectively), then, in addition to computing a 
count label of the number of active leaf descendants for 
v, he adds the following test: 

If al .count = 0 then a.Zeft = a,.Zeft 
and aright = a,.right, else, if a,.count = 
0 then a.Zeft = cq.Zeft and aright = 
al.tight. Also, if a.count = 0, then a.Zeft = 
might = null. 

Note that by adding this simple rule, each record a in 
a B(v) list represents the root of a tree with a.count 
leaves, i.e., a compressed binary tree built upon the ac- 
tive leaves that are descendants of v in T. Goodrich uses 
this approach to derive an optimal parallel algorithm for 
enumerating all intersections between a set of vertical 
segments and a set of horizontal segments. 

2.2 Extending th.e Array-of-Trees 

In this paper we make ap:plications of a number of further 
extensions of the array-of-trees data structure. The first 
extension we add is that, we allow each internal node v 
in the skeleton tree, T, to store data elements as well 
as the values of combining rules applied to v’s children. 
Thus, we allow the operations in u to enable and disable 
internal nodes of T as well as leaves. In the full version of 
the paper we show that :it is easy to extend the method 
of Atallah, Goodrich, and Kosaraju [5] to construct this 
version of the array-of-trees with the same performance 
as before, i.e., O(log n) time and O(n log n) space using 
O(n) processors. 

We also allow one to define a “pruned” version of the 
compressed array-of-trees [18]. In particular, we assume 
the existence of a O/l-valued prune function, n(a,v), 
and modify Goodrich’s combining rule so that we use 
*(al, u) * a,.count and ~(a,, w) * a,.count instead of 
arxount and a, .count, respectively. Intuitively, if, say, 
A(CY~,ZL) = 0, then we are “pruning” away the subtree 
rooted at or, and not passing it up to be a part of the 
subtree rooted at Q. Note, however, that we do not de- 
stroy the tree rooted at or; it is still accessible from B(u). 
Thus, in this case, each record a in B(v) corresponds to 
the root of a binary tree containing the number of active 
descendent nodes of v in T that “survived” the pruning 
function at least as far up T as v. 

The final extension we make to the array-of-trees is 
to generalize the skeleton data structure upon which it is 
defined, so as to be something other than a complete bi- 
nary tree. In particular, we allow the skeleton structure 
to be an order-k pseudo-tree, for fixed k. A pseudo-tree 
is a directed acyclic graph G = (V, E) such that the 
nodes in V have been partitioned into VI, Vz, . . . . V, with 
the q’s forming the nodes of a tree T. For each edge 
(v, w) E E, either v, w E K for some i or (V;-, Vi) is an 
edge in T and v E Vi and w E Vj. A pseudo-tree is 
of order k if ]Vi] 5 k for each i E (1,2, . . . . m}. Thus, 
if G is a tree, it is an order-l pseudo-tree. For our ap 
plications, we assume that the underlying tree, T, is a 
binary tree with height O(logn), and that G is an order- 
k pseudo-tree with k being O(1). In the final version 
of this paper we show that one can use the cascading 
merge scheme of Goodrich and Kosaraju [21], which is 
based on linked-lists inst,ead of arrays, to construct this 
“array-of-pseudo-trees” data structure in O(log n) time 
and O(nlogn) space using O(n) processors. Note: the 
method of Atallah, Goodrich, and Kosaraju [5] cannot be 
applied here, because their method is based on a cascade 
merging with arrays that would introduce a potentially 
large number of duplicate entries. 

282 



2.3 Off-Line Expression Evaluation 

As an application of our extensions to the array-of-trees 
data structure, consider the following problem. Suppose 
one is given an n-node binary tree T such that each 
leaf represents a value taken from some universe U and 
each internal node v is labeled with a binary function 
f. : U x U -+ U taken from a family of functions 3. The 
height of T is allowed to be as large as O(n). The ezpres- 
sion evaluation problem is to determine the value repre- 
sented by the root of T based on a bottom-up evaluation. 
To make the problem tractable in a parallel setting, we 
assume the functions in 3 and the universe U form a 
contractable algebraic structure, i.e., an algebraic struc- 
ture that satisfies the composition, closure, and combi- 
nation properties of Miller and Teng [29]. Intuitively, 
an algebraic structure (U,3) is contractable if one can 
apply the parallel tree-contraction schemes of Brent [8] 
or Miller and Reif [28] t o evaluate T in O(logn) time 
using O(n) processors (which can in fact be reduced to 
O(n/ log n) [l, 231). For example, any semi-ring is con- 
tractable [8, 281, and so is the algebraic structure defined 
by the boolean operations used in CSG evaluation (on 
the universe {O,l}) [19]. 

Suppose that, in addition to the expression tree T, 
one is given a sequence tr of m update operations for 
the leaves of T. That is, each t-th operation, a:, in 
u is an assignment of the form 2j := u, where zj is 
a leaf of T and u is value taken from U. The ofl-line 
expression-evaluation problem is to determine for each 
t E (1, 2, ..-) m} the value that would be defined by 
the root of T after sequentially performing the assign- 
ments ~1, us, . . . . ut, given the initial values assigned to 
the leaves of T. 

Using the methods of Abrahamson et al. [l] or 
Kosaraju and Delcher [23] one can convert T into an 
equivalent circuit C, where C has O(logn) depth and 
is, in fact, an order-4 pseudo-tree. The time needed 
for this conversion is O(logn) using O(n/ logn) proces- 
sors [l, 231. G iven this circuit, and the initial dues 
associated with its “leaves”, we then apply the array- 
of-pseudo-trees construction described above. This re- 
quires an additional O(log n) time using O(n/ log n + m) 
processors, and gives us a solution to the off-line expres- 
sion evaluation problem (by simply reading off the values 
stored at the “root” of C for each time instance in u). 
Moreover, since we are only interested in the value of 
the “root” of C, we need not store all portions of the 
array-of-pseudo-trees, and can implement the construc- 
tion using only O(n + m) space [21]. Thus, we have the 
following lemma: 

Lemma 2.1: Given an n-node binary expression tree 
T whose operations are taken from a contractable alge- 
braic structure, and an m-operation sequence u of leaf- 
update operations, one can determine the value sssoci- 

ated with the root of T after performing each operation 
in u (as in a sequential evaluation) in O(log n) time using 
O(n/ log n + m) processors. 

In the next two sections we address a number of ap- 
plications of our extensions to the array-of-trees. 

3 Sweeping Arrangements 

There are a number of sequential algorithms that fol- 
low an approach of constructing an arrangement [15] 
and traversing that arrangement to solve the problem 
at hand. We address this approach from a parallel per- 
spective. One of the main subproblems that we must 
solve in each application is the construction of a span- 
ning tree in a planar subdivision, which the following 
lemma addresses: 

Lemma 3.1: Given a connected planar subdivision R, 
one can construct a spanning tree on R in O(log n) time 
using O(n/ log n) processors. 

Proof: (Sketch) For each face f in R one removes 
the edge on f that leads, in a counter-clockwise list- 
ing, into the vertex on f with smallest z-coordinate 
(and largest y-coordinate among those, if there are ties). 
This can easily be implemented in O(logn) time using 
O(n/ logn) processors by performing what are essen- 
tially list-ranking procedures [3, 131. In the final version 
of this paper we prove that this scheme does, in fact, 
produce a spanning tree for R. 0 

3.1 Hidden-Surface Elimination 

The first application we address is the hidden-surface 
elimination problem. Suppose one is given a collection 
of polygonal faces in ?3Z3 that do not intersect (except pos- 
sibly at boundaries). The problem is to determine the 
portions of each polygon that are visible from (0, 0, +oo) 
assuming each polygonal face is opaque. For simplicity of 
expression we assume that no two polygon edges (resp., 
vertices) project to the same edge (resp., vertex) in the 
projection plane (the zy-plane). One can easily modify 
our method for the more general case by using paral- 
lel prefix computations where appropriate. Our method 
for solving this problem follows the general approach of 
Goodrich [17] and Schmitt [37], and consists of the fol- 
lowing six steps: 

Step 1. In this step we construct the polygon ar- 
rangement R of S projected to the zwplane. This is the 
connected graph whose nodes are the polygon vertices 
and the intersection points between pairs of polygonal 
edges (in the zy-plane), as well as the “shadows” formed 
by projecting the vertex on each polygon with small- 
est z-coordinate in the negative y-direction until it hits 
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some other polygonal edge. Using the parallel segment- 
intersection algorithm of Goodrich [lS], this arrangement 
can be constructed in O(logn) time using O((n+I)logn) 
processors. 

Step 2. In this step we construct a spanning forest 
F of R using the method of Lemma 3.1, which implies 
that this step can be implemented in O(log n) time using 
O((n + I)/ log n) processors. 

Step 3. In this step we prepare for an application 
(in Step 4) of a generalization of the Euler-tour tech- 
nique of Tarjan and Vishkin [39] to operation sequences, 
by constructing an Euler tour of each tree of F. For 
each connected component of F we make the first edge 
in the tour of that component be an edge leaving the 
(unique) vertex with smallest z-coordinate. In addition, 
with each edge ei in a tour we associate a point pi on ei 
in the zy-plane (we will be using these points in Step 4). 
Let U denote the union of these tours. We can easily per- 
form this step in O(logn) time using O((n + I)/logn) 
processors. 

Step 4. In this step, from U, we construct a m 
quence of operations u = (uo, ~1, . . . . urn) that operate on 
a binary tree T such that each leaf of T is associated 
with a polygon P. For each edge ei in U we associate an 
operation ~4, where ai is enable(P) (resp., disable(P)) 
if in traversing e one would enter (resp., leave) the in- 
terior of P. In addition to enabling the polygon P, the 
enable(P) operation assigns the name of a point p on 
ei to a label rep in the uola list for P (this is the rep- 
reaentative for P for as long as P is active). We also 
maintain a rnoz label for each node v in T (stored in 
the uaZ# list for a record in B(v)), which returns the 
polygon-representative pair (P, p), where P is the “high- 
est” polygon when comparisons are based on the follow- 
ing rule R: Given the query “(P,p) > (Q,q)?“, return 
“yes” if and only if the projection of point p onto the 
plane containing face P is above the projection of p onto 
the plane containing face Q (we do not use q in the com- 
parison). This step can easily be implemented by per- 
forming a list-ranking procedure within the individual 
tours in U. Using the methods of Cole and Vishkin [13] 
or Anderson and Miller [3], this requires O(logn) time 
using 0( (n + I) log n) processors. 

Comment: A vertex with smallest x-coordinate in 
its component is not contained inside the interior of any 
polygon projection in the zyplane. Thus, for each ciir 
the set of active polygons at “time” i consists of all the 
polygons that contain the edge ei in their interior, since 
we start with 0 for each such tour. 

Step 5. In this step we perform an array-of-trees 
construction on Q using the labels listed above (with 
comparison rule 72). This step requires O(logn) time 
and O(n + I) space using O(n + I) processors. We show 
below that even if the overlap relationship contains cy- 
cles, the computation of the moz labels still proceeds 

correctly. 
Step 6. For each edge ei in F, with associated op- 

eration Ui, the max label associated with the record for 
time i stored at the root of T stores the name of the 
polygon visible along ei (i.e., the “highest” polygon). If 
ei is on or above this pol,ygon, then ei is visible; other- 
wise, ei is invisible. In this step we remove from R all 
the edges that are invisible, and indicate for each visi- 
ble edge ei the polygons of S that are visible on each 
side of e;. Given the information computed in previous 
steps, this step can easily be implemented in O(logn) 
time using O((n + I)/ log n) processors. 
End of Algorithm. 

The correctness of the above algorithm depends cru- 
cially on the consistency of the relation ‘R, even in the 
face of possible cycles and gaps in the overlap relation- 
ship. The next two lemmas establish this consistency. 

Lemma 3.2: For any i E (0, 1, . . . . m}, if P and Q 
are both active at time i, then (P,p) > (Q, q) implies 
(Q, q) < (P, q), where p and q are the respective repre- 
sentatives for P and Q at time i. 

Proof: Suppose, for the sake of contradiction, that 
there are two polygon-representative pairs (P, q) and 
(Q, q) active at time i, with (P, q) > (Q, q) and (Q, q) > 
(P, p). That is, P is above Q at p and Q is above P at 
q. Since P and Q do not intersect, this implies that in 
the path from p to q in U we must either (i) leave Q and 
reenter Q along an edge not containing q or (ii) leave 
P and re-enter P along an edge not containing p. But 
this implies that, in the activations of P and Q at time 
i, either Q is not paired with Q or P is not paired with 
p, which is a contradiction. 0 

Thus, for any two active polygon-representative pairs 
(P, P) and (Q,d, tb e result of their comparison is the 
same regardless of whether one uses the point p or the 
point q to determine it. The next lemma shows that our 
comparison rule satisfies the transitive rule. 

Lemma 3.3: For any i E (0, 1, . . . . m), if three polygons, 
P, Q, and R, are active at time i, then (P,p) > (Q,q) 
and (Q, q) > (R, r) imply that (P,p) > (R, T), where p, 
q, and T are the respective representatives for P, Q, and 
R at time i. 

Proof: Similar to the proof of Lemma 3.2. We omit 
the details here. •I 

Thus, the comparison procedure used in Step 5 is 
consistent; hence, the max label associated with each 
record in the B list for the root in T stores the name 
of the polygon visible along the edge ei, where i is the 
time value associated with that record. Thus, we have 
the following theorem: 

Theorem 3.4: Given a collection S of non-intersecting 
polygons in P’, one can solve the hidden-surface elimina- 
tion problem for S in O(log n) time using O((n+I) log n) 
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processors in the CREW PRAM model, where n is the 
total number of edges and I is the number of edge inter- 
sections in the projection plane. 

3.2 Arrangement Queries 

The arrangement sweeping technique can also be used to 
build various geometric data structures in parallel. The 
main idea is to build the arrangement, an operation se- 
quence for that arrangement, use the array-of-trees data 
structure to evaluate the sequence, and then perform 
queries for this sequence to solve the problem. 

Let us illustrate this with an example. Suppose one 
is given a collection of line segments in the plane and 
one wishes to construct a data structure that allows one 
to quickly count or report the segments that are inter- 
sected by a query line I, or return a line that intersects 
the most number of line segments. Using a well-known 
point-line duality [16, 301, the set of all lines intersecting 
a line segment dualizes to the set of all points lying in 
a certain double-wedge (a region defined by all points 
between two intersecting lines). Thus, this is equivalent 
to the problem where one is given a collection of double- 
wedges and asked to build a data structure that counts 
or reports all double-wedges containing a query point 1. 

We can solve this problem as follows. First, we 
can easily construct the arrangement formed by all the 
double-wedges, compute a spanning tree of this arrange- 
ment, and build an Euler tour of this tree in O(logn) 
time using O(n’) processors. We then can construct 
a skeleton binary tree T, whose leaves correspond to 
double-wedges, and an operation sequence u for the Eu- 
ler tour, where the operations are enable(r), which 
corresponds to entering the double-wedge for 8, and 
disable(s), which corresponds to leaving the double- 
wedge for 8. Building the compressed array-of-trees data 
structure for this T and u allows both counting and re- 
porting queries to be performed in O(logn) time (where 
in the reporting case, we first determine the number, k, 
of answers, and then allocate rk/ log nl processors to the 
task of enumeration). To find a maximum stabbing line 
one could then perform O(n2) queries on the array-of- 
trees (one for each face in the arrangement), followed by 
a maximum computation to find the line that stabs the 
most line segments. 

In the next subsection we give an application of ar- 
rangement sweeping via off-line expression evaluation. 

3.3 CSG Boundary Evaluation 

Suppose one is given a collection of Uprimitiven polyg- 
onal shapes and an expression tree T such that each 
leaf of T has a primitive object associated with it and 
each internal node of T is labeled with a boolean op- 
eration, such as union, intersection, exclusive-union, or 

subtraction (a CSG representation [35]). The problem 
we address in this subsection is that of constructing a 
boundary representation for the object defined by the 
root of T. 

Let us first address the s-dimensional version of the 
problem, where the primitive objects are simple poly- 
gons. Using the approach of Goodrich [18], we can solve 
this problem in parallel as follows. We construct the 
arrangement of the polygons that define the primitives, 
find a spanning forest for this arrangement, and build 
an Euler tour of each tree in this forest in O(logn) time 
using O((n + I) log n) p rocessors, where 1 is the number 
of edge intersections. We then build an instance of the 
off-line expression evaluation problem by assigning a “0” 
to each leaf of T, where “0” at leaf i represents “outside 
of primitive i” and a “1” represents “inside primitive i”. 
The update operations for each edge in a tour are also 
based on this convention. By then applying the off-line 
expression evaluation theorem of the previous section, 
we can evaluate T for each cell of the polygon arrange- 
ment. Constructing a boundary representation of the 
defined region is then a simple matter, since a cell of the 
arrangement is inside the defined region iff it is labeled 
with a “1”. This gives us the following theorem: 

Theorem 3.5: One can perform 2-D CSG evaluation 
in O(log n) time using O((n + I) log n) processors, where 
n is the total number of primitive edges and I is the 
number of edge intersections in the polygon arrangement 
(which is O(n2) in the worst case). 

We can also extend this approach to 3-dimensional 
CSG evaluation. The method is similar to that in the 
2-dimensional case, except that the arrangement to be 
formed is a polytope arrangement, and the Euler tour 
traversal now occurs in a spanning forest of this 3- 
dimensional arrangement. We omit the details here, de- 
riving the following theorem in the final version: 

Theorem 3.6: Given a CSG representation built upon 
polyhedral primitives, one can perform the CSG bound- 
ary evaluation in O(log2 92) time using O(n2 + I) proces- 
sors, where n is the total number of edges and I is the 
number intersection points in the polyhedral arrange- 
ment (which is O(n3) in the worst case). 

4 Sweeping Through a Set of 
Rectangles 

In this section we address the situation when one wishes 
to perform a number of coordinated sweeps in parallel, 
which together define a sweep through a set of rectangles. 
We motivate our approach with two important applica- 
tions: computing the contour of a collection of rectangles 
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in the plane, and performing hidden-surface elimination 
on a collection of rectangles in 31’. 

In keeping with our notion of parallel persistence, 
one of the paradigms we use in our algorithms is that 
of an event list. An event list E is a list representing 
the history of some variable e. Each record in E cor- 
responds to a change in the value of e, and stores both 
the new value of e and the “time” at which the change 
occurred (where time refers to the position in the opera- 
tion sequence of the operation that caused the change). 
Both of our methods depend on the use of a number of 
additional parallel techniques, which we discuss in the 
following two subsections. 

4.1 Some Algorithmic Tools 

The first algorithmic tool we review is for performing 
fractional cascading [lo] in parallel [4]. Given a directed 
graph G = (V, E), where each node v in G contains 
a sorted list C(v), the problem is to construct a data 
structure so that given a walk (~1, ~1, . . . . vm) and an ar- 
bitrary element z, one processor can locate z in all of the 
C(v)‘8 in O(logn+ mlog d) time where d is the degree of 
G [lo]. Atallah, Cole and Goodrich [4] show how to per- 
form the construction in O(log N) time with O(N) space 
and N/log N processors on a CREW PRAM, where N 

is Ivl+IEl+c,~v IC(v)I. Given the C(v) lists at a node 
and at the neighbors of that node, an auxiliary list A(v) 
is constructed that contains C(v) and some fraction e of 
the elements from all the A lists at the neighbors of v. 
Each element of A(v) stores its rank in C(v) and in the 
A lists at the neighbors of v. Thus, given the rank of an 
element c in some A(v) list, the rank of c in A(w) can 
be found in constant time (for a neighbor w of v), by 
checking at most l/e of the elements to one side of c in 
A(v), to find one that occurs in A(w) (which implicitly 
gives the rank of c in C(w)). 

This technique is quite useful for reducing the time 
complexity for performing a sequence of similar searches. 
In some instances, it is convenient to allow the collec- 
tion of similar searches to grow as the computation pro- 
gresses. The next lemma shows that the cost of allowing 
for this extension is essentially free (in terms of the work 
needed to simulate it). 

Lemma 4.1 (Goodrich [18]): Given an algorithm A 
designed for a PRAM model Lhat uses local processor 
allocation3, one can simulate A on an analogous PRAM 
with global all ocation in a work-preserving fashion with 
a logpfactor slow-down, where p is the final number of 
processors. 

51.n a local allocation scheme, in any rtep t, each processor 
can, if desired, spawn another processor to begin, in step t + 1, 
performing a specified task [34]. 

In the final version of this paper we give an example 
use of both of these techniques for the problem of build- 
ing a parallel data structure to compute all the intersec- 
tions between a line and a polygon in time O(log2 n) 
using 0(1 -t k/logn) processors, where k is the size 
of the output. The method involves building essen- 
tially the same data structure as that of Charelle and 
Guibas [lo] for this probl.em, but by implementing our 
method in parallel, using the a-level array structure of 
Wagener 1421, our constructing requires O(log n) time us- 
ing only O(n/ logn) processors. This actually improves 
the sequential complexity of building this structure, as 
the method of Chazelle and Guibas runs in O(nlogn) 
time [lo]. 

Returning to the problem of sweeping through a set 
of rectangles, in the following subsection we review an 
important data structure, which our algorithms use as 
the skeleton structure for an array-of-trees construction. 

4.2 The Segment Tree 

Let S = {dl, 82,. . . , I,} be a set of vertical line seg- 
ments in the plane, and let Y = (m,vz, . . . ,vs,,) be the 
(non-decreasing) sorted list of the p-coordinates of the 
endpoints of the segments in S. Let T be the complete 
binary tree whose 2n + 1 leaves, in left to right order, 
correspond to the intervals (-co,mj, [a,~], [ya,gss], 
**-I [Ym-1, Yml, [Ym, +=J), respectively. Associated with 
each internal node v E T is a closed interval 1, = [s, yj] 
which is the union of the intervals associated with the 
descendants of v. Let II, denote the horizontal slab 
I, x (--oo,+w). We say a segment 8: coverr a node 
v E T if it spans II,, but not llpo+rnt(a). Clearly, no seg- 
ment covers more than 2 nodes of any level of 2’; hence, 
every segment covers at most O(logm) nodes of T. For 
each node v E T we define two sets, Cover(v), End(v): 

l Covep(v) is the set of segments in S that cover v. 

l End(v) is the set of all segments that do not span 
II, but have an endpoint in II,. 

The tree T together with the above lists constructed 
for each node in T constitutes the segment tree for S [6]. 

4.3 Computing the Contour 

Given a set of isothetic rectangles, we consider the prob- 
lem of computing and reporting the contour of the union 
of the rectangles. Sequentially, this problem was first 
studied by Lipski and Preparata [25], and time optimal- 
ity was achieved by Wood [44]. Time and space optimal- 
ity was subsequently achieved by Widmayer and Wood 
[43]. In the parallel domain, Chandran and Mount [9] 
produced a CREW PRAM algorithm that runs with 
O(n) processors in O(k,,,) time, where kmcrz is the 
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largest number of output subsegments associated with 
any one line segment. 

We achieve O(log n) time with O(n + k/log n) pro- 
cessors (which is optimal), where k is the size of the 
output. Our method reports the edges of the contour. 
If one desires the contour cycles, then the work bound 
of our method becomes O(nlogn + b(k)), where b(m) 
is the work for performing stable bucket sorting of m 
elements*. We use the following procedure to determine 
all the vertical line segments of the contour, then repeat 
it, exchanging the roles of the Z- and y-axes, to obtain 
the horizontal segments. 

Step 1. In this step we build the segment tree, com- 
plete with all the Cower(v) and End(v) lists constructed 
for each node, where the vertical segments come from 
the rectangle vertical boundaries and are sorted by the 
z-coordinates. We view each Cover(u) as an event list 
where z coordinates act as the “time” field. Using the 
method of Atallah, Cole and Goodrich [4], we can imple- 
ment this step in O(logn) time with O(n) processors. 

Step 2. For each node v, we construct an event list, 
C(u), such that for each entry ai = (zi,ci) in C(v), 
ci is the number of segments that couer u during the 
interval [2(,2i+l). The 2 values (2{,2+1) in this case 
are determined by the z-coordinates of the segments in 
Cover(u). Given the Cover(v) lists, this construction is 
essentially just a collection of parallel prefix computa- 
tions. We then construct the fractional cascading auxil- 
iary lists for these C(v) lists, using the method of Atal- 
lah, Cole and Goodrich [4], which runs in O(logn) time 
with O(n) processors (since the total size is O(nlogn)). 

Step 3. For each node u, we construct an event list, 
H(v), such that for each entry pi = (zc,hi), hi is the 
number of (maxima) rectangular regions in II, that ex- 
tend horizontally from Zi to Zi+l and do not intersect 
the interior of any rectangle in Cover(v) U End(u). The 
a+coordinates that determine the “times” in H(v) cor- 
respond to the z-coordinates of the vertical boundaries 
of the rectangles in Cover(v) U End(v). We also define 
two flags, top and bottom, for each entry in an I-I list, to 
mark whether one of the segments in II, continues into 
the respective slab-neighbor of II,. 
Implementation: We can construct the H(v) lists at the 
leaves immediately from the entries in C(v). Specifi- 
cally, if (2i, ci) is the i-th value in C(v), then (zi, hi) 
is the i-th value in H(u), where hi = 1 if ci = 0, and 
hi = 0 otherwise. We construct the other H(v) lists 
by a bottom-up procedure. Assume, for some node 11, 
we have already constructed the respective H lists for 
v’s children, u and w, and we have a list of sorted 2- 

coordinates-, each of which is determined by the vertical 
boundary of a rectangle in Cove+(v) U End(v). Also 

4Matias and Vi&kin [26] give a randomieed method running in 
O(logmloglogm) expected time with O(mloglogm) work on M 
arbitrary-CRCW PRAM. 

assume (by the fractional cascading auxiliary pointers), 
that, for each element 8 in this list, we have a pointer 
to the elements cy, /3, and 7, in C(v), H(u), and H(w), 
respectively, that have the largest z-coordinate less that 
or equal to a’s z-coordinate. We define the (xi, hi) pair 
in H(v) for r so that 2; is the x-coordinate of s, and hi is 
defined as follows: Let Q = (2,~). If c = 1, then hi = 0. 
If c = 0, then hi is the sum of h, and h, (taking top 
and bottom flags into account), where p = (z,, h,) and 
7 = (%, h,). We give the details in the final version, 
showing that this step can be implemented in O(logn) 
time with O(n) processors. 

Step 4. In this step, we construct the pruned array- 
of-trees. Given an entry ai = (zi, hi) in H(u), the 
pruning function n(ai, u), which determines whether a 
pointer to ai occurs in B(u), where v is the parent of u, 
is equal to 1 iff both of the following hold: (i) the record 
in C(v) with largest z-value less than or equal to xi has 
c-value equal to 0, and (ii) hi > 0. We calculate this, and 
in so doing, construct the pruned array-of-trees, level-by- 
level, starting at the leaves, as in Section 2.2. This step 
runs in O(logn) time using O(n) processors. 

Step 5. In this step we determine for each vertical 
line segment L in S, all the subsegments of L that are 
part of the contour. Starting at the root, we search down 
the tree for the subsegments of L, checking the H list at 
each node, searching with the z-coordinate of L for un- 
covered intervals through which L might be seen. If the 
active h-value in the H list is zero, then we stop search- 
ing down this branch as no output can result. Once each 
node, v, covered by L is located, for each such v, we de- 
termine the total number k, of uncovered subsegments 
of L in the subtree rooted at v, by examining the H lists 
at v’s children. Then, we request [k, / log n] new pro- 
cessors, which start at the children of u, and search the 
compressed trees rooted there (in the pruned array-of- 
trees) for all pieces of the output that are on L in II,. 
This completes the algorithm. 

4.4 Hidden-Surface Removal 

Given a set of n opaque iso-oriented rectangles paral- 
lel to the zy-plane, we wish to determine all of the 
portions of each rectangle that are visible from view- 
ing at (O,O, +oo). Sequentially, this problem was first 
studied by Giiting and Ottmann [22], with more effi- 
cient algorithms being recently reported by Goodrich, 
Atallah, and Overmars [20], Bern [7], Goodrich [17], 
Mehlhorn [27], and Preparata, Vitter, and Yvinec [33]. 
The best sequential bound (optimizing for the term in- 
volving only n) is O((n + k) log n), where k is the size of 
the output [20, 7, 271. We show how to solve this prob- 
lem in O(log2 n) time using O((n + k) log n) work. Our 
algorithm description assumes a local-allocation scheme 
and runs in O(log n) time using O(n + k) processors; we 
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apply Lemma 4.1 to derive the claimed bounds. 
As in the previous algorithm, we use a segment tree 

to store the vertical edges of the rectangles. For each 
node v in this tree, we define the restricted subscene for 
v to consist of all vertical edges e such that e belongs 
to a rectangle in Cover(v) U End(v), but e’s intersection 
with II(v) is more than a single point. Our method uses 
three event lists built for each node v: Top(v), High(v), 
and Low(v), where there is an entry in Top(v) for each 
vertical segment in CoveT(v), and an entry in High(v) 
and Low(v) for each vertical edge of the restricted sub- 
scene for V. Their meanings are as follows: If (zi, top<) 
is an element in Top(v), then topi is the maximum z- 
coordinate of the rectangles in Cove?(v) that intersect 
the plane z = zi. If ( 2i, highi) is an element in High(v), 
then highi is the maximum z-coordinate of the rectan- 
gles in the restricted subscene for v that intersect the 
plane 2 = 2;. If (zi, low;) is an element in Lozu(v), then 
lowi is the minimum z-coordinate of the rectangles in the 
restricted subscene for v that intersect the plane z = zi 
and are visible from (0, 0, +m). 

1. We construct the segment tree, together with all 
the Cover(v) and End(v) lists, sorted by z-coordinates 
of the vertical segments. 

2. We construct Top(v) for all nodes v, in O(logn) 
time with O(n) processors by a parallel implementation 
of a method of Goodrich et OZ. [20]; we give the details 
in the final version. 

3. From the Covet(v) and End(v) lists, we construct 
the lists of z-coordinates for the High and Low arrays, 
and apply fractional cascading to these arrays and the 
Top arrays constructed in the previous step. Also, given 
the Top(v) values previously constructed, we can con- 
struct the event lists for Low and High by a simple 
bottom-up procedure. Constructing these lists for the 
leaves is straightforward, SO suppose we have already 
computed the High and Low lists for the children EL 
and w of v. Consider an x-coordinate, 2, for which we 
wish to compute its corresponding high and low values. 
Let high, and high, be the elements of High(u) and 
High(w) that are active at “time” Z. Similarly, define 
low,, and low,. Also, let top be the element of Top(v) 
active at 2. Then, high, = max{high,, high,, top} and 
low0 = max{min{low,,low,}, top} [7]. Thus, we can 
compute high and Zow in O(1) time given these other 
values (which we can maintain during our bottom-up 
procedure). Therefore, this construction takes O(log n) 
time using O(n) processors. 

4. In this step we determine all the visible vertical 
edges. We assign a processor P to every vertical edge e 
of a input rectangle. P visits every node in the segment 
tree which e covers, searching down from the root of the 
segment tree, and spawns as many extra processors as 
needed to output the pieces of e that are visible. 
Comment: Let v be a node such that e spans II,. Note 

that if z(e) < 10~1, where low is the value associated with 
the entry in Low(v) active at Z(e), then e is completely 
obscured by rectangles with edges in the restricted sub- 
scene for v. Also, if z(e) > high, where high is the active 
value in High(v), th en no rectangle with an edge in the 
restricted subscene for v :is higher than e. This doesn’t 
imply that e is visible in II,, however. For e to be visible 
in II, we must also have that z(e) is larger than all the 
active top values in Top(v’) lists, where v’ is an ancestor 
ofv. 

Implementation of Step 4: Let P be the processor 
assigned to a vertical edge e on some rectangle. We as- 
sociate with P a single piece of e, which we have found to 
be visible (although we haven’t output it yet). Assume 
the processor is at a node v that e covers. If e is com- 
pletely obscured in II, (which P can determine by the 
above tests’), then P outputs 1 and sets I = 0. If e is 
completely visible in II,, then P “grows” I to include the 
part of e in II,. If, on the other hand, P determines that 
e is only partially visible (because low < z(e) < high), 
then P spawns a new processor P’, which descends into 
the tree below to find the visible parts of e. P’ inherits 
the interval I from P, and P continues it search for the 
other nodes that e covers (after re-setting its copy of I 
to 8). The task for P’ is to output the visible parts of 
e in II,, together with the piece of e (corresponding to 
I) which P had previously determined to be visible, but 
had not output. We omit the details here. This step 
runs in O(log n) time using O(n + k) processors. 

5. If one also wishes to output the visible surfaces, 
then for every visible line segment we need to determine 
the visible rectangles that are immediately to the left 
and right of the segment. This step is similar to the 
previous one; we give its details in the final version. 

6. A11 of the line segments corresponding to a vertical 
edge of a rectangle have been found. We then run the 
algorithm once more (with the roles of the z-axis and 
waxis reversed) to find the visible horizontal edges. 
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