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Abstract. A dictionary (or map) is a key-value store that requires all keys be
unique, and a multimap is a key-value store that allows for multiple values to be
associated with the same key. We design hashing-based indexing schemes for dic-
tionaries and multimaps that achieve worst-case optimal performance for lookups
and updates, with minimal space overhead and sub-polynomial probability that
the data structure will require a rehash operation. Our dictionary structure is de-
signed for the Random Access Machine (RAM) model, while our multimap im-
plementation is designed for the cache-oblivious external memory (I/O) model.
The failure probabilities for our structures are sub-polynomial, which can be use-
ful in cryptographic or data-intensive applications.

1 Introduction
A dictionary (or map) is a key-value store that requires all keys be unique, and a mul-
timap [3] is a key-value store that allows for multiple values to be associated with the
same key. Key-value associations are used in many applications, and hash-based dictio-
nary schemes are well-studied in the literature (e.g., see [12]). Multimaps [3] are less
studied, although a multimap can be viewed as a dynamic inverted file or inverted in-
dex (e.g., see Knuth [21]). Given a collection, Γ , of documents, an inverted file is an
indexing strategy that allows one to list, for any word w, all the documents in Γ where
w appears. Multimaps also provide a natural representation framework for adjacency
lists of graphs, with nodes being keys and adjacent edges being values associated with
a key. For other applications, please see Angelino et al. [3].

Such structures are ubiquitous in the “inner-loop” computations involved in various
algorithmic applications. Thus, we are interested in implementations of these abstract
data types (ADTs) that are based on hashing and use a near-optimal amount of storage
– ideally (1+ ε)n words of storage, where n is the number of items in the dictionary or
multimap and ε > 0 is some small constant. In addition, because such solutions are used
in real-time applications, we are interested in implementations that are de-amortized,
meaning that they have asymptotically optimal worst-case lookup and update complex-
ities, but may have small probabilities of overflowing their memory spaces.

Crucially, we additionally focus on two further design goals. The first is that we
aim for our data structures to succeed with overwhelming probability, i.e. probability
1 − 1/nω(1), rather than merely with high probability, i.e. probability 1 − 1/ poly(n),
achieved by most previous constructions. While our aim of achieving structures that
provide worst-case constant time operations with overwhelming probability instead of
with high probability may seem like a subtle improvement, there are many applications
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where it is essential. In particular, it is common in cryptographic applications to aim
for negligible failure probabilities. For example, cuckoo structures with negligible fail-
ure probabilities have recently found applications in oblivious RAM simulations [17].
Moreover, a significant motivation for de-amortized cuckoo hashing is to prevent timing
attacks and clocked adversaries from compromising a system [4]. An inverse polyno-
mial failure probability may render a structure unsuitable for these applications.

In addition, guarantees that hold with overwhelming probability allow us to handle
super-polynomially long sequences of updates, as long as the total number of items
resident in the dictionary is bounded by n at all times. This is useful in long-running or
data-intensive applications. It is also crucial for applications in which it is not possible
to anticipate certain parameters, such as the length of the sequence of operations to be
handled, at the time the data structure is deployed.

Our final design goal is relevant for our solutions that operate in the external-memory
(I/O) model. Specifically, we would like our external-memory solutions to be cache-
oblivious [15], meaning that they should achieve their performance bounds without be-
ing tuned for the parameters of the memory hierarchy, like the size, B, of disk blocks, or
the size, M , of internal memory. The advantage of cache-oblivious solutions is that one
such algorithm can comfortably scale across all levels of the memory hierarchy and can
also be a better match for modern compilers that perform predictive memory fetches.

Previous Related Work. Since the introduction of the cache-oblivious framework by
Frigo et al. [15], several cache-oblivious algorithms have subsequently been presented,
including cache-oblivious B-trees [6], cache-oblivious binary search trees [8], and cache-
oblivious sorting [9]. Pagh et al. [27] describe a scheme for cache-oblivious hashing,
which is based on linear probing and achieves O(1) expected-time performance for
lookups and updates, but it does not achieve constant time bounds for any of these
operations in the worst case.

As mentioned above, the multimap abstract data type is related to the inverted file
and inverted index structures, which are well-known in text indexing applications (e.g.,
see Knuth [21]) and are also used in search engines (e.g., see Zobel and Moffat [32]).
Cutting and Pedersen [13] describe an inverted file implementation that uses B-trees
for the indexing structure and supports insertions, but doesn’t support deletions effi-
ciently. More recently, Luk and Lam [24] describe an internal-memory inverted file
implementation based on hash tables with chaining, but their method also does not sup-
port fast item removals. Lester et al. [22, 23] and Büttcher et al. [11] describe external-
memory inverted file implementations that support item insertions only. Büttcher and
Clarke [10] consider trade-offs for allowing for both item insertions and removals, and
Guo et al. [18] give a solution for performing such operations by using a B-tree variant.
Finally, Angelino et al. [3] describe an efficient external-memory data structure for the
multimap abstract data type, but like the above-mentioned work on inverted files, their
method is not cache-oblivious.

Much prior work on de-amortized dictionaries use variants of cuckoo hash tables,
which were presented by Pagh and Rodler [26] and studied by a variety of other re-
searchers. In their basic form, these structures use a freedom to place each key-value
pair in one of two hash tables to achieve worst-case constant-time lookups and removals
and amortized constant-time insertions with high probability. Kirsch, Mitzenmacher,
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and Wieder [20] introduced the notion of a stash for cuckoo hashing, which allows
the failure probability to be reduced to O(1/nα), for any constant α > 0, by us-
ing a constant-sized adjunct memory to store items that wouldn’t otherwise be able
to be placed. The failure probability of this solution is still inverse-polynomial, and
insertions take O(1) amortized time rather than worst-case time. Kirsch and Mitzen-
macher [19] and Arbitman et al. [4] study a method for de-amortizing cuckoo hashing,
which achieves constant-time lookups, insertions, and deletions with high probability,
and uses space (2 + ε)n for any constant ε > 0 (as is standard in cuckoo hashing). In a
subsequent paper, Arbitman et al. [5] study a hashing method that achieves worst-case
constant-time lookups, insertions, and removals with high probability while maintain-
ing loads very close to 1. They accomplish this by using a two-level hashing scheme,
where the first level uses a simple bin-based hash table, and the second uses the de-
amortized cuckoo hashing scheme of [4]. Our dictionary construction uses their first
level, but replaces their second level with a different structure based on the Q-heaps of
Fredman and Willard [14].

A lower bound of Andersson, Bro Miltersen, Riis, and Thorup is also relevant [1].

They prove that even for static dictionaries, query time Θ
(√

logn/ log logn
)

is nec-

essary and sufficient on AC0 RAMs, a restriction of the RAM model in which the only
operations permitted in unit time are those computable by polynomial-sized constant-
depth circuits. This applies even if npolylog(n) space is permitted for the dictionary.
We clarify that the lower bound only applies for substantially super-polynomial sized
universes (though stronger lower bounds are known for RAMs whose instruction set
is restricted further [30]). Our algorithms do not contradict the Andersson et al. result
because we work in the standard RAM model rather than the AC0 RAM model (we
remark that, like much prior work on dictionary data structures, the only place we use
non-AC0 operations is in the evaluation of sufficiently random hash functions).

An earlier version of this paper [16] with similar goals presented a more intricate two-
level dictionary data structure, where both levels were implemented as de-amortized
cuckoo hash tables. The present paper substantially simplifies the earlier dictionary
structure, while achieving a smaller failure probability.

Contributions. Our contributions are two-fold. Our first contribution is a dictionary
structure achieving worst-case optimal lookup and update complexities with sub-
polynomial failure probability, while incurring minimal space overhead. Specifically,
our structure requires (1 + ε)n space for an arbitrary constant ε > 0. The lookup and
update complexities of our structure are given in Table 1.

To the best of our knowledge, ours is the first structure suitable for the Random
Access Machine (RAM) model that achieves all of these goals assuming random hash
functions that can be evaluated in constant time. We also discuss several solutions that
work with hash functions that are realizable (although impractical) in the standard RAM
model, while achieving slightly sub-optimal lookup and update complexities. These
solutions partially address an open question raised by Arbitman et al. [5].

Our second contribution is to develop a multimap implementation suitable for the
external-memory (I/O) model. Prior work [3] achieved a solution in this model with
worst-case optimal update and lookup complexity, but their solution was cache-aware,
requiring knowledge of the size, B, of disk blocks.
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Table 1. Performance bounds for our dictionary and multimap implementations, which all hold
in the worst-case with overwhelming probability, assuming truly random hash functions. These
bounds are asymptotically optimal. We use B to denote the block size, k to denote an arbitrary
key, v to denote an arbitrary value, and nk to denote the number of items with key equal to k.

Method Dictionary I/O Performance Multimap I/O Performance

add(k, v) O(1) O(1)

containsKey(k) O(1) O(1)

containsItem(k, v) O(1) O(1)

remove(k, v) O(1) O(1)

get(k)/getAll(k) O(1) O(1 + nk/B)

removeAll(k) – O(1)

2 Dictionary Data Structure

Our dynamic dictionary data structure is designed for the standard RAM model. The
instruction set available will be arithmetic, bitwise logical, and comparison operations
on b = Ω(log n) bit words.

Recall that a collection H of functions h : U → V is k-wise independent if for
any distinct x1, . . . , xk ∈ U and for any y1, . . . , yk ∈ V it holds that Pr[h(x1) =
y1 ∧ · · · ∧ h(xk) = yk] = 1/|V |k. Throughout this section, we assume the existence of
an nα-wise independent family of hash functions (for some constant α > 0) mapping
the universe U to the set {0, . . . , n − 1}, that can be evaluated in constant time using
o(n) space. We present results on the validity of this assumption in Section 3.

We mention that, with the exception of hash function evaluation, all of the pieces in
our construction can be made to run in the AC0 RAM model [2].

Our dictionary data structure combines two pieces. First, we modify a dictionary
construction due to Willard to achieve a data structure with optimal worst-case update
times and failure probability just 1/npolylog(n). However, the resulting data structure
uses O(n) space, rather than (1+ε)n space. As our second step, we combine the result
of Step 1 with the first level of the two-level hashing scheme of Arbitman et al. [5], to
bring the space usage down to (1 + ε)n words for any constant ε > 0.

2.1 The First Piece

Willard [31] describes a simple dictionary data structure using O(n polylog(n)) words
of memory that supports worst-case constant time lookups and updates with failure
probability 1/npolylog(n). The primary contribution of this subsection is to give a variant
of his structure that achieves the same guarantees using O(n) words of space.

Willard’s construction is based on a variant of Fredman and Willard’s Q-heap. Us-
ing O(n) space and preprocessing time, the Q-heap supports constant-time insertions,
deletions, member, and predecessor queries into sets of size O(log1/5 n)). By using
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a Q∗-heap [31], which is essentially a B-tree whose internal nodes are implemented
as Q-heaps, one can in fact achieve worst-case constant time insertions, deletions, and
lookups for sets of size O(logc n) for an arbitrary constant c > 0 [31, Lemma 2].

With the Q∗-heap functionality in hand, Willard proposes the following simple dic-
tionary structure with failure probability 1/nlogk(n) for any constant k > 0. Let h be
a hash function chosen at random from hash family H . Consider a hash table with n
buckets, each implemented as a Q∗-heap with capacity logk+2(n). As long as no bucket
overflows its capacity, this hash table ensures that a bucket can be searched in O(1)
time, and that inserts and deletions can be processed in O(1) time. Moreover, as long
as the hash family H is logk+2(n)-wise independent, the probability that any particular
bucket overflows is at most 1/nlogk+1(n). A union bound then implies that no bucket
overflows with probability at least 1− 1/nlogk(n).

As mentioned above, a major downside of Willard’s construction is that it uses
O(n polylog(n)) space. We now show a modification that brings the space usage down
to O(n) machine words.

Instead of using an array of n buckets, use an array of n/ logk(n) buckets for some
constant k > 1. Implement each bucket with a Q∗-heap of capacity 6 logk(n). Assum-
ing truly random hash functions, a suitable Chernoff bound [25, Theorem 4.4, Part 3]
implies that the probability any individual bucket overflows is at most 1/26 log

k(n). By
a union bound, no bucket overflows with probability at least 1− 1/25 log

k(n).
Notice each “bad event” (namely a bucket overflowing) in the above analysis in-

volves the hash values of a set S of at most 6 logk(n) items, and as long as H is a
6 logk(n)-wise independent hash family, the values of h on S are fully independent.
Thus, the same analysis applies as long as H is a 6 logk(n)-wise independent hash
family. Notice our modified construction requires O(n) words of memory.

Lemma 1. Let k > 1 be any constant. Assume there exists a logk(n)-wise independent
hash family H such that each h ∈ H can be evaluated in constant time using o(n)
words of memory. Then there exists a dynamic dictionary scheme A using O(n) words
of memory that supports insertions, deletions, and membership queries in O(1) worst-
case time, with failure probability 1/n5 logk−1(n).

2.2 The Second Piece

Arbitman et al. [5] present a novel two-level hashing scheme, which they call Backyard
Cuckoo Hashing. The first level of their scheme usesm = (1+ε/2)n/d “bins” of size d,
where d is a suitably chosen constant that depends on ε. In the simplest version of their
scheme, lookups, insertions, and deletions into each bin can trivially be implemented
in constant time (which depends on ε), because each bin has constant size. However,
a constant fraction of items inserted into the first level may “overflow”, and must be
handled separately by the second level of their scheme, which they instantiate as a de-
amortized cuckoo hash table.

We briefly remark that Arbitman et al. [5] also present a more involved scheme
based on de-amortized perfect hashing that works for slightly subconstant values of ε;
this variant can also be adapted to our setting, but we omit these details for brevity.



208 M.T. Goodrich et al.

Our intention is to use the first level of their scheme to absorb all but a small fraction
of the items in our table. We use the dictionary data structure described in Section 2.1
to handle the overflowing items. Details follow.

Inspection of the proof of [5, Lemma 3.2] shows that their scheme achieves the
following guarantee.

Lemma 2. Let α be any constant 0 < α < 1. Assume there exists an nα-wise inde-
pendent hash family H such that each h ∈ H can be evaluated in constant time using
o(n) words of memory. Then for any constant ε > 0, there exists a data structure using
space (1+ ε/2)n satisfying the following guarantees. For some β > 0, with probability
1 − 2−nβ

, all but εn/16 items are successfully inserted into the data structure. More-
over, insertions (both successful and unsuccessful) and deletions take worst-case O(1)
time, and membership queries succeed in O(1) time for any item successfully placed in
the data structure.

Thus, with probability 1 − 2−nβ

, during any sequence of n insertions, at most t :=
εn/16 items overflow from the primary structure, and we can place these items in the
data structure A described in Section 2.1.

The remaining issue is that, in order to guarantee that the second level never contains
more than εn/16 items, we must move an item from the second level to the first level
whenever an item is deleted from the first level. This issue is also encountered by Ar-
bitman et al., who suggest multiple ways to address it. One solution is to associate with
each first-level bin a doubly-linked list pointing to all overflowing items from the bin
(the doubly-linked lists in total require at most c′εn/16 space for some universal con-
stant c′). This way, whenever an item is deleted from a first-level bin, we can replace it
in constant time with one of the items that previously overflowed from the bin.

We thereby ensure that for any sequence of poly(n) insertions and deletions such
that at most n items are actually stored in the data structure at any point in time, with
probability 1 − 2−nβ

the second level never contains more than εn/16 items. Con-
ditioned on this event, Lemma 1 implies that for any constant k > 1, the scheme A
successfully supports worst-case constant time insertions, deletions, and lookups with
probability 1 − 1/n5 logk−1(n) using space cεn/16 for some universal constant c > 0.
Thus, our combined data structure supports worst-case constant time operations with
failure probability 1/n5 logk−1(n) + 2−nβ

< 1/nlogk−1(n).
Setting ε = 16ε′/(8 + c+ c′), the two levels of our data structure use (1 + ε/2)n+

(c+c′)εn/16 = (1+ε′)n words of memory in total. Combined with the above analysis,
we obtain the following theorem.
Theorem 1. Let α be any constant 0 < α < 1. Assume there exists an nα-wise inde-
pendent hash family H such that each h ∈ H can be evaluated in constant time using
space o(n). For any constants ε′ > 0 and k > 1, there exists a data structure using
(1+ ε′)n words of memory and supports insertions, deletions, and membership queries
in worst-case O(1) time with probability 1− 1/nlogk−1(n).

3 Hash Families

The results of the previous section require an nα-wise independent hash family H such
that each h ∈ H can be evaluated in constant time using space o(n). We feel this
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assumption is supported in practice, for instance, by the fact that one of the most widely-
used hash functions, SHA-1, can be implemented in O(1) time even in the AC0 RAM
model. The aim of this section is to provide a careful treatment of the theoretical foun-
dations of this assumption.

Siegel’s Hash Functions. Although there are no known constructions of nα-wise inde-
pendent hash functions achieving the above desiderata, Siegel achieved a close (albeit
impractical) approximation in an influential paper [29]. Assume for the moment that the
universe size |U | is at most nr for some constant r > 0, and that the desired range of
the hash function is V , where |V | is a power of two. Siegel’s construction makes use of
a bipartite graph G with constant left-degree d. The left vertex set of G corresponds to
the universe U ; and the right vertex set is {0, . . . , nβ} for some 0 < β < 1. Each right
vertex y is assigned a random value M [y] ∈ V at initialization, and the hash value of
element x ∈ U is defined as h(x) =

⊕
(x,y)∈E(G)M [y], where

⊕
denotes the bitwise

XOR operation (if |V | is not a power of two, we can replace
⊕

with any commutative
group operation). Using a peeling argument, Siegel proves that as long as G has suit-
able vertex expansion, then the resulting hash family is nα-wise independent for some
0 < α < 1.

Naively, storing the adjacency information of G would require space Ω(|U |) =
Ω(nr), which is unacceptably large. To avoid this, Siegel uses a tensoring operation
to turn a small expander graph (which can be stored explicitly) into larger expander.
This approach increases the left degree and hence the evaluation time, but it remains
constant as long as the universe size |U | is polynomial in n.

From our usage standpoint, there are two potential sources of “failure” in Siegel’s
construction. The first is that there are currently no known explicit constructions of
unbalanced vertex expanders that are sufficient to guarantee nα-wise independence of
Siegel’s hash family. As a result, Siegel’s hash family must either be non-uniform, with
a suitable expander hardwired into the hashing algorithm, or the graph G must be gen-
erated at random. Siegel shows that for any constant c > 0, a suitable random graph
will satisfy the requisite expansion properties with probability 1− 1/nc.

The second source of failure comes into play if the universe size is super-polynomial
in n. In this case, the universe should first be “mapped down” to a set U ′ of size nr by
a hash function h′ from an almost-universal hash family H ′, before applying Siegel’s
construction to U ′. For any set T ⊆ U of size nr, the resulting hash function will be
fully independent on T , conditioned on the event that no elements in T collide under
h′, i.e., conditioned on the event that for all distinct elements w, x ∈ T , h′(x) �= h′(w).
Unfortunately, any two elements in T will collide under h′ with probability 1/nr.

In our applications, we cannot tolerate inverse-polynomial failure probabilities, and
so neither source of failure is acceptable. Addressing these sources of failure was posed
as an open question by Arbitman et al. [5]. In what follows, we give partial remedies to
these sources of failure.

Obtaining Expanders. For polynomial-sized universes, Siegel’s construction does yield
non-uniform families of nα-wise independent hash functions with O(1) evaluation time
and o(n) space usage, by hardwiring in a suitable expander. However, if one requires
a uniform algorithm, Siegel chooses the graph at random, generating a hash family H
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that is nα-wise independent only with probability 1 − 1/nc (this is the probability that
a randomly generated graph will satisfy the requisite expansion properties).

The most natural approach to eliminate this failure probability is to obtain explicit
constructions of suitable expanders. Sadly, we do not resolve this question here: it re-
mains an intriguing open question. Instead, we specify partial solutions to the problem.

Our first solution relies on the following observation: the probability a random graph
G fails to satisfy the requisite expansion condition is dominated by the probability that
small sets of vertices fail to satisfy the condition. Thus, one can obtain sub-polynomial
failure probability by randomly generating a graph and exhaustively checking the vertex
expansion of all sufficiently small sets. If a non-expanding set is found, the graph is
rejected and a new graph is generated. This requires quasi-polynomial pre-processing
time, but this may be acceptable in certain applications as the expensive phase need not
happen online.

Theorem 2. Assume the universe U has size nr for some constant r > 0. Then for
some α, for every pair of constants k, r′ > 0, there is a set V of size nr′ and a uniform
algorithm A outputting a collection H of functions h : U → V achieving the following
guarantees.

1. With probability 1− 1/nlogk(n) over the internal coin tosses of A, H is an nα-wise
independent family of hash functions.

2. A runs in nΘ(logk+1(n)) time.
3. Any function h ∈ H can be represented with o(n) bits and evaluated in O(1) time.

We omit the proof because of space constraints; it can be found in the full version of
the paper on the arXiv.

For polynomial-sized universes, we can instantiate the hash functions required in
Section 2 using the algorithm of Theorem 2. This introduces an additional additive
1/nlogk(n) failure probability into our dictionary structure, which does not affect our
results. We remark that the algorithm of Theorem 2 is implementable in the AC0 RAM
model, not just in the standard RAM model.

For polynomial-sized universes, a second partial solution is to avoid expensive pre-
processing phase at the expense of slightly super-constant evaluation runtime. A first
approach is to achieve this by simply increasing the degree of the randomly generated
graph to d(n), where d is some very slow-growing function of n. This reduces the
probability that the graph fails to satisfy the requisite expansion properties to 1

nΩ(d(n)) .
A problem with this approach is that the tensoring operation used by Siegel to blow up
a small expander into a larger one will cause the larger graph to have degree ω(d(n)).

A superior approach is described next.

Arbitrary Universe Sizes. We give a partial solution for achieving sub-polynomial
failure probabilities with arbitrary universe sizes.

Theorem 3. There exists some α, such that for every pair of constants r, r′ > 0, and
any function k(n) = ω(1), there is a set V of size nr′ and a uniform algorithm A
outputting a collection H of functions h : U → V achieving the following guarantees.

1. A runs in polynomial time.
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2. Any function h ∈ H can be represented with o(n) bits and evaluated in time
Θ(k(n)).

3. For any set T ⊆ U of size nr, it holds that with probability 1 − 1/nk(n) over the
internal coin tosses of A, the distribution (h(x1), . . . , h(xnα)) is uniform over V nα

for any distinct x1, . . . , xnα ∈ T .

Proof. Recall that in this setting Siegel gives a uniform algorithm A′ generating a fam-
ily of hash functions H such that, with high probability over the internal coin tosses of
A′, for any set T ⊆ U of size nr, H is fully independent on all subsets of T of size at
most nα. The algorithm A′ works by first mapping the universe U down into a smaller
universe U ′ of size nr by a hash function h′ from an universal hash family H ′, and
then applying Siegel’s expander-based hash function to U ′ using a randomly-generated
expander G. As long as h′ is one-to-one on T and G is an (n, ε, d, nα)-weak expander
(see the proof of Theorem 2), then the hash family H is fully independent on all subsets
S of T of size at most nα. However, both the universe-reduction step and the expander
generation step introduce inverse-polynomial probabilities that the hash family H will
not be fully independent on all such subsets S of T .

The idea to reduce the failure probability is to evaluate k(n) independent instances
of Siegel’s hash function and XOR the results together (if |V | is not a power of two, we
replace XOR with any commutative group operation). For any set S at size at most nα,
as long as at least one of the k individual hash functions is fully independent on S, the
result will be fully independent on S.

Formally, let H1, . . . , Hk(n) be hash families generated by k(n) independent runs
of Siegel’s algorithm A′. We define our final hash family H to be {h : h(x) =⊕k(n)

i=1 hi(x),
(
h1, . . . , hk(n)

) ∈ H1 × · · · × Hk(n)}. Thus, a random element of h
corresponds to randomly picking a hash function hi from each hash family Hi, and
XORing the results together.

Let T ⊆ U be any set of size nr. An easy calculation shows that with probability
1 − nΩ(k(n)), the universe-reduction step is one-to-one on T for at least k(n)/2 runs
of A′. For each such run of A′, with probability 1 − 1/nc, the expander-generation
step successfully produces a graph with the requisite expansion properties for Hi to be
nα-wise independent on the “mapped down” universe U ′.

Thus, with probability at least 1 − nΩ(k(n)), it holds that for at least one run i of
A′, the hash family Hi is fully independent on all subsets of T of size at most nα.
That is, for any set T ⊆ U of size nr, with probability 1− 1/nΩ(k(n)), the distribution
(hi(x1), . . . , hi(xnα)) is uniform over V nα

for any distinct x1, . . . , xnα ∈ T . This is
easily seen to imply that our final hash family H satisfies the same property for any
distinct x1, . . . , xnα ∈ T . ��
Theorem 3 can be used to obtain sub-polynomial failure probabilities for super-
polynomially long sequences of data structure updates, as long as at most n items re-
side in the data structure at a time. Theorem 3 is applied on a step-by-step basis, where
the set T at each step corresponds to the n items extant in the structure. For example,
setting k(n) = Θ(log logn), we conclude that the data structure operation at any par-
ticular step can be performed in O(log logn) time with probability 1/nlog logn. If there
are n(1/2) log log n steps, then all steps succeed in O(1) worst-case time with probability
1− 1/nΩ(log logn).
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4 Cache-Oblivious Multimaps

In this section, we describe our cache-oblivious implementation of the multimap ADT.
To illustrate the issues that arise in the construction, we first give a simple implemen-
tation for a RAM, and then give an improved (cache-oblivious) construction for the
external memory model. Specifically, we describe an amortized cache-oblivious solu-
tion and then we describe how to de-amortize this solution.

In the implementation for the RAM model, we maintain two dictionary data struc-
tures, as described in Section 2. The first table enables fast containsItem(k, v) opera-
tions; this table stores all the (k, v) pairs using each entire key-value pair as the key,
and the value associated with (k, v) is a pointer to v’s entry in a linked list L(k) con-
taining all values associated with k in the multimap. The second table ensures fast
containsKey(k), getAll(k), and removeAll(k) operations: this table stores all the unique
keys k, as well as a pointer to the head of L(k).

Operations in the RAM Implementation

1. containsKey(k): We perform a lookup for k in Table 2.
2. containsItem(k, v): We perform a lookup for (k, v) in Table 1.
3. add(k, v): We add (k, v) to Table 1 using the insertion procedure of Section 2. We

perform a lookup for k in Table 2, and if k is not found we add k to Table 2. We
then insert v as the head of the linked list corresponding to Table 2.

4. remove(k, v): We remove (k, v) from Table 1, and remove v from the linked list
L(k); if v was the head of L(k), we also perform a lookup for k in Table 2 and
update the pointer for k to point to the new head of L(k) (if L(k) is now empty, we
remove k from Table 2.)

5. getAll(k): We perform a lookup for k in Table 2 and return the pointer to the head
of L(k).

6. removeAll(k): We lookup k in Table 2, and follow the pointer to L(k). We walk
through the linked list L(k), and for each entry (k, v) of Lk, we remove (k, v) from
Table 1. We also remove k from Table 2.

With the exception of the removeAll(k) operation, all operations above are performed in
O(1) time in the worst case with overwhelming probability by the results of Section 2.
The removeAll(k) operation takes O(1) amortized time with overwhelming probability,
because each time we remove a pair (k, v) from Table 1, we can charge the operation to
the corresponding insertion of the pair (k, v). We will explain how to de-amortize the
removeAll(k) operation in Section 4.2

Two major issues arise in the above construction. First, the space-usage remains
O(n) only if we assume the existence of a garbage-collector for leaked memory, as
well as a memory allocation mechanism, both of which must run in O(1) time in the
worst case. Without the memory allocation mechanism, inserting v into L(k) cannot be
done in O(1) time, and without the garbage collector for leaked memory, space cannot
be reused after remove and removeAll operations. Second, in order to extract the actual
values from a getAll(k) operation, one must actually traverse the list L(k). Since L(k)
may be spread all over memory, this suffers from poor locality.

We now present our cache-oblivious multimap implementation. Our implementation
avoids the need for garbage collection, and circumvents the poor locality of the above
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getAll operation. We do require a cache-oblivious mechanism to allocate and deallocate
power-of-two sized memory blocks with constant-factor space and I/O overhead; this
assumption is justified by the results of Brodal et al. [7], who design a system for
allocating and deallocating memory using constant time in the worst case, and sub-
linear (indeed sub-polynomial, i.e. o(nδ) for any δ > 0) auxiliary storage.

Amortized Cache-Oblivious Multimaps. As in the RAM implementation, we keep
two dictionary data structures. In Table 1, we store all the (k, v) pairs using each entire
key-value pair as the key. With each such pair, we store a count, which identifies an
ordinal number for this value v associated with this key, k, starting from 0. For example,
if the keys were (4, Alice), (4, Bob), and (4, Eve), then (4, Alice) might be pair 0, (4,
Bob) pair 1, and (4, Eve) pair 2, all for the key, 4.

In Table 2, we store all the unique keys. For each key, k, we store a pointer to the
array,Ak, that stores all the key-value pairs having key k, stored in order by their ordinal
values from Table 1. With the record for a key k, we also store nk, the number of pairs
having the key k, i.e., the number of key-value pairs in Ak. We assume that each Ak is
maintained as an array that supports amortized O(1)-time element access and addition,
while maintaining its size to be O(nk).

Operations

1. containsKey(k): We perform a lookup for k in Table 2.
2. containsItem(k, v): We perform a lookup for (k, v) in Table 1.
3. add(k, v): After ensuring that (k, v) is not already in the multimap by looking it up

in Table 1, we look up k in Table 2, and add (k, v) at index nk of the arrayAk, if k is
present in this table. If there is no key k in Table 2, then we allocate an array, Ak , of
initial constant size. Then we add (k, v) to Ak[0] and add key k to Table 2. In either
case, we then add (k, v) to Table 1, giving it ordinal nk, and increment the value of
nk associated with k in Table 2. This operation may additionally require the growth
of Ak by a factor of two, which would then necessitate copying all elements to the
new array location and updating the pointer for k in Table 2.

4. remove(k, v): We look up (k, v) in Table 1 and get its ordinal count, i. Then we
remove (k, v) from Table 1, and we look up k in Table 2, to learn the value of nk and
get a pointer to Ak. If nk > 1, we swap (k′, v′) = Ak[nk − 1] and (k, v) = Ak[i],
and then remove the last element of Ak. We update the ordinal value of (k′, v′)
in Table 1 to now be i. We then decrement the value of nk associated with k in
Table 2. If this results in nk = 0, we remove k from Table 2. This operation may
additionally require the shrinkage of the array Ak by a factor of 2, so as to maintain
the O(n) space bound.

5. getAll(k): We look up k in Table 2, and then list the contents of the nk elements
stored at the array Ak indexed from this record.

6. removeAll(k): For all entries (k, v) of Ak, we remove (k, v) from Table 1. We also
remove k from Table 2 and deallocate the space used for Ak.

In terms of I/O performance, containsKey(k) and containsItem(k, v) clearly require
O(1) I/Os in the worst case. getAll(k) operations use O(1 + nk/B) I/Os in the worst
case, because scanning an array of size nk uses O(	nk/B
) I/Os, even though we
don’t know the value of B. removeAll(k) utilizes O(nk) I/Os in the worst-case with
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overwhelming probability, but these can be charged to the insertions of the nk values
associated with k, for O(1) amortized I/O cost. add(k, v) and remove(k, v) operations
also require O(1) amortized I/Os with overwhelming probability; the bound is amor-
tized because there is a chance this operation will require a growth or shrinkage of the
array Ak , which may require moving all (k, v) values associated with k and updating
the corresponding pointers in Table 1.

In the next sections, we explain how to deamortize add(k, v), remove(k, v), and
removeAll(k) operations.

4.1 De-amortizing Add(k, v) and Remove(k, v) Operations

To de-amortize the array operations, we use a rebuilding technique, which is standard
in de-amortization methods (e.g., see [28]).

We consider the operations needed for insertions to an array; the methods for dele-
tions are similar. The main idea is that we allocate arrays whose sizes are powers of 2.
Whenever an array, Ak, becomes half full, we allocate an array, A′

k, of double the size
and start copying elements Ak in A′

k. In particular, we maintain a crossover index, iAk
,

which indicates the place in Ak up to which we have copied its contents into A′
k . Each

time we wish to access Ak during this build phase, we copy two elements of Ak into
A′

k, picking up at position iAk
, and updating the two corresponding pointers in Table 1.

Then we perform the access of Ak, as would otherwise, except that if we wish access
an index i < iAk

, then we actually perform this access in A′
k. When we are done build-

ing A′
k , we deallocate the memory used for array Ak. Since we copy two elements of

Ak for every access, we are certain to complete the building of A′
k prior to our need-

ing to allocate a new, even larger array, even if all these accesses are insertions. Thus,
each access of our array will now complete in worst-case O(1) time with overwhelm-
ing probability. It immediately follows that add(k, v) and remove(k, v) operations run
in O(1) worst-case time.

4.2 De-amortizing removeAll(k) Operations

We describe two solutions for de-amortizing the removeAll(k) operation. The first is
conceptually simpler but induces a constant-factor increase in memory usage; the sec-
ond avoids using more memory than the de-amortized scheme above.

At a high level, in order to ensure removeAll(k, v) runs in worst-case O(1) time,
we simply remove k from Table 2 and deallocate the space used for the array Ak.
We do not update the corresponding pointers of (k, v) pairs in Table 1 however; this
leaves “spurious” pointers in Table 1, which we define to be (k, v) pairs satisfying the
property that removeAll(k) has been called after the most recent insertion of (k, v). We
need to explain how to modify all the other operations to deal with the presence of these
spurious pointers.

First Solution. Our first solution is to maintain a global clock t, which is initialized to
zero and is incremented after every operation. Assuming there are poly(n) total opera-
tions, the global time t can always be stored using O(1) words of memory. Whenever
we insert a key k into Table 2, or a key-value pair (k, v) into Table 1, we store with it
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the value t at the time of insertion. These timestamps increase the space usage of Tables
1 and 2 by a constant factor.

Whenever an operation invokes a lookup of a key-value (k, v) pair in Table 1 and
finds that it is present, we have to check whether (k, v) is spurious. We do this by
looking up key k in Table 2. If k is not found, then we know (k, v) is spurious, and
we remove (k, v) from Table 1 and proceed as if (k, v) was not found in Table 1. If k
is found in Table 2, we compare the timestamp t associated with k in Table 2 to the
timestamp t′ associated with (k, v) in Table 1. (k, v) is spurious if and only if t′ < t; in
the former case we remove (k, v) from Table 1 and proceed as if (k, v) was not found
in Table 1; in the latter case we proceed as if (k, v) was found in Table 1.

The final issue we must deal with is ensuring that the presence of spurious key-value
pairs does not cause the dictionary structure used to implement Table 1 to fail or to
overflow its (1 + ε)n space bound. Recall that our dictionary structure consists of two
levels, where the first level is implemented as an array of constant-sized “bins”, and the
second level is implemented as an array of Q∗-heaps, where each Q∗-heap can store
logk+2(n) items. Whenever we go to insert a (k, v) pair into this data structure, we
first check whether any items in its first-level bin are spurious, and delete any spurious
items from the first-level bin – this can be done in O(1) time because the first-level bin
has constant size. If there is room in the first-level bin after deleting spurious items, we
insert the (k, v) pair into the bin and return. This ensures that spurious items residing
in the first layer of our dictionary structure never affect the capacity of the structure. If
we fail to insert the item (k, v) into the first layer of our structure, we attempt to place
it into the second level of the data structure.

Dealing with spurious items in the second layer of our structure is more complicated:
because a Q∗-heap may contain logk+2(n) many items, we do not have time to iterate
through all the items in the Q∗-heap to which (k, v) is assigned and check if any of the
items are spurious. Instead, we increase the capacity of each Q∗-heap from logk+2(n)
items to 2 logk+2(n) items. We also maintain with each Q∗-heap Q a doubly-linked list
L(Q) containing all items in Q; in addition we maintain for each item in Q a pointer to
its entry in L(Q). These pointers into L(Q) are used so that, when an item is deleted
fromQ, we can also remove its entry fromL(Q) in constant time. Doubling the capacity
of all the Q∗-heaps, as well as maintaining the lists L(Q) and the pointers into L(Q)
causes the space usage of the second layer of our dictionary structure to increase by a
constant factor, which can be absorbed into the parameter ε.

Recall that in the absence of spurious items, with all but sub-polynomial probability,
no Q∗-heap should ever contain more than logk+2(n) items. So when a Q∗-heap Q
surpasses logk+2(n) items, we know (with all but sub-polynomial probability) that this
is due to the presence of spurious items. At this point, every time an item is inserted into
Q, we take two items from the front of the doubly-linked list L(Q) and check if they
are spurious. Each time we find a spurious item, we delete it from Q and from the list
L(Q); otherwise we move the item to the end of the list L(Q). This ensures that there
are never more than logk+2(n) spurious items in any Q∗-heap at any one time, so with
all but sub-polynomial probability, no Q∗-heap will overflow its 2 logk+2(n) capacity.

Second Solution. Our second solution differs from our first only in the manner in which
we check whether a (k, v) pair is spurious. Specifically, we can avoid the use of times-
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tamps. As before, whenever an operation invokes a lookup of a key-value (k, v) pair
in Table 1 and finds that it is present, we have to check whether (k, v) is spurious. To
accomplish this, we first lookup key k in Table 2. If k is not found, then we know (k, v)
is spurious, and we remove (k, v) from Table 1 and proceed as if (k, v) was not found
in Table 1. If k is found in Table 1, then we need to determine whether or not (k, v) is
actually a member of the array Ak.

To determine this, let i be the count associated with pair (k, v) in Table 1. Recall i is
supposed to represent (k, v)’s position in the arrayAk if (k, v) is not spurious. We check
if i < nk (recall nk is stored with k in Table 2 and gives the number of pairs having the
key k); if not we know (k, v) is spurious. If i < nk, we check whether Ak[i] = v. This
equality holds if and only if (k, v) is not spurious. Finally, it is straightforward to modify
this solution to work in the case where we are in the process of moving items from an
old array Ak to a new array A′

k as in the description of the de-amortized add(k, v) and
remove(k, v) operations.

All time bounds in Table 1 follow.

5 Conclusion

In this paper, we have studied dictionary and multimap algorithms that support worst-
case constant-time operations with sub-polynomial failure probability. Such structures
should prove useful in cryptographic applications, as well as in long-running applica-
tions or those in which the duration of deployment is not known in advance. Our mul-
timap solution is suitable for the cache-oblivious I/O model, and is to the best of our
knowledge the first dynamic multimap achieving asymptotically optimal performance
using linear space in this model.

Several interesting questions remain for future work. Are there (mildly) explicit con-
structions of unbalanced bipartite expanders sufficient to implement Siegel’s hash fam-
ily? Combined with our results, for polynomial sized universes this would yield an
algorithm in the AC0 RAM model for maintaining a dynamic dictionary with sub-
polynomial failure probability, (1 + ε)n space, polynomial preprocessing time, and
worst-case constant time operations. More ambitiously, we ask whether dictionaries
supporting worst-case constant time operations with sub-polynomial failure probabili-
ties can be achieved in the standard RAM model with quasipolynomial sized universes?
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10. Büttcher, S., Clarke, C.L.A.: Indexing time vs. query time: trade-offs in dynamic information
retrieval systems. In: Proc. of CIKM, pp. 317–318 (2005)
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