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Abstract—Betweenness centrality is one of the most well-
known measures of the importance of nodes in a social-
network graph. In this paper we describe the first known
external-memory and cache-oblivious algorithms for computing
betweenness centrality. We present four different external-
memory algorithms exhibiting various tradeoffs with respect
to performance. Two of the algorithms are cache-oblivious. We
describe general algorithms for networks with weighted and
unweighted edges and a specialized algorithm for networks
with small diameters, as is common in social networks exhibit-
ing the “small worlds” phenomenon.
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I. INTRODUCTION

A valuable component of social network analysis involves

assigning numerical scores to each vertex in a network

based on the “influence” or “importance” of that node in

the network, which is commonly referred to as that node’s

centrality. Nodes with high centrality scores are considered

to represent entities with high influence or importance. For

instance, such nodes are often considered to play a crucial

role in the flow of commodities (such as information, drugs,

disease, or technology) in their network. Likewise, vertices

with low centrality scores are considered to exert relatively

less influence and have less of an impact on flow.

One of the most well-known centrality measures is be-
tweenness centrality (e.g., see [1]–[8]). Given an undirected

graph G = (V,E), the betweenness centrality of a vertex

v ∈ V is defined as

CB(v) :=
1

2
·

∑
s �=t∈V \{v}

σst(v)

σst
,

where σst is the number of shortest paths between s and t
(σss = 1 by convention) and σst(v) is the number of shortest

paths between s and t that contain v. Since σst(v) = 0 if

s and t are in different connected components, we consider

connected (and undirected) graphs in this paper.

There are also other definitions of centrality, ranging from

simple statistics, like degree centrality [9] and closeness

centrality [10], to sophisticated statistics, like Katz central-

ity [11] and random-walk/current-flow centrality [12], [13].

Compared to these other measures, betweenness centrality is

particularly useful in measuring the importance of vertices

for the sake of the flow of information (or other commodi-

ties) along geodesic paths. For instance, it has been used

as a way to identify interdisciplinary journals in scientific

collaboration networks [7]. From a big-data algorithmic

perspective betweenness centrality is an interesting measure

as well, since it is neither trivial to compute nor as hard as

measures like Katz centrality and random-walk centrality,

which seem to require matrix inversion computations.

Of course, focusing on large networks from an algorithmic

perspective implies that we should accommodate the likely

situation when the space required for our algorithm is larger

than our computer’s internal memory. Thus, it is useful to

develop betweenness centrality algorithms in the external-
memory framework [14], [15]. Recall that in this framework,

we assume that memory is subdivided into blocks of size B
and that input and output (I/O) operations on such blocks

are atomic operations. Moreover, we assume that the cost

of these I/O operations is so large that it is most useful

to characterize algorithmic performance in terms of the

number of such operations performed, assuming an internal

memory of size M connected to an external memory device

that supports block transfers to/from internal memory as a

single I/O operation. Therefore, our focus in this paper is on

external-memory algorithms for computing the betweenness

centrality of each vertex in a large network.

A. Related Prior Work

The best internal algorithm for computing betweenness

centrality is due to Brandes [3] and runs in O(V 2 log V +
V E) time for weighted graphs and O(V E) time for un-

weighted graphs1. Unfortunately, the algorithm, which we

review in Section II, does not easily translate into an efficient

external-memory algorithm, as it involves a large number of

pointer hops (random memory accesses).

Although main memory size is often the primary con-

straint on the size of the graphs for which one can com-

pute betweenness centrality efficiently in practice [3], the

betweenness centrality problem has not previously been

1We use “V ” and “E” to denote the set of vertices and edges in a graph,
respectively, as well as the sizes of these sets, whenever the context is clear
as to whether we are referencing these as sets or numbers.
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considered in the external-memory model. The external-

memory results of most relevance to this paper are results

on shortest paths in undirected graphs (a thorough survey of

results can be found in [16]). In the unweighted (breadth-

first search) case the best know algorithms, due to Mu-

nagala and Ranade [17] and Mehlhorn and Meyer [18],

use O(V + SORT(E)) and O(
√
V E/B + SORT(E)) I/Os,

respectively, where SORT(N) = O(NB logM/B
N
B ) is the

number of I/Os needed to sort N elements [14]. Algorithms

for the unweighted all-pairs shortest-paths (all-pairs breadth-

first search) problem using O(V · SORT(E)) I/Os have also

been developed by Arge et al. [19] and Chowdhury and

Ramachandran [20]. The latter algorithm can also com-

pute the unweighted diameter using only O(E) space. In

the weighted case the best known single-source shortest-

paths algorithm is due to Kumar and Schwabe [21] and

uses O(V + E
B log E

B ) I/Os. The best known algorithm

for the weighted all-pairs shortest-paths problem is due

to Chowdhury and Ramachandran [20] and uses O(V ·√
V E/B+V E

B log E
B )) I/Os. The latter algorithm computes

the weighted diameter using O(V 2) space. It can also be

computed using only O(E) space (but O(V 2 + V E
B log E

B )
I/Os) by running the Kumar and Schwabe algorithm [21] V
times.

Sometimes it is possible to design I/O-efficient algorithms

that do not make explicit use of knowledge of the parameters

B and M . Such so-called cache-oblivious algorithms that

work efficiently without explicit tuning for the memory pa-

rameters are efficient on all levels of even an unknown mul-

tilevel memory hierarchy (e.g., see [22]). Cache-oblivious

algorithms have been developed for a number of problems,

including for sorting [22] and various tree problems [23],

where the same O(SORT(N)) I/O-bound can be achieved as

in the classic external-memory model. For the unweighted

single-source and all-pairs (breadth-first search) problems,

cache-oblivious algorithms that match the previously men-

tioned cache-aware bounds, are known as well [20], [23].

B. Our Results

In this paper, we provide I/O-efficient and cache-oblivious

algorithms for computing betweenness centrality, both in

weighted and unweighted graphs. As mentioned above,

to the best of our knowledge, no such algorithms were

previously known, even though I/O is often a constraint

on the size of the graphs one can compute betweenness

centrality on in practice. In particular, we present algorithms

for weighted and unweighted graphs, as well as algorithms

that can exploit additional properties in the input, including

sparsity and low-diameter, which are common in social

network applications. In addition, two of our algorithms,

namely the one for unweighted graphs and the one for graphs

with low-diameter, are cache-oblivious. Not surprisingly, all

of our algorithms build on methods for performing all-

pairs shortest-path computations, adding several additional

components for the sake of I/O-efficiency and dovetail-

ing these with the additional complexities that come from

computations of betweenness centrality scores. Additional

techniques that we introduce, which may be of use in other

I/O-efficient graph algorithms, include the following:

• annotated incremental BFS construction

• K-restricted parallel execution of slim buffer heaps

• external-memory simulation of Bellman-Ford-type dis-

tributed computations.

Specifically, in Section III, we consider unweighted

graphs and describe how to obtain a betweenness cen-

trality algorithm using O(V · SORT(E)) I/Os and O(E)
space. This algorithm is cache-oblivious. In Section IV, we

consider weighted graphs and describe a number of new

external-memory algorithms. First, we show how to obtain

an O(V 2 + V E
B log E

B ) I/O and O(E) space algorithm,

which works for general graphs but is admittedly not cache-

oblivious. Next we describe an improved O(V ·√V E/B+
V · EB log V

B ) I/O and O(V ·√V E/B) space algorithm for

sparse graphs (where E < V B/ log V ). The algorithm per-

forms several phases with a number of concurrent instances

of a shortest-path algorithm rather than just one phase with

V concurrent instances. Interestingly, this algorithm also

improves the space of the best known weighted diameter

algorithm [20] from O(V 2) to O(V ·√V E/B), which may

be of independent interest. Finally, we describe a further

improved algorithm for low-diameter graphs, which are

common for social networks that exhibit the “small world”

phenomenon. This algorithm uses O(V E ·diam(G)/B) I/Os

and O(V 2) space on a graph G with (unweighted) diameter

diam(G); the algorithm is cache-oblivious.
Our methods involve a number of new techniques with

respect to the theory of external-memory algorithms for

computing betweenness centrality for big-data social net-

working applications. Thus, although we do not include

in this paper an experimental analysis of our algorithms,

our results nevertheless provide a first step towards the

full implementation of I/O-efficient betweenness centrality

algorithms for large social networks.

II. THE BETWEENNESS CENTRALITY ALGORITHM OF

BRANDES

In this section we review the internal-memory algorithm

of Brandes [3] for computing betweenness centrality of a

graph G = (V,E). The main idea of the algorithm is

to decompose the betweenness centrality of a node v into

the contributions of the shortest paths passing through v
in G that start in each of the other nodes. The sum of

the contributions of the shortest paths starting in a node

s ∈ V \ {v} to the betweenness centrality of v is called

the dependency of s on v, denoted δs(v), and is defined as

follows:

δs(v) :=
∑

t∈V \{v}

σst(v)

σst
.
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The betweenness centrality of a vertex v is then equal to the

sum of the dependencies of all vertices on v:

CB(v) =
1

2
·

∑
s �=t∈V \{v}

σst(v)

σst
=

1

2
·
∑

s∈V \{v}
δs(v) .

Below we describe an O(E)-time and space algorithm

for computing the dependency values δs(v) for all v ∈ V
for a particular s ∈ V in an unweighted graph G (a graph

where all edges have weight one). To compute CB(v) for

all v ∈ V we simply run this algorithm for each s ∈ V , and

maintain for each v ∈ V the sum of all δs(v) computed so

far. Thus overall the betweenness centrality is computed for

all vertices in an unweighted graph G in O(V E) time using

O(E) space. At the end of the section we discuss how to

extend the algorithm to the weighted case.

Computing δs(v) for fixed s: Let Ps(v) be the set of

predecessors of v with respect to s, that is, the neighbours

of v that are part of at least one shortest path between s and

v, and Ss(v) the set of successors of v with respect to s,

that is, the set of vertices w that are neighbours of v such

that v is on at least one shortest path from s to w. We now

have the following:

Lemma 1 ( [3], Lemma 3): For v �= s,

σsv =
∑

u∈Ps(v)

σsu .

Lemma 2 ( [3], Theorem 6): For v �= s,

δs(v) =
∑

w∈Ss(v)

σsv

σsw
· (1 + δs(w)) .

The algorithm of Brandes [3] for computing δs(v) for

all v ∈ V in O(E) time and space first computes Ps(v)
and Ss(v) for all v ∈ V in O(E) time and space using a

breadth-first search from s. During the breadth-first search

σsv can also easily be computed when visiting node v using

Lemma 1, since all vertices u ∈ Ps(v) are visited before

v. Finally, the vertices are visited in reverse breadth-first

search order and δs(v) is computed when visiting v using

Lemma 2; this is possible since all vertices w ∈ Ss(v) have

already been visited when visiting v.

Weighted graphs: The above algorithm can easily be

modified to work for weighted graphs, where we are given

a weight function w : E → R
+. To construct Ps(v) and

Ss(v) for all v we use Dijkstra’s algorithm [24], rather than

a breadth-first search. The rest of the algorithm remains

unchanged, so the total running time becomes O(V E +
V 2 log V ), since Dijkstra’s algorithm uses O(E + V log V )
time.

III. AN I/O-EFFICIENT ALGORITHM FOR UNWEIGHTED

GRAPHS

In this section, we show how to compute betweenness cen-

trality for the vertices of an unweighted graph G = (V,E)
in O(V · SORT(E)) I/Os and O(E) space. Similar to the

internal-memory algorithm of Brandes [3], our external-

memory algorithm computes a breadth-first search (BFS)

tree from each vertex s in G while using Lemma 1 to

compute σsv for each vertex v �= s (while also maintaining

for each vertex the sum of all δs(v) computed so far).

However, unlike the internal case we do not construct the

BFS trees for each vertex s ∈ V independently, since

even with the best known external BFS algorithm [18] this

would require Ω(V · √V E/B) I/Os. Instead we modify

the algorithm by Chowdhury and Ramachandran [20] that

constructs BFS trees from all vertices s in O(V · SORT(E))
I/Os in total. The main idea of the algorithm is that a BFS

tree from vertex s can be constructed more I/O-efficiently

when a BFS tree from a vertex s′ close to s is already

known. This allows us to perform reverse-order I/O-efficient

processing of the BFS trees.

The algorithm first computes an ordering π of the vertices

of G such that the distance between consecutive vertices in

π is small, and then it constructs the BFS trees from the

vertices in π one after the other, utilizing an incremental
BFS algorithm. Below we first describe how to compute π
and then we describe the incremental BFS algorithm. After

that we discuss how to modify the BFS algorithm to compute

betweenness centrality, and finally we analyse the algorithm.

Computing π: The ordering π of the vertices used

in the algorithm by Chowdhury and Ramachandran [20] is

constructed as follows. First an (arbitrary) spanning tree T
of G is computed and then two directed edges (u, v) and

(v, u) are constructed for each undirected edge (u, v) in T to

obtain directed graph T ′. Then the edges of T ′ are ordered

to form an Euler tour and the order π = 〈s1, . . . , s|V |〉 of

the vertices in V is defined by the order in which they first

occur in the Euler tour.

Note that although the distance d(si, si+1) between two

consecutive vertices si and si+1 in π may be large, the

sum of the distances between all consecutive vertices in

π is O(V ) since the length of the Euler tour is O(V ).
Furthermore, Chowdhury and Ramachandran [20] also prove

the following property of π:

Lemma 3 ( [20]): Let d(u, v) be the length of the shortest

path between u and v, and di = d(si−1, si) for 1 < i ≤ V .

Then for any vertex v ∈ V , d(si, v) − di ≤ d(si−1, v) ≤
d(si, v) + di.

Incremental BFS: The main idea in the incremental

BFS algorithm for computing a BFS tree from si given a

BFS tree from si−1 is to order the adjacency lists of all

vertices according to their level in the BFS tree for si−1.

More precisely, assume the vertices in G are labelled with

their distance from si−1 in the BFS tree from si−1 and

store the adjacency lists of vertices at distance d in a list

Ad; within Ad the adjacency lists are ordered by vertex.

Lemma 3 above then implies that we are guaranteed to find

the adjacency lists for vertices at distance � from si in some

list Ak for �−di ≤ k ≤ �+di. Using this property we now
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construct the BFS tree from si one level at a time as in the

algorithm by Munagala and Ranade [17]: Let L� denote the

sorted list of vertices at level � in the BFS tree from si; level

L1 consists of vertex si. Given the previous two BFS levels

L�−2 and L�−1, we construct L� by first scanning L�−1

simultaneously with each list Ak, where �−di ≤ k ≤ �+di,
and inserting an edge (u, v) in a list E� for each vertex v
that is a neighbour of a vertex u ∈ L�−1. We then sort E� by

the second vertex and scan it simultaneously with L�−1 and

L�−2 to remove any edges (u, v) ∈ E� for which v ∈ L�−1

or v ∈ L�−2. This means that E� now contains edges (u, v)
connecting a vertex u in level �−1 with a vertex v in level �
of the BFS tree. Finally, we scan the sorted E� to aggregate

all edges (u1, v), . . . , (um, v) for a vertex v and append v
to L�.

Annotated Incremental BFS: To compute betweenness

centrality, we first modify the incremental BFS algorithm

above such that it also computes σsiv for each vertex v when

computing the BFS tree from si. To do so we augment each

vertex u in the sorted list L�−1 of vertices at level � − 1
in the BFS tree from si with σsiu. We then modify our

algorithm for computing L� from L�−1 and L�−2 in order

to be able to compute σsiv for each vertex v in L�. The

modification consists of annotating each edge (u, v) in E�
with σsiu, which allows us to compute σsiv using Lemma 1

when aggregating edges (u1, v), . . . , (um, v) and inserting v
in L�. The annotation is performed simply by sorting the list

E� of edges (u, v) by first vertex and then simultaneously

scanning through E� and L�−1 to annotate each edge (u, v)
in E� with σsiu from L�−1.

Reverse-Order BFS Processing: After constructing the

BFS tree from si along with σsiv for each vertex v, that

is, the lists L1,L2, . . . of vertices at each level of the tree

and the lists E2, E3, . . . of edges between the levels, we

compute δsi(v) for each vertex as in Brandes’ algorithm [3]

by visiting the vertices (levels) in reverse order. To compute

δsi(v) for all vertices u in L�−1 when δsi(v) has already

been computed for all vertices v in L�, we first annotate

each edge (u, v) in E� with δsi(v) and σsiv by sorting E�
by second vertex and simultaneously scanning E� and L�.

After that we sort E� by first vertex and scan the sorted list

to obtain all edges (u, v1), . . . (u, vm) incident to each vertex

u in L�−1 and compute δsi(u) using Lemma 2.

I/O complexity: To analyse our algorithm, first note that

the ordering π can be computed in O(V · SORT(E)) I/Os

using a minimal spanning tree algorithm by Arge et al. [25]

and standard external graph algorithm techniques [16], [26]

(see for example Chowdhury and Ramachandran [20]).

To initiate the incremental BFS process, we generate

the BFS tree from s1 in O(V + SORT(E)) I/Os using the

algorithm by Munagala and Ranade [17]. Now to construct

the BFS tree from si and compute δsi(v) for all vertices

v ∈ V , we sort the adjacency lists into lists Ak using

O(SORT(E)) I/Os and then we construct the levels of the

BFS tree one at a time and traverse them again in reverse

order. For level �, we scan lists A�−di , . . . ,A�+di , so in

total we scan each list Ak O(di) times, using O(di ·E/B)
I/Os. For each level we also scan L�−1 once, so every

level of the BFS tree is also scanned O(di) times, using

O(di · V/B) I/Os in total. The remainder of the algorithm

consists of scanning and sorting the vertex and edge sets

a constant number of times using O(di · E/B + SORT(E))
I/Os in total. Overall we use O(

∑
i(di ·E/B+SORT(E))) =

O(V · (E/B + SORT(E))) = O(V · SORT(E)) I/Os in total

to construct and traverse all of the BFS trees. The amount

of space required is O(E), as we only store the set of edges

and vertices a constant number of times.

Theorem 1: Betweenness centrality for an unweighted

and undirected graph G = (V,E) can be computed in

O(V · SORT(E)) I/Os using O(E) space.

Remark: Using a cache-oblivious minimum spanning tree

and Euler tour construction algorithm [23] rather than the

I/O-efficient algorithms [25], [26], our algorithm can easily

be made cache-oblivious with the same I/O and space

bounds, since the incremental BFS algorithm is based only

on sorting and scanning of lists.

IV. I/O-EFFICIENT ALGORITHMS FOR WEIGHTED

GRAPHS

In Section II we noted that Brandes’ internal-memory

algorithm can also be used for graphs G = (V,E) with

positive edge weights w : E → R
+, by using a shortest-

path algorithm instead of breadth-first search. Thus we

can obtain an O(V 2 + V E
B log E

B ) I/O and O(E) space

algorithm by running a simple modification of the single-

source shortest-path algorithm of Kumar and Schwabe [21]

from all V vertices. We describe this algorithm in Sec-

tion IV-A. In Section IV-B, we then describe an improved

O(V · (√V E/B+(E log V )/B)) I/O and O(V ·√V E/B)
space algorithm for sparse graphs where E < V B/ log V .

The algorithm is a modified version of the previous all-pairs

shortest-paths algorithm by Chowdhury and Ramachan-

dran [20] and by Arge et al. [19] that computes shortest

paths from multiple sources concurrently. In Section IV-C,

we consider the case of low-diameter graphs and describe

an O(V E · diam(G)/B) I/O and O(V 2) space algorithm,

where diam(G) is the (unweighted) diameter of G.

A. Time-Forward Processing with External-Memory Priority
Queues

In this section, we describe our general algorithm for com-

puting betweenness centrality in a weighted graph, based on

the use of time-forward processing. Our method builds on

the I/O-efficient single-source shortest-path algorithm of Ku-

mar and Schwabe [21], dovetailing time-forward processing

to compute betweenness centrality scores.

The algorithm of Kumar and Schwabe is a modified

version of Dijkstra’s algorithm that relies on an I/O-efficient
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priority queue called the external tournament tree, which

supports a DECREASEKEY operation with a slightly unusual

semantic: Given an element x and a priority p, the operation

updates the priority of x to p only if p is smaller than the

current priority of x (inserting x if it does not exist in the

queue).

Lemma 4 ( [19], [21]): Given a universe of N elements,

an external tournament tree using O(B) internal memory

can process a sequence of k DELETEMIN, DELETE, and

DECREASEKEY operations in O( k
B log N

B ) I/Os in total.

I/O-efficient Dijkstra: To compute the shortest paths

from vertex s to all other vertices, Dijkstra’s algorithm [24]

processes vertices in order of their distance from s while

maintaining a tentative shortest distance dt(s, v) from s to

all non-processed vertices. When processing a vertex v, each

neighbour u of v is retrieved and if dt(s, u) > d(s, v) +
w(v, u) the tentative distance to u is updated. To find the

next vertex to process, unprocessed vertices are kept in a

priority queue with their tentative distance as their priority.

The two main challenges faced by external-memory im-

plementations of Dijkstra’s algorithm are to determine which

neighbour vertices are already processed when processing a

vertex, and which unprocessed neighbours need to have their

priority updated (decreased). The I/O-efficient shortest-path

algorithm of Kumar and Schwabe [21] solves the second

issue using the special semantic of the external tournament

tree. The first issue is solved by updating the priority of a

vertex irrespective of whether that vertex has already been

processed, and using a second tournament tree to take care

of removing spurious updates, that is, updates to already

processed vertices, from the first one. Refer to [16], [21]

for details2. This results in an algorithm using O(V + E
B )

I/Os in total for accessing the adjacency lists of the vertices,

and O(E) operations on the two tournament trees using

O(EB log E
B ) I/Os (Lemma 4). Hence, in total the algorithm

uses O(V + E
B log E

B ) I/Os for computing the shortest paths

from one source.

Computing betweenness centrality: For computing be-

tweenness centrality, we first describe how we can compute

the number of shortest paths σsv and then the dependency

δs(v) of s on each vertex v after having computed d(s, v)
for all vertices using the Kumar and Schwabe algorithm. To

do so we first compute the actual directed acyclic graph

(DAG) of shortest paths from s by identifying all edges

(v, u) where d(s, u) = d(s, v) + w(v, u). We can easily do

so by annotating edge (v, u) with d(s, v) and d(s, u) in a

few sorting and scanning steps of the edges and vertices,

similar to the way we annotated edges in the algorithm

in Section III. Next we compute σsv for each vertex v

2The algorithm as presented by Kumar and Schwabe only works under
the assumption that no two vertices have the same shortest-path distance
to s. However, this assumption can be removed by carefully managing the
elements in the priority queues to make sure that such vertices are handled
at the same time [16].

by traversing the vertices in order of increasing shortest

path distance d(s, v), and for a vertex v summing σsw

for each predecessor w of v (edge (w, v)) in the DAG

(Lemma 1). We do so I/O-efficiently using the time-forward
processing technique [26]: Initially we sort the edges by the

shortest path distance of their first vertex (and secondarily

by second vertex) and insert s annotated with σss = 0 in

an external priority queue [27] with priority d(s, s) = 0.

Then we visit the vertices in increasing shortest-path order,

and repeatedly obtain σsw for each predecessor w of vertex

v by performing DELETEMIN operations on the priority

queue, computing σsv , and then accessing all edges (v, u)
in the sorted list of edges and inserting each successor u
of v in the priority queue, annotated with σsv . Overall the

algorithm will scan through the sorted list of edges and

perform 2E INSERT and DELETEMIN operations on the

priority queue. After having computed σsv for each vertex

v, we can compute δs(v) for each vertex v in a similar way

using Lemma 2 by processing the vertices in reverse order

of shortest path distance using time-forward processing.

Overall the algorithm uses O(SORT(E)) I/Os to compute σsv

and δs(v), since it performs a constant number of scans and

sort steps along with 2E priority queue operations, which

can be performed in SORT(E) I/Os [27].

Now to compute the betweenness centrality of each vertex

v we simply run the above algorithm with each vertex as

source s, and compute CB(v) by maintaining the partial

sum of all δs(v), for all v ∈ V as in the unweighted

case in Section III. Overall we use O(V · (V + E
B log E

B +
SORT(E))) = O(V 2 + V E

B log E
B ) I/Os and O(E) space.

Theorem 2: Betweenness centrality for an undirected

graph G = (V,E) with positive edge weights can be

computed in O(V 2 + V E
B log E

B ) I/Os and O(E) space.

B. The Algorithm for Sparse Weighted Graphs

The I/O bound in Theorem 2 is dominated by the O(V 2)
term in case the graph is sparse (when E < V B/ log V ).

The term is a result of each of the V individual shortest

path computations making V accesses to the adjacency lists.

In this section we describe an algorithm that reduces the

I/O cost when E < V B/ log V at the expense of using

more space. More precisely, we show how to compute

betweenness centrality in O(V · (√V E/B+(E log V )/B))
I/Os using O(V ·√V E/B) space.

Our algorithm builds on the all-pairs shortest-paths algo-

rithms of Chowdhury and Ramachandran [20] and of Arge

et al. [19], adding a technique based on K-restricted parallel

execution of slim buffer heaps. The idea is to run multiple

instances of Kumar and Schwabe’s version of Dijkstra’s

algorithm simultaneously to allow for faster access to the

adjacency lists. However, in this case we may not have

enough space in main memory for the Θ(B) space of each

of the external tournament trees.
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Therefore, we below first describe how to modify the

external tournament tree to only use O(B/L) space in

main memory for a parameter L < B. We then run

multiple shortest path algorithms simultaneously, using only

L instances of the modified tournament tree at the same

time, so we save O(L) accesses to load the single priority

queues.

Priority queue buffers: We now show how an O(B/L)-
sized buffer in internal memory can help reduce the I/O

cost for a sequence of operations. Let Q be an external

tournament tree as in Lemma 4, without using any space

in internal memory. We store a tournament tree buffer for

Q containing a set s(Q) of the |s(Q)| = O(B/L) smallest

items in Q as well as an operation buffer of size O(B/L).
For any operation on Q we first try to perform it on the

buffer of Q, which we assume to be loaded in memory

(while the root of Q is still on disk). For a DELETEMIN

operation, we extract the minimum item from s(Q) and

return it. In case we run out of items, we load the root of

Q and perform O(B/L) DELETEMIN operations on Q to

refill s(Q). For a DECREASEKEY operation we first check

whether the item occurs in s(Q) and update it, otherwise

we store the operation in the operation buffer. In case the

operation buffer is full, we load the root of Q in memory and

perform all O(B/L) buffered operations on Q. A DELETE

operation is handled in the same way.

Lemma 5: The external tournament tree can be imple-

mented to use O(B/L) internal memory such that a se-

quence of k operations can be processed in O(k · L/B +
k/B log(N/B)) I/Os in total.

K-Restricted Parallel Execution of Slim Buffer Heaps:
Unlike the previous all-pairs shortest-paths algorithms [19],

[20] that run all V instances of the Kumar and Schwabe

algorithm [21] simultaneously, we only run K instances

simultaneously. We divide these instances into K/L groups

using 2·L slim buffer heaps each. Note that this allows us to

write the L ·O(BL ) internal memory used by the L priority

queues to disk, and read it again from disk, in a constant

number of I/Os. We now perform the V rounds (each

processing one vertex) of the Kumar and Schwabe algorithm

one round at a time simultaneously for all K instances. A

round starts by loading the priority queue blocks for each

of the K/L groups in order, and for each group use the

priority queues to determine the next vertex to be processed

in the round for L of the instances. This results in a list V
with a node to be processed for each of the K instances. To

find the adjacency lists of all the vertices in V , we then sort

V by vertex and scan it simultaneously with the adjacency

lists (also sorted by vertex). This produces a list A of the

relevant neighbour vertices for all K instances. We then sort

the vertices in A according to the group and instance they

belong to. We end the round by scanningA while loading the

priority queue blocks for each of the K/L groups in order,

and update the priority queues using the information in A.

After finishing a set of K instances, we compute the number

of shortest paths σsv and the dependency values δs(v) for

these instances as in Section IV-A, that is, we build for each

instance the shortest-path DAG from its source s and use

time-forward processing on this DAG to first compute σsv

for all v ∈ V , and then δs(v) for all v ∈ V in a reverse

time-forward processing step.
Analysis: To run all V instances of the Kumar and

Schwabe algorithm we perform V
K · V = V 2

K rounds in

total. In each of these rounds we use O(K/L) I/Os to

read and write priority queue blocks. Sorting and scanning

all adjacency lists takes O(SORT(K) + E/B) I/Os per

round. Sorting A takes O(V · SORT(E)) I/Os in total for all

instances, as each edge is used at most twice per instance.

We also perform O(E) operations on each tournament tree

using O(V E L
B + V E

B log V
B ) I/Os (Lemma 5). Finally, we

use O(SORT(E)) I/Os per instance for computing σsv and

δs(v), while computing the partial sums for CB(v) at no

extra cost. In total we use

O

(
V 2

L
+

V 2

K
·
(

SORT(K) +
E

B

)

+ V · SORT(E) + V E · L
B

+ V · E
B

log
V

B

)

= O

(
V 2

L
+

V EL

B
+

V 2E

KB
+

V E

B
log

V

B

)
I/Os, where 1 ≤ L ≤ B, and L ≤ K. As we need to

maintain 2 · K tournament trees, we use O(K · V + E)
space.

We balance the number of I/Os in the first two terms in

the I/O bound above by setting L =
√

V B/E. We can now

adjust K to trade space for I/Os. To optimize for I/Os, we

set K =
√
V E/B ≥ L, in which our algorithm uses

O

(
V ·
(√

V E

B
+

E

B
log

V

B

))

I/Os and O(V ·√V E/B) space.
Theorem 3: Betweenness centrality for an undirected

graph G = (V,E) with positive edge weights can be

computed in O(V · (√V E/B + E
B log V

B )) I/Os using

O(V ·√V E/B) space, given that E < V B/ log V .
Remarks:

(i) For graphs with E = O(V ) the I/O improvement over

the algorithm of Section IV-A is a factor of
√
B.

(ii) By choosing a value for K <
√
V E/B, one can trade

I/Os for space.

(iii) The algorithm can also compute the weighted diam-

eter, improving the space of the best known such

algorithm from O(V 2) to O(V ·√V E/B).

C. The Algorithm for Low-Diameter Weighted Graphs
In this section we describe an improved algorithm for

weighted graphs with small (unweighted) diameter. Specifi-

cally, given a graph G with unweighted diameter diam(G),
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our algorithm runs in O(V E · diam(G)/B) I/Os and uses

O(V 2) space. The basic idea is to simulate a distributed

variant of the Bellman-Ford algorithm (as used in distance-

vector routing algorithms), where each vertex maintains a

complete set of distance estimates to all other nodes. The

algorithm repeatedly updates these distance estimates of the

vertices by comparing them with those of neighbouring

vertices. After all distances are found, we compute the

shortest-path counts, dependency values, and betweenness

centrality for all vertices. A key feature of our algorithm

is that it avoids the repeated sorting and permutation steps

required for a naive simulation. Below we first describe

the basic distributed Bellman-Ford algorithm for computing

all-pairs shortest paths. Then we describe our I/O-efficient

variant of this algorithm and the extensions necessary for

computing the shortest-path counts, dependency values and

finally betweenness centrality for all vertices.

Distributed Bellman-Ford: Consider running the dis-

tributed Bellman-Ford algorithm on a physical network

consisting of a node for each vertex of G and a connection

between node u and node v in case there is an edge

(u, v) ∈ E. Each node v maintains a distance vector
containing values dt(v, w) < d(v, w) for all w ∈ V .

Initially, dt(u, v) = 0 in case u = v, and dt(u, v) = ∞
otherwise. Then, the algorithm runs at most diam(G) + 1
rounds in which the distance vector of each node v is

sent to each of its neighbours in the network , after which

d′t(s, v) = minu∈N(v){dt(s, u) + w(u, v)} for all s ∈ V
is computed, where N(v) is the set of neighbours of v,

and then sets dt(s, v) = d′t(s, v) for all s ∈ V . Since any

shortest path contains at most diam(G) edges, we are sure

that dt(s, t) = d(s, t) for all s, t ∈ V after diam(G) rounds.

Since no distances change in the next round, we can detect

when to finish without knowing diam(G).
I/O-efficient shortest paths: We maintain the distance

vector (dt(v, v1), . . . , dt(v, v|V |)) for each vertex v as an

ordered list in external memory. To simulate a round, instead

of making all updates for one vertex at a time, which would

require copying and sorting the distances, we make the

updates involving one edge at a time. In more detail, for

each round we first set d′t(u, v) =∞ for all u, v ∈ V . Then,

we scan the list of edges once, while for each edge e = (u, v)
scanning the distance vectors of u and v simultaneously. For

each 1 ≤ i ≤ V , we set d′t(u, vi) := min(d′t(u, vi), w(u, v)+
dt(v, vi)) and d′t(v, vi) := min(d′t(v, vi), w(u, v)+dt(u, vi)).
After finishing each round we set dt(s, t) := d′t(s, t) for all

s, t ∈ V . We stop after the first round in which none of the

distance estimates change.

Shortest-path counts: Next we compute σst for all

s, t ∈ V . Again, we run diam(G) rounds, going through all

edges once per round. For each s ∈ V , we store estimates of

the number of shortest paths from s to all other vertices in a

path-count vector (list) (σsv1 , . . . , σsv|V |). We maintain for

each estimate σst whether it is (currently known to be) final.

In each round we finalize the path counts σst for which all

predecessors of t with respect to s had final path counts in

the last round. In order to efficiently find out which path

counts need to be finalized in a round, we also maintain

for each σst whether it is known to be incomputable in the

current round (because some predecessor has no final path

count yet).

Initially we only set σss := 1 for s ∈ V , and these are

final. At the beginning of each round we reset each non-

final σst to 0 and record that it is not incomputable. When

processing an edge (u, v), we scan simultaneously over both

the distance and path-count vectors of u and v. We check

for each vi whether (u, v) is tight with respect to vi, that is,

whether d(v, vi) = d(u, vi)+w(u, v). In case it is, and σvvi

is not final and σuvi is final, we update σvvi := σvvi +σuvi .

In case σuvi is not final we record that σvvi is incomputable.

If after completing a round we have not found a certain σst

to be incomputable, we are in fact sure its current value is

final and record this.

Dependency values: To compute δu(v) for all u, v ∈ V ,

we again proceed in diam(G) rounds, but instead of check-

ing for tight edges to predecessors, we check for tight edges

to successors with final dependency values. The dependency

values for each vertex v ∈ V are stored as a dependency
vector (list) (δv1(v), . . . , δv|V |(v)); initially δvi(v) = 0 for

all i. When processing an edge (u, v), we scan over the

dependency vectors of u and v as well as their path-count

and distance vectors, and update the dependency values of

all vi by setting δvi
(u) := δvi

(u) + σuvi
/σvvi · (1 + δvi

(v))
in case (u, v) is tight with respect to vi, δvi(u) is not final,

and δvi(v) is final.

Finally, we compute CB(v) for all v ∈ V by summing

all values in the dependency vector of v.

I/O complexity: For each of the three steps in the

algorithm we scan the set of edges once per round, taking

O(EB ) I/Os, and for each edge we scan at most six vectors

simultaneously (the distance, path-count, and dependency

vectors of both endpoints), taking O(VB ) I/Os per edge. It

takes O(V
2

B ) I/Os per round to finalize and reset the distance,

path-count, and dependency values. Hence, in total we use

O(diam(G) · (EB + E · V
B + V 2

B )) = O(V E · diam(G)/B)
I/Os. The algorithm uses O(V 2) space because it needs to

store the three lists of length V for each vertex.

Theorem 4: Betweenness centrality for a directed graph

G = (V,E) with diameter diam(G) and positive edge

weights can be computed in O(V E ·diam(G)/B) I/Os using

O(V 2) space.

Remarks:
(i) The algorithm uses a factor O(B/ diam(G)) fewer

I/Os than the algorithm of Section IV-A in case

of graphs where E = O(V ). For graphs where

E ≥ V B/ log V , the improvement is only a factor

O(log E
B / diam(G)).
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(ii) As opposed to the other algorithms discussed in this

paper, the current algorithm can easily be made to

work for directed graphs.

(iii) The algorithm is cache-oblivious, since it only scans

over lists.

V. CONCLUSION

In this paper, we have provided a theoretical design and

analysis for efficiently computing betweenness centrality in

the external memory model, so as to provide an effective

method for solving this problem in big data graph appli-

cations that are too large to fit in the main memory of a

standard computer. Some interesting directions for future

work would include an experimental validation for this work,

as well as explorations of other external-memory algorithms

for big data problems relating to social network analysis.
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