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Abstract. We discuss a force-directed algorithm for constructing 3D arc dia-
grams. We introduce forces that allow curves in a 2D force directed graph to bow
out and away from each other in the third dimension in order to achieve better
angular resolution.

1 Introduction

In a 2D arc diagrarrﬂ a graph is drawn by placing its vertices on a line and drawing
its edges as circular arcs. Goodrich and Pszona [4] extend this definition to 3D arc
diagrams, where vertices are placed in the xy-plane and edges are drawn as circular
arcs that may bow out of that plane in the third dimension, and they show how to use
graph coloring methods to determine tangent angles. Their approach works well for
some types of graphs, but not all. In this poster, we present a general force-directed
method for constructing a 3D arc diagram for any graph.

2 QOur Algorithm

We start with a 2D force-directed layout produced with Fruchterman-Reingold [3]]
forces, that is, where all vertices repel each other based on electromagnetic forces and
vertices connected by an edge are attracted to each other by a force that views the edge
as a spring. Vertex placements are refined iteratively, where each iteration brings the 2D
graph closer to a low energy state where nodes are experiencing the same forces in ev-
ery direction. Our implementation starts with the standard 2D forces, without any kind
of distortion, allowing vertices to move freely. Thus, in the xy-plane, all vertices exert a
force inversely related to their distance, similar to an electromagnetic force, which tends
to push away vertices that are not related to each other. Vertices that share an edge are
pulled toward each other with a spring force, positively related to their distance, so that
nodes that are related can be closer spatially. These two forces are tempered by a cool-
ing function that gradually reduces the impact of the forces to avoid any case where
nodes are pulled and forth indefinitely. This phase of the algorithm is similar to the
first phase in the “dummy node” approach of Chemobelskiy et al. [2] for force-directed
Lombardi drawings.

After a small number of iterations, our algorithm enters its second phase, where
we allow intersecting edges to “pop” out of the xy-plane. We also allow edges that
share common node to bow away from each other in the third dimension, based on their
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proximity and the angle between them. This is implemented by viewing edges as Bezier
curves with 1 control point. The bowing force is exerted on the control points of two
edges sharing a common node and is constructed by the current distance between the
control points and the angle formed by the shared node and the location of each control
point. Specifically, we compute a force that 2 control points will exert on each other as

F= C/(Ta : db)a

where 7 is the angle of the control points and their shared node and d is the distance
between the two control points. In our case, we found that the values, ¢ = .5 and b = 2,
worked well, with » = 1.5 initially.

This force is applied in the - and y-directions, leading the two control points away
from each other and in the positive z-direction on both. It is then reduced so that the zy-
force is perpendicular to the original straight line edge before any curve bowing force
is applied. The control points are then pulled back to their original, unmoved location
laying on the xy-plane by a spring force with power proportional to how far away the
control point currently is from its origin. The spring force for a direction (z in this case)
is given by

—Fx =kFx,
where k = .5.

When edges intersect, as detected by an orientation algorithm [1]], we repel their
control points in the z-direction only. This lifts up the higher edge and lowers the other.
The magnitude of the force exerted on each control point is based on their distance in
the xy-plane.

In the initial state, where all edges are lying on the xy-plane and have a z-value of 0,
we exert a force to only one of the edges (at random), leaving the other edge still on the
xy-plane.

3 Conclusion

We have observed that by adding another dimension to a graph drawing and allowing
control points to enter this new dimension with forces that cause edges to bow out of
the plane in a fashion dictated by intersections, angles, and proximity, we can improve
the angular resolution of the graph as a whole. For almost all cases, using additional
forces will provide better angular resolution than if we were in the xy-plane alone.
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