
Two-Phase Bicriterion Search for Finding
Fast and Efficient Electric Vehicle Routes

Michael T. Goodrich
Dept. of Computer Science

University of California, Irvine
http://www.ics.uci.edu/~goodrich

Paweł Pszona
Dept. of Computer Science

University of California, Irvine
http://www.ics.uci.edu/~ppszona

ABSTRACT
The problem of finding an electric vehicle route that op-
timizes both driving time and energy consumption can be
modeled as a bicriterion path problem. Unfortunately, the
problem of finding optimal bicriterion paths is NP-complete.
This paper studies such problems restricted to two-phase
paths, which correspond to a common way people drive
electric vehicles, where a driver uses one driving style (say,
minimizing driving time) at the beginning of a route and an-
other driving style (say, minimizing energy consumption) at
the end. We provide efficient polynomial-time algorithms for
finding optimal two-phase paths in bicriterion networks, and
we empirically verify the effectiveness of these algorithms
for finding good electric vehicle driving routes in the road
networks of various U.S. states. In addition, we show how to
incorporate charging stations into these algorithms, in spite
of the computational challenges introduced by the negative
energy consumption of such network vertices.

Keywords: road networks, electric vehicles, shortest paths,
bicriterion paths, NP-complete.

1. INTRODUCTION
Finding an optimal path for an electric vehicle (EV) in a
road network, from a given origin to a given destination,
involves optimizing two criteria—driving time and energy
consumption. Unfortunately, these two criteria are usually
in conflict, since people typically would like to minimize
driving time, but EVs are least efficient at high speeds.
(E.g., see Figures 1 and 2.) Thus, planning good driving
routes for EVs is challenging [9,13], leading some to refer to
the stress of dealing with the restricted driving distances im-
posed by battery capacities as “range anxiety” [10]. To help
electric vehicle owners deal with range anxiety, therefore, it
would be ideal if GIS route-planning systems could quickly
provide electric vehicle owners with routes that optimize
a set of preferred trade-offs for time and energy, based on
the energy-usage characteristics and the battery capacity of
their vehicle.

Figure 1: Range versus speed for a Tesla Roadster
and Tesla Model S with 85 kWh battery [20].

Figure 2: Battery consumption per mile for a Tesla
Roadster and Tesla Model S 85kWh [20].

ar
X

iv
:1

40
9.

31
92

v1
 [

cs
.D

S]
 1

0
Se

p
20

14

http://www.ics.uci.edu/~goodrich
http://www.ics.uci.edu/~ppszona

1.1 Modeling EV Route Planning
This electric-vehicle route-planning problem can be modeled
as a bicriterion path optimization problem [14] (which is
also known as the resource constrained shortest path prob-
lem [17]), where one is given a directed graph, G = (V,E),
such that each edge, e ∈ G, has a weight, w(e), that is a
pair of integers, (x, y), such that cost of traversing e uses x
units of one type and y units of a second type. For instance,
in a road network calibrated for a certain electric vehicle, a
given edge, e, might have a weight, w(e) = (75, 304), which
indicates that driving at a given speed (say, 60 mph) will
require 75 seconds and consume 304 Wh to traverse e.

The graph G is allowed to contain parallel edges, that is,
multiple edges having the same origin and destination, v
and w, so as to represent different ways of going from v to
w. For example, one edge, e1 = (v, w), could represent a
traversal from v to w at 60 mph, another edge, e2 = (v, w),
could representing a traversal from v to w at 55 mph, and
yet another edge, e3 = (v, w), could represent a traversal at
65 mph.

For a path, P = (e1, e2, . . . , ek), in G, whose edges have
respective weights, (x1, y1), . . ., (xk, yk), the weight, w(P),
of P , is defined as

w(P) =

(
k∑
i=1

xi ,

k∑
i=1

yi

)
.

Given a starting vertex, s, and a target vertex, t, and two
integer parameters, X and Y , the bicriterion path problem is
to find a path, P , in G, from s to t, such that w(P) = (x, y)
with x ≤ X and y ≤ Y . (See Figure 3.) Unfortunately, as we
review below, the bicriterion path problem is NP-complete.

The bicriterion path problem has a rich history, and several
heuristic and approximation algorithms have been proposed
to solve it (e.g., see [4,14–19,24]). Rather than take a heuris-
tic or approximate approach, however, we are interested here
in reformulating the problem so as to simultaneously achieve
the following goals:

• The formulation should capture the way people drive
electronic vehicles in the real world.

• This formulation should be solvable in (strongly) poly-
nomial time, ideally, with the same asymptotic worst-
case running time needed to solve a single-criterion
shortest path problem.

1.2 Our Results
In this paper, we show that one can, indeed, achieve both
of the above goals by using a formulation we call the two-
phase bicriterion path problem. In a two-phase path, P , we
traverse the first part of P according to one driving style and
we traverse the remainder of P according to a second driv-
ing style. For instance, we might begin an electric vehicle
route optimizing primarily for driving time but finish this
route optimizing primarily for energy consumption, which
is a common way electric vehicles are driven in the real
world (e.g., see [9, 13]). We provide a general mathematical
framework for the two-phase bicriterion path problem and
we show how to find such paths in a network of n vertices

a	

e	 c	

d	 b	

f	

(5,	 10)	

(1,	 13)	

(6,	 8)	

(12,	 6)	

(3,	 12)	
(4,	 11)	

(10,	 4)	

(4,	 8)	

(7,	 2)	
(2,	 3)	

 (a)
abdf:	 (13,	 31)	 	 	 	 	 [fastest]	
acef:	 (27,	 20)	 	 	 	 	 [energy optimal]	
abcef:	 (25,	 30)	
abcedf:	 (26,	 39)	
abdef:	 (21,	 27)	 	 	 [2-phase optimal]	
acbdf:	 (20,	 37)	
acbdef:	 (28,	 38)	
acedf:	 (28,	 29)	

 (b)

Figure 3: An instance of the bicriterion path prob-
lem. (a) A network with (driving-time, energy-
consumption) edge weights; (b) All the paths in the
graph and their respective weights. We highlight 3
interesting path weights.

and m edges in O(n logn+m) time, if edge weights are pairs
of non-negative integers, and in O(nm) time otherwise. In
addition, we show to extend our algorithms to incorporate
charging stations in the network, with similar running times.
We include an experimental validation of our algorithms
using Tiger/Line USA road network data, showing that our
algorithms are effective both in terms of their running times
and in terms of the quality of the solutions that they find.

1.3 Additional Related Work
In ACM SIGSPATIAL GIS ’13, Baum et al. [3] describe an
algorithm for finding energy-optimal routes for electric vehi-
cles, based on a variant of Dijkstra’s shortest path algorithm.
They contrast the paths their algorithm finds with shortest
travel time and shortest distance paths, showing that the
paths found by their algorithm are significantly more energy
efficient. In addition to this work, the problem of finding
energy-optimal paths for electric vehicles is also studied by
Artmeier et al. [2], Eisner et al. [8], and Sachenbacher et
al. [22]. Unfortunately, these energy-optimal paths are not
that practically useful for typical drivers of electric vehicles,
who care more about quickly reaching their destinations
(while not depleting their batteries) than they do about
minimizing overall energy consumption (e.g., see [9,13]). For
instance, as shown in Figures 1 and 2, in a Tesla Roadster or
Model S 85kWh, a driver achieves optimal energy efficiency
on level ground by maintaining a constant speed of 15 to 20
mph, which is unrealistic for real-world road trips. Thus,
we feel it is more productive to provide algorithms that
can find routes with small travel times that also conserve
sufficient energy to avoid fully depleting a vehicle’s battery
(if possible), which motivates studying electric vehicle route
planning as a bicriterion path problem.

2

We are not familiar with any prior work on finding optimal
two-phase bicriterion paths, but there are well-known algo-
rithms for finding single-phase paths and for enumerating
all Pareto optimal bicriterion paths. We review these classic
results in the next section.

Bidirectional shortest-path algorithms have been used as an
approach to speedup shortest path searching [12, 21], but,
to our knowledge, these have not been applied in the way
we are doing bidirectional search for finding optimal two-
phase shortest paths. In addition, Storandt [26] studies EV
route planning taking into account charging stations, but
not in the same way that we incorporate charging stations
into two-phase routes.

2. THE COMPLEXITY OF BICRITERION
PATH FINDING

We begin by reviewing known results for the bicriterion path
problem, absent of the two-phase path formulation, includ-
ing that finding bicriterion shortest paths is NP-complete,
but there is a pseudo-polynomial time algorithm for finding
bicriterion paths, which can be very slow in practice.

2.1 Bicriterion Path Finding is NP-Complete
The bicriterion path problem is NP-complete, even if the
values in the weight pairs are all positive integers (e.g.,
see [1, 11]). For instance, there is a simple polynomial-time
reduction from the Partition problem, where one is given
a set, A, of n positive numbers, A = {a1, a2, . . . , an}, and
asked if there is a subset, B ⊂ A, such that

∑
ai∈B ai =∑

ai∈A−B ai. To reduce this to the bicriterion path problem,

let the set of vertices be V = {v1, v2, . . . , vn+1}, and, for
each vi, i = 1, . . . , n, create two edges, ei,1 = (vi, vi+1)
and ei,2 = (vi, vi+1), such that w(ei,1) = (1 + ai, 1) and
w(ei,2) = (1, 1 + ai). Let h = (

∑n
i=1 ai)/2, and define this

instance of the bicriterion path problem to ask if there is a
path, P , from v1 to vn+1, with weight w(P) = (x, y) such
that x ≤ n+h and y ≤ n+h. This instance of the bicriterion
path problem has a solution if and only if there is a solution
to the Partition problem.

2.2 A Pseudo-Polynomial Time Algorithm
As with the Partition problem, there is a pseudo-polynomial
time algorithm for the bicriterion path problem (e.g., see [14,
15]). Recall that the input to this problem is an n-vertex
graph, G, with integer weight pairs stored at its m edges
(and assume for now that none of these values are nega-
tive), together with parameters X and Y . In this pseudo-
polynomial time algorithm, which we call the“vertex-labeling”
algorithm, we store at each vertex, v, a set of pairs, (x, y),
such that there is a path, P , from s to v with weight (x, y).
We store such a pair, (x, y), at v, if we have discovered a path
with this weight and only if, at this point in the algorithm,
there is no other discovered weight pair, (x′, y′), with x′ < x
and y′ < y, for a path from s to v.

Initially, we store (0, 0) at s and we store ∅ at every other
vertex in G. Next, for a sequence of iterations, we perform
a relaxation for each edge, e = (v, w), in G, with w(e) =
(x, y), such that, for each pair, (x′, y′), stored at v, we add
(x + x′, y + y′) to w, provided there is no pair, (x′′, y′′),
already stored at w, such that x′′ ≤ x+ x′ and y′′ ≤ y + y′.

Moreover, if we add such a pair (x + x′, y + y′) to w, then
we remove each pair, (x′′, y′′), from w such that x′′ > x+x′

and y′′ > y+y′. The algorithm completes when an iteration
causes no label updates, at which point we then test if there
is a pair, (x, y), stored at the target vertex, t, such that
x ≤ X and y ≤ Y .

If we let N denote the maximum value of a sum of x-values
or y-values along a path in G, then the running time of
this algorithm is O(nmN), because each iteration takes at
most O(mN) time and there can be at most O(n) iterations
(since there can be no negative-weight cycles). Because N
can be very large, this is only a pseudo-polynomial time al-
gorithm. In practice, this algorithm can be quite inefficient;
for instance, in a road network, G, for an electric vehicle, N
could be the number of seconds in the maximum duration of
a trip in G or the capacity of the battery measured in Wh.

2.3 Battery Capacities and Charging Stations
Although the above algorithm is not very efficient, we can
nevertheless modify it to work for electric vehicle routes,
taking into consideration battery capacities and the exis-
tence of charging stations. Here, we assume that each edge
weight w(e) = (x, y), where x is the time to traverse the
edge (at a speed associated with the edge e) and y is the
energy consumed by this traversal. We also assume that the
vehicle starts its journey from the start vertex, s, with a
fully charged battery.

A charging station can be modeled as a vertex that has a
self-loop with a weight (x, y) having a positive x value and
negative y. There may be other edges in the graph with
negative y-values, as well, such as a stretch of road that goes
sufficiently downhill to allow net battery charging through
regenerative braking.

We store at each vertex a collection of (x, y) values corre-
sponding to the driving time, x, and net energy consump-
tion, y, along some path starting from the start vertex, s.
We modify the above vertex-labeling algorithm, however, to
disallow storing an (x, y) pair with a negative y value, since
we assume our vehicle begins with a fully charged battery,
and it is not possible to store more energy in a battery after
it is fully charged.

Similarly, we assume we know the capacity, C, for the ve-
hicle’s battery. If we ever consider a weight pair, (x, y),
for an s-to-w path, such that y > C, then we discard this
pair and do not add it to the label set for w. Such a pair
(x, y) corresponds to a path that would fully discharge the
battery; hence, attempting to traverse this path would cause
the vehicle to stop functioning and it would not reach its
destination.

Making these modifications allows the vertex-labeling algo-
rithm to be adapted to an environment for planning the
route of an electric vehicle, including consideration of its
battery capacity, the fact that its battery cannot hold more
than a full charge, and removal of paths that would require
too much energy to traverse. These modifications do not
improve its asymptotic running time, however, which be-
comes O(nmN2), where N is the largest route duration
or the battery capacity, since each iteration takes O(mN)

3

time and there can be at most O(nN) iterations (given our
restrictions based on the battery capacity).

2.4 Drawbacks
In addition to its inefficiency, the vertex-labeling algorithm
might find an optimal path that could be difficult to actu-
ally drive in practice. For instance, it could involve many
alternations between various styles of driving, such as “drive
the speed limit” and “drive 10 mph below the speed limit.”
In addition, it could involve several detours, for instance,
asking a driver to systematically get on and off a limited-
access high-speed highway. Such detours are distracting
and difficult to follow, of course, but they could also be
expensive, if that limited-access highway were a toll road.
Thus, implementing the so-called “optimal” path that this
algorithm produces might require an onboard GPS system
to constantly be barking out strange orders to the driver,
which, unless the driver enjoys road rallies, could be difficult
and annoying to follow. Clearly, we prefer a formulation of
the bicriterion path problem that would better match the
ways people drive in practice.

3. LINEAR UTILITY FUNCTIONS
Fortunately, there is a more natural and efficient algorithm
for finding good bicriterion paths, by using linear utility
functions (e.g., see [16–18]). Suppose we are given a directed
network, G, together with pairs, (x, y), defined for each
edge in G. Formally, we define a linear utility function
in terms of a preference pair, (α, β), of non-negative real
numbers. A path P , from s to t, in G, is optimal for a
preference pair (α, β) if it minimizes the cost, Cα,β(P), of
P = (e1, e2, . . . , ek), with w(ei) = (xi, yi),

Cα,β(P) =

k∑
i=1

(αxi + βyi),

taken over all possible paths from s to t in G (that is, k
is a free variable and we do not limit the number of edges
in P). For example, using the preference pair (1, 0.01), for
edge weights defined by pairs of driving times in seconds
and energy consumption in watt-hours, would imply a driv-
ing style that tends to emphasize driving time over energy
consumption. Note that we can also write this cost for a
path, P , as two global sums,

Cα,β(P) =

k∑
i=1

αxi +

k∑
i=1

βyi,

which implies that we can visualize this optimization as that
of finding a vertex on the convex hull of (x, y) points for the
weights of s-t paths in G, in a direction determined by α
and β. Moreover, this algorithm cannot find (x, y) points
that are not on the convex hull. (See Figure 4.)

If the αxi+βyi values for the edges in G are all non-negative,
then an optimal s-to-t path, for any preference pair, (α, β),
can be found using a standard single-source shortest path
algorithm [16], which runs in O(n logn + m) time, where
n is the number of vertices in G and m is the number of
edges, by an implementation of Dijkstra’s algorithm (e.g.,
see [5]). Otherwise, such a path can be found in O(nm)
time, by the Bellman-Ford algorithm (e.g., see [5]). Indeed,
for any vertex, v, and a given preference pair, (α, β), we can

x

y

αx+βy	
op%mal	 point	
in	 this	 direc%on	

Figure 4: Sample (x, y) points that correspond to
the weights of paths in a bicriterion network. The
solid points could potentially be found by a linear
optimization algorithm using an (α, β) preference
pair, as they are on the convex hull of the set of
(x, y) points, shown dashed. The gray points are
Pareto-optimal points (that is, not dominated by
any other point), but they would not be found by
an algorithm that searches for optimal paths based
on linear utility functions and preference pairs. The
empty points are not Pareto optimal; hence, they
should not be returned as options from a bicriterion
optimization algorithm.

use these algorithms to find the tree defined by the union of
all (α, β)-optimal paths in G that emanate out from v, or
are directed into v, in these same time bounds. (Note that
we may allow such paths to include self-loops at charging
stations a finite number of times, so that the topology of
their union is still essentially a tree.)

4. TWO-PHASE BICRITERION PATHS
Restriction to finding a route optimizing a single linear util-
ity function, as described above, may be too constraining.
Because it misses (x, y) pairs that are not on the convex hull,
if we are planning a route from a source, s, to a target, t,
there might be fast and efficient s-to-t path, that is missed,
since a path minimizing driving time might run out of energy
before reaching t, while a route minimizing energy consump-
tion might be needlessly slow. (See, for example, Figure 3.)
Thus, it would be desirable to consider routes that include
a transition from one linear utility function to another at
some point, such as a route that optimizes driving time in
the beginning of the route and switches to optimizing energy
consumption at the end, so as to reach the target vertex
quickly without fully discharging the battery.

Suppose we are given two preference pairs, (α1, β1) and
(α2, β2). For example, we might have (α1, β1) = (1, 0.1),
which emphasizes driving time, and (α2, β2) = (0.1, 1), which
emphasizes energy consumption. A path, P , from s to t is a
two-phase path for (α1, β1) and (α2, β2) if there is a vertex,
v, in P , such that we can divide P into the path, P1, from s
to v, and the path, P2, from v to t, so that P1 is an optimal
s-to-v path for the preference pair (α1, β1) and P2 is an
optimal v-to-t path for the preference pair (α2, β2). (For
example, in Figure 3, the path abdef is a composition of a
time-optimal path from a to d and an energy-optimal path

4

from d to f , and this would be a two-phase optimal path for
a battery capacity from 27 to 30, inclusive.) As a boundary
case, we allow the vertex v to be equal to s or t, so that a
single-phase path is just a special case of a two-phase path.

4.1 Finding Two-Phase Paths
In this section, we describe our polynomial-time algorithm
for finding an optimal two-phase path from a source, s, to a
target, t, in a graph, G, with bicriterion weights on its edges.
We describe an algorithm that can search for two-phase
paths based on optimizing two out of c given preference
pairs. Suppose, then, that we are given c preference pairs,
(α1, β1), (α2, β2), . . . , (αc, βc).

1. For each preference pair, (αi, βi), use the algorithm of
Section 3 to find the tree, T out

s,i , that is the union, for
all v in G, of the optimal s-to-v paths in G for the
pair (αi, βi). With each node, v, store the bicriterion
weight, (x, y)outi , of the s-to-v path in T out

s,i .

2. For each preference pair, (αj , βj), use the (reverse)
algorithm of Section 3 to find the tree, T in

t,j , that is
the union, for all v in G, of the optimal v-to-t paths in
G for the pair (αj , βj). With each node, v, store the
bicriterion weight, (x, y)inj , of the s-to-v path in T in

t,j .

3. For each node v in G, and each pair of indices i, j =
1, 2, . . . , c, compute the score

(x, y)vi,j = (x, y)outi + (x, y)inj ,

for performing a transition from preference pair (αi, βi)
to (αj , βj) at v, where“+” is component-wise addition.

4. Search all the (x, y)vi,j values, including values (x, y)vi,i,
to find an optimal (x, y) pair according to the user’s
specified optimization goals, such as x ≤ X and y ≤ Y ,
for some X and Y .

We give a schematic illustration of this algorithm in Figure 5.

s t

Ts,1
out

Tt,2
in

v

(x,y)1,2
v
 = (30,17) = (x,y)1

out + (x,y)2
in

weight of v in Tt,2
in

 is (x,y)2
in = (18,7)

weight of v in Ts,1
out

 is (x,y)1
out = (12,10)

Figure 5: Schematic illustration of the two-phase
polynomial-time algorithm.

We note, in addition, that in combining weights in this two-
phase manner, we are able to find Pareto-optimal scores that
could not be found in any optimization using a single linear
utility function. That is, we can find Pareto-optimal scores
for paths from s to t that are not on the convex hull of (x, y)
scores. (See Figure 6.)

Let us analyze the running time of this algorithm. Suppose,
first, that there are no negative-weight edges. In this case,

0	

5	

10	

15	

20	

25	

30	

35	

40	

45	

0	 10	 20	 30	

(21,27)	

(27,20)	

(13,31)	

(26,39)	
(28,38)	

(28,29)	

(20,37)	

(25,30)	

A	 two-‐phase	 op9mal	 point	
not	 on	 the	 convex	 hull	

Figure 6: A plot of the different weight pairs for a-
to-f paths in the network of Figure 3. Note that the
weight pair, (21, 27), for the path abdef , is not on the
convex hull, shown dashed; hence, this weight pair
would not be found by any optimization algorithm
based on a single linear utility function. This point
would be found, however, by a two-phase algorithm
minimizing driving time on the a-to-d path and
energy consumption on the d-to-f path.

we can use Dijkstra’s algorithm to compute each T out
s,i and

T in
t,j ; hence, these steps run in O(c(n logn + m)) time. If,

on the other hand, there are negative-weight edges, but no
negative cycles, in G, then we use a Bellman-Ford algorithm
to compute each T out

s,i and T in
t,j ; hence, these steps run in

O(cnm) time in this case. Then, computing all the (i, j)vi,j
pairs and choosing an optimal such pair takes O(c2n) time.
Thus, if c is a fixed constant independent of n and m, then
this algorithm runs in O(n logn + m) time if there are no
negative-weight edges and in O(nm) time otherwise. Note
that these running times are asymptotically the same as that
of computing an optimal path for a single traversal mode.

In the context of finding electric vehicle routes, each prefer-
ence pair, (αi, βi), corresponds to a driving style, such as
“minimize driving time,” “minimize energy consumption,”
or “minimize a weighted combination of driving time and
energy consumption.” In addition, the path that achieves
the chosen optimal pair, (x, y)vi,j , is simple to implement for
the driver of an electric vehicle. He or she simply needs
to drive according to driving style i from s to v, that is,
using the path in T out

s,i , and then switch to drive according

to driving style j from v to t, that is, using the path in T in
t,j .

5. INCLUDING CHARGING STATIONS
The above two-phase path finding algorithm can be used
in the context of negative-weight edges (e.g., where regen-
erative braking charges the battery, provided we add the
capacity constraints as discussed in Section 2). In this case,
assuming there are no negative-weight cycles, we could use

5

the Bellman-Ford algorithm to compute the optimal paths,
requiring an O(cnm+ c2n) running time.

If the charging stations themselves are the only places in the
network that provide negative energy consumption, then we
can achieve a potentially better algorithm for finding good
paths. In this case, we consider s and t to themselves to be
charging stations, and we let d be the number of charging
stations in the network. Moreover, in this case, we assume
the user is interested in the shortest duration path from s to
t that can be achieved with a given battery capacity, which
starts out fully charged. Also, we assume here that the user
fully charges the battery at each charging station at which
he or she stops.

With the algorithm we discuss in this section, we can design
a long route for an electric vehicle that starts at s, and
includes several charging stations, fully charging the vehicle
at each one along the way, and finally going to t, such that
we implement a different two-phase path between each pair
of charging stations along the way.

1. For each charging station, z, and each traversal mode,
(αi, βi), use the Dijkstra-type algorithm of Section 3
to find the tree, T out

z,i , that is the union, for all v in
G, of the optimal z-to-v paths in G for the traver-
sal (αi, βi). With each node, v, store the bicriterion
weight, (x, y)z,outi , of the z-to-v path in T out

z,i .

2. For each charging station, z, and each traversal mode,
(αj , βj), use the (reverse) Dijkstra-type algorithm of
Section 3 to find the tree, T in

z,j , that is the union,
for all v in G, of the optimal v-to-z paths in G for
the traversal (αj , βj). With each node, v, store the

bicriterion weight, (x, y)z,inj , of the v-to-z path in T in
z,j .

3. For each pair of charging stations, u and w, and, for
each node v in G, and each pair of indices i, j =
1, 2, . . . , c, compute the two-phase score,

(x, y)u,v,wi,j = (x, y)u,outi + (x, y)w,inj ,

where “+” is component-wise addition.

4. For each pair of charging stations, u and w, search all
the (x, y)u,v,wi,j values to find an optimal pair according
to the user’s desired goals, to go from u to w, such as
x ≤ X and y ≤ Y for given values of X and Y . Create
a “super edge,” e, from u to w, and label it with this
(x, y) weight.

5. Create a graph, G′, whose vertices are charging sta-
tions and whose edges are the super edges created in
the previous step. For each such super edge, e, with
weight, (x, y), replace this weight with the weight

w(e) = x+ charge(C − y),

where charge(E) is the time needed to charge the bat-
tery to add E units of energy capacity (and recall that
C is the capacity of the battery).

6. Use Dijkstra’s algorithm to find a shortest duration
path from s to t in G′.

s t

station A

station B

station C

station D

s t

A

B

C

D

Compute
super edges:

Construct G’:

7	 8	

18	

12	

24	 21	

9	

6	

18	

16	

Figure 7: An illustration of the algorithm for in-
corporating charging stations. We consider s and t
to be stations, then run the two-phase optimization
algorithm between all the stations. This gives us the
graph, G′, where edge weights are now just driving
time, since we know at this point which stations can
be driven between without depleting the battery
(and we always fully charge the battery at each
charging station). Once we have the graph, G′, we
then do one more call to Dijkstra’s algorithm to find
the shortest path from s to t.

We illustrate this algorithm in Figure 7.

Incidentally, if there are negative-weight edges in the graph,
but no negative-weight cycles (ignoring charging stations),
then we would substitute the Dijkstra-type algorithms used
in Steps 1 and 2 for Bellman-Ford-type algorithms.

Let us analyze the running time of this algorithm. To com-
pute all the trees of the form T z,outi and T z,inj , using Di-
jkstra’s algorithm, takes O(cd(n logn + m)). The time to
compute the optimal (x, y) value for each super edge is
O(c2d2n), but in practice we only need to consider each pair
of charging stations, u and w, such that w is reachable from
u with a fully charged battery. So the d2 term in this bound
might be overly pessimistic. Finally, the final Dijkstra’s
algorithm takes at most O(d2) time, but this is dominated
by the running times of the other steps. So the total running
time of this algorithm is at most O(c2d2n+cd(n logn+m)),
assuming no negative-weight edges (other than charging sta-
tions). Note that if c and d are fixed constants independent
of n and m, then this running time is O(n logn+m), which
is asymptotically the same as doing a single Dijkstra-like
computation with a single-phase optimization criterion.

If there are negative-weight edges, but no negative-weight
cycles, then replacing the Dijkstra-type algorithms in Steps 1
and 2 with Bellman-Ford-type algorithms increases the run-
ning time to be O(c2d2n + cdnm), which becomes asymp-
totically equal to that of a single Bellman-Ford-type com-
putation, i.e., O(nm), if c and d are fixed constants.

6

6. EXPERIMENTS
To empirically measure the performance of our algorithms,
we tested them using road networks for several U.S. states
from the TIGER/Line data sets [28], as prepared for the
9th DIMACS Implementation Challenge [23]. These road
networks are undirected, with each edge (road segment)
characterized as belonging to one of four general classes:
highway, primary major road, secondary major road, or local
road. For each road segment of a given class, we consider
c = 3 different driving styles for traversing an edge of that
class, allowing for three different speeds at which it can be
traveled, in order to capture both lower and upper speed
limits inherent to all roads of a certain class. We derived
these speeds based on the guidelines presented in the road
design manual for the state of Florida [25] (the “Florida
greenbook”). For these speed values, see Table 1.

Road type
Speed Energy Consumption

[mph] [Wh / mile]

Highway

fast 70 378

moderate 60 329

slow 50 291

Primary
main
road

fast 70 378

moderate 55 308

slow 40 258

Secondary
main
road

fast 60 329

moderate 45 275

slow 35 221

Local
road

fast 30 202

moderate 25 199

slow 20 197

Table 1: Driving parameters.

Although our algorithms can accommodate elevation changes
and even the negative energy consumption that comes from
regenerative braking, the data sets in the TIGER/Line col-
lection do not include elevation information; hence, for the
sake of simplicity, we assumed in our tests that all roads lie
on a flat surface. Extending our testing regime to include
elevation data would change some of the weight pairs on
some edges in hilly terrains, and would allow for including
the second-order effect of elevation, but it would not signif-
icantly change the results for reasonably flat terrains.

Moreover, the main goal of our tests was to determine the ef-
fectiveness of the two-phase strategy, for which the TIGER/Line
data sets were sufficient. In particular, in order to esti-
mate energy consumption for each edge segment, we used
the provided edge length and estimated energy consumption
based on the data for the Tesla Model S with 85 kWh
battery [20, 27] and air conditioning / heating turned on
(see also Figure 2). The speed/energy consumption combi-
nations are shown in Table 1. For the two-phase algorithm
from Section 4, we considered three driving styles:

• emphasize smaller driving time

• emphasize smaller energy consumption

• balance energy consumption and driving time.

The preference pairs characterizing such paths are shown in
Table 2.

Path type α (time coeff.) β (energy coeff.)

Fast 0.8 0.2

Balanced 0.5 0.5

Energy-saving 0.2 0.8

Table 2: Path types.

Rhode Island (n = 53658, m = 69213):

Capacity Reachable Two-phase algorithm

[Wh] Nodes % n Reachability Longer %

1000 2291 4.27 % 100 % 0.36 %

2000 3580 6.67 % 100 % 0.37 %

4000 9824 18.31 % 99.90 % 1.81 %

6000 23482 43.76 % 99.40 % 2.33 %

8000 44815 83.52 % 99.69 % 3.07 %

Alaska (n = 69082, m = 78100):

Capacity Reachable Two-phase algorithm

[Wh] Nodes % n Reachability Longer %

1000 2824 4.09 % 100 % 0.29 %

2000 7837 11.34 % 100 % 0.18 %

4000 9497 13.75 % 99.99 % 0.02 %

6000 11306 16.37 % 99.85 % 0.35 %

8000 12129 17.56 % 99.99 % 0.25 %

10000 13335 19.30 % 99.50 % 0.80 %

12000 17658 25.56 % 99.56 % 2.36 %

Delaware (n = 49109, m = 60512):

Capacity Reachable Two-phase algorithm

[Wh] Nodes % n Reachability Longer %

1000 3970 8.08 % 100 % 0.53 %

2000 12249 24.94 % 100 % 1.43 %

4000 18154 36.97 % 99.99 % 0.09 %

6000 19875 40.47 % 99.98 % 0.18 %

8000 21252 43.28 % 99.98 % 0.10 %

10000 23113 47.06 % 99.84 % 0.13 %

12000 26656 54.28 % 99.87 % 0.28 %

14000 28783 58.61 % 99.87 % 0.37 %

16000 31381 63.90 % 99.80 % 0.29 %

District of Columbia (n = 9559, m = 14909):

Capacity Reachable Two-phase algorithm

[Wh] Nodes % n Reachability Longer %

1000 3370 35.25 % 99.97 % 3.20 %

2000 8353 87.39 % 99.96 % 4.74 %

4000 9522 99.61 % 100 % 0.76 %

Table 3: Quality of the two-phase algorithm. Here,
we use n to denote the number of vertices and m to
denote the number of edges in the underlying graph.

7

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

re
ac

ha
bi

lit
y

%

capacity [kWh]

Rhode Island
Alaska

District of Columbia
Delaware

Figure 8: Optimal reachability for small capacities.

6.1 Quality of Paths
As we argue above, the real-world goal of people driving
electric vehicles is to find a path that leads to the desti-
nation in the smallest amount of time while ensuring that
the battery stays at least partially charged at all points
along the way [9, 10, 13]. To measure the quality of the
two-phase bicriterion algorithm of Section 4, we compared
the paths it returns against the optimal paths (that arrive at
reachable destinations in shortest time) found by the pseudo-
polynomial time algorithm of Section 2, where we set N to
be the capacity (in Wh) of the battery.

Due to the time complexity needed for finding optimal paths
using the vertex-labeling algorithm, we were only able to
compare the two algorithms on smaller graphs (with n ≤
100000), representing small states (like Rhode Island, Delaware
or the District of Columbia) or large states with sparse
road network (Alaska). In addition, due to time constraints
imposed by the slow running time of the vertex-labeling
algorithm, we also did not consider placing charging stations
in the graphs for these comparison tests.

The results are shown in Table 3 and Figure 8, comparing
the paths found by our algorithm with the optimal paths
found by the vertex-labeling algorithm. Due to high running
times for the vertex-labeling algorithm (which depend in
a pseudo-polynomial fashion on battery capacity), we re-
stricted battery capacity to values much smaller than the
actual 60 kWh (or 85 kWh) for the Tesla Model S. These
capacities are shown in the first column of Table 3. In the
second and third column, we show the number of nodes
reachable by the vertex-labeling algorithm, both in absolute
numbers and as a percentage of all nodes in the network.
The next column shows the percentage of the (optimally)
reachable nodes that can be reached by the two-phase al-
gorithm. The final column depicts the average slowdown of
the paths computed by the two-phase algorithm relative to
the optimal paths.

6.2 Performance
As mentioned above, due to the extremely large running
time of the optimal pseudo-polynomial algorithm (for the

California (n = 1613325, m = 1989149):

Capacity [Wh] Chargers Reachability Time [s]

60000 0 55.2 % 12.80

60000 1 56.2 % 24.63

60000 2 56.2 % 33.37

60000 3 95.3 % 53.98

60000 4 96.2 % 73.04

60000 5 97.6 % 91.39

85000 0 70.7 % 21.38

85000 1 77.0 % 28.26

85000 2 98.3 % 43.01

Alaska (n = 69082, m = 78100):

Capacity [Wh] Chargers Reachability Time [s]

60000 0 29.2 % 0.48

60000 2 39.5 % 1.01

60000 5 40.8 % 2.03

60000 13 40.9 % 6.94

60000 14 43.3 % 7.70

60000 15 47.7 % 8.59

85000 0 43.6 % 0.48

85000 2 47.6 % 1.11

85000 13 47.7 % 7.86

85000 15 47.8 % 9.84

Montana (n = 547028, m = 670443):

Capacity [Wh] Chargers Reachability Time [s]

60000 0 88.3 % 9.90

60000 1 88.4 % 12.83

60000 2 96.1 % 18.46

60000 3 96.7 % 22.39

60000 6 97.5 % 39.00

60000 7 97.9 % 57.42

85000 0 97.0 % 9.93

85000 1 97.3 % 14.01

85000 2 98.2 % 20.33

Texas (n = 2073870, m = 2584159):

Capacity [Wh] Chargers Reachability Time [s]

60000 0 47.2 % 22.83

60000 1 49.8 % 26.55

60000 2 56.1 % 49.86

60000 3 57.9 % 64.33

60000 4 58.4 % 89.50

60000 5 69.2 % 113.34

60000 7 69.3 % 154.51

60000 9 71.2 % 190.46

85000 0 68.7 % 28.73

85000 1 75.1 % 35.10

85000 2 80.6 % 58.75

85000 3 82.4 % 86.36

85000 5 94.9 % 138.59

Table 4: Performance of the two-phase algorithm.

8

Nevada (n = 261155, m = 311043):

Capacity [Wh] Chargers Reachability Time [s]

60000 0 55.7 % 2.87

60000 1 63.2 % 4.81

60000 2 67.9 % 6.43

60000 4 81.9 % 11.62

60000 10 92.6 % 34.06

85000 0 80.6 % 3.44

85000 1 92.6 % 5.99

Table 5: Performance of the two-phase algorithm
(continued).

largest instances our runs exceeded 24 hours), we were forced
to restrict our qualitative testing to road networks of small
states, and use unrealistically small battery capacities. In
this subsection, we focus on the performance of the two-
phase algorithm, which, thanks to its superior time com-
plexity, allows us to meet the following goals:

• Use actual capacities of Tesla Model S (60/85 kWh).

• Include charging stations.

• Test the algorithm on larger graphs.

Under the above assumptions, we measured the running
time of the algorithm, as well as estimated the reachability
percentage (measured as a ratio of feasible paths between
pairs of randomly chosen vertices and the total number of
pairs tested; in each case, we tested 1000 pairs). The results
are summarized in Table 4, Table 5, Figure 9 and Figure 10.
The times shown in the last column is the average duration
of a single execution of the two-phase algorithm. Charging
stations were placed at randomly selected vertices. Only
instances that actually increased reachability are shown.

 0

 20

 40

 60

 80

 100

 120

 0 1 2 3 4 5

tim
e

[s
]

number of chargers

60 kWh, California
60 kWh, Montana

60 kWh, Texas

Figure 9: Dependence of running time on the num-
ber of charging stations.

 40

 50

 60

 70

 80

 90

 100

 0 1 2 3 4 5 6 7 8 9

re
ac

ha
bi

lit
y

%

number of chargers

60 kWh, California
85 kWh, California

60 kWh, Texas
85 kWh, Texas

Figure 10: Dependence of reachability on the num-
ber of charging stations.

6.3 Discussion
Tests were implemented in C++ and carried out on a PC
with a 2.2 GHz CPU, 1066 MHz bus, and 4 GB RAM
running Linux. It is evident that the two-phase algorithm
finds paths to almost all reachable destinations, with the
paths being only slightly slower (taking more time) that the
optimal ones.

Our results were obtained using the following procedure: for
each state, we randomly chose a starting position and 1000
destinations. It gave us 1000 origin-destination pairs, on
which we then tested the algorithms described above. The
resolution of our algorithms was: seconds (for time) and Wh
(for energy).

Our implementation of the two-phase algorithm is straight-
forward. We did not optimize it for running time and we
deliberately ran it on a relatively old PC, and, admittedly,
this shows in the results. Even then, the algorithm was
able to compute paths within several dozens of seconds.
Since the number of charging stations is the main factor
in running time, one optimization would be to precompute
best paths between all pairs of charging stations (which is
feasible, as the number of charging stations is small and
they are fixed features of a road network). The running
time of the algorithm would then be reduced to the case
of no charging stations. As the main component of our
procedure is the Dijkstra’s shortest path algorithm, another
straightforward improvement would be to incorporate some
of existing approaches [6,7] aimed at speeding up Dijkstra’s
algorithm.

7. CONCLUSION
We have presented a two-phase approach for finding good
paths in bicriterion networks, and we have demonstrated
that our algorithms are both fast and effective for finding
good routes for electric vehicles. In particular, we have
shown empirically that the paths found by the two-phase
algorithm can identify over 99% of the vertices reachable
in a road network by some energy-efficient algorithm, while
being only slightly longer on average than paths found by

9

the inefficient vertex-labeling algorithm. Moreover, we be-
lieve that two-phase are easier for people to follow, since, in
addition to the route they plan to take, they only need to
remember two different driving styles and the point in the
route where they transition from the first driving style to
the second. Of course, if k charging stations are involved, it
may require 2k − 1 style transitions. This is usually not a
problem, since common trips tend to use a small number of
charging station located far away.

As possible future work, it would be interesting to test the
two-phase approach for finding good delivery routes for elec-
tric vehicles that have multiple destinations.

Acknowledgments
This work was supported in part by the NSF, under grant
1011840 and 1228639, and by the Office of Naval Research,
under grant N00014-08-1-1015. We would like to thank
David Eppstein and Amelia Regan for several helpful com-
munications regarding the topics of this paper.

8. REFERENCES
[1] E. M. Arkin, J. S. Mitchell, and C. D. Piatko.

Bicriteria shortest path problems in the plane. In
Proc. 3rd Canad. Conf. Comput. Geom, pages
153–156, 1991.

[2] A. Artmeier, J. Haselmayr, M. Leucker, and
M. Sachenbacher. The shortest path problem
revisited: Optimal routing for electric vehicles. In
R. Dillmann, J. Beyerer, U. Hanebeck, and T. Schultz,
editors, Advances in Artificial Intelligence, volume
6359 of LNCS, pages 309–316. Springer, 2010.

[3] M. Baum, J. Dibbelt, T. Pajor, and D. Wagner.
Energy-optimal routes for electric vehicles. In 21st
ACM SIGSPATIAL Int. Conf. on Adv. in Geographic
Information Systems, pages 54–63, 2013.

[4] J. C. N. Climaco and E. Q. V. Martins. A bicriterion
shortest path algorithm. European Journal of
Operational Research, 11(4):399–404, 1982.

[5] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and
C. Stein. Introduction to Algorithms. MIT Press,
Cambridge, MA, 2nd edition, 2001.

[6] D. Delling, A. V. Goldberg, T. Pajor, and R. F. F.
Werneck. Customizable route planning. In P. M.
Pardalos and S. Rebennack, editors, SEA, volume
6630 of Lecture Notes in Computer Science, pages
376–387. Springer, 2011.

[7] D. Delling, P. Sanders, D. Schultes, and D. Wagner.
Engineering route planning algorithms. In J. Lerner,
D. Wagner, and K. A. Zweig, editors, Algorithmics of
Large and Complex Networks, volume 5515 of Lecture
Notes in Computer Science, pages 117–139. Springer,
2009.

[8] J. Eisner, S. Funke, and S. Storandt. Optimal route
planning for electric vehicles in large networks. In
AAAI, 2011.

[9] T. Franke and J. F. Krems. What drives range
preferences in electric vehicle users? Transport Policy,
30(0):56–62, 2013.

[10] T. Franke, I. Neumann, F. Bühler, P. Cocron, and
J. F. Krems. Experiencing range in an electric vehicle:

Understanding psychological barriers. Applied
Psychology, 61(3):368–391, 2012.

[11] M. R. Garey and D. S. Johnson. Computers and
Intractability: A Guide to the Theory of
NP-Completeness. W. H. Freeman, New York, NY,
1979.

[12] A. V. Goldberg, H. Kaplan, and R. F. Werneck. Reach
for A∗: Efficient point-to-point shortest path
algorithms. In Proc. 8th Workshop on Algorithm
Engineering and Experiments (ALENEX), pages
129–143, 2006.

[13] E. Graham-Rowe, B. Gardner, C. Abraham,
S. Skippon, H. Dittmar, R. Hutchins, and J. Stannard.
Mainstream consumers driving plug-in battery-electric
and plug-in hybrid electric cars: A qualitative analysis
of responses and evaluations. Transportation Research
Part A: Policy and Practice, 46(1):140–153, 2012.

[14] P. Hansen. Bicriterion path problems. In G. Fandel
and T. Gal, editors, Multiple Criteria Decision Making
Theory and Application, volume 177 of Lecture Notes
in Economics and Mathematical Systems, pages
109–127. Springer, 1980.

[15] R. Hassin. Approximation schemes for the restricted
shortest path problem. Mathematics of Operations
Research, 17(1):36–42, 1992.

[16] M. I. Henig. The shortest path problem with two
objective functions. European Journal of Operational
Research, 25(2):281–291, 1986.

[17] K. Mehlhorn and M. Ziegelmann. Resource
constrained shortest paths. In M. S. Paterson, editor,
European Symp. on Algorithms (ESA), volume 1879 of
LNCS, pages 326–337. Springer, 2000.

[18] P. Modesti and A. Sciomachen. A utility measure for
finding multiobjective shortest paths in urban
multimodal transportation networks. European
Journal of Operational Research, 111(3):495–508, 1998.

[19] J. Mote, I. Murthy, and D. L. Olson. A parametric
approach to solving bicriterion shortest path
problems. European Journal of Operational Research,
53(1):81–92, 1991.

[20] E. Musk and J. B. Straubel. Model S efficiency and
range, 2012.
http://www.teslamotors.com/blog/model-s-efficiency-
and-range.

[21] G. Righini and M. Salani. Symmetry helps: Bounded
bi-directional dynamic programming for the
elementary shortest path problem with resource
constraints. Discrete Optimization, 3(3):255–273, 2006.

[22] M. Sachenbacher, M. Leucker, A. Artmeier, and
J. Haselmayr. Efficient energy-optimal routing for
electric vehicles. In AAAI, 2011.

[23] D. Schultes. 9th DIMACS Implementation Challenge
files, October 2005.
http://www.dis.uniroma1.it/challenge9/data/tiger.

[24] A. Skriver and K. Andersen. A label correcting
approach for solving bicriterion shortest-path
problems. Computers & Operations Research,
27(6):507–524, 2000.

[25] State of Florida, Department of Transportation.
Manual of uniform minimum standards for design,
construction and maintenance for streets and
highways. May 2011.

10

http://www.dot.state.fl.us/rddesign/
FloridaGreenbook/FGB.shtm.

[26] S. Storandt. Quick and energy-efficient routes:
Computing constrained shortest paths for electric
vehicles. In 5th ACM SIGSPATIAL Int. Workshop on
Computational Transportation Science (IWCTS),
pages 20–25, 2012.

[27] Tesla Motors. Your questions answered, 2014.
http://www.teslamotors.com/goelectric.

[28] U.S. Census Bureau. Redistricting census 2000
TIGER/Line files [machine-readable data files], 2000.

11

	1 Introduction
	1.1 Modeling EV Route Planning
	1.2 Our Results
	1.3 Additional Related Work

	2 The Complexity of Bicriterion Path Finding
	2.1 Bicriterion Path Finding is NP-Complete
	2.2 A Pseudo-Polynomial Time Algorithm
	2.3 Battery Capacities and Charging Stations
	2.4 Drawbacks

	3 Linear Utility Functions
	4 Two-Phase Bicriterion Paths
	4.1 Finding Two-Phase Paths

	5 Including Charging Stations
	6 Experiments
	6.1 Quality of Paths
	6.2 Performance
	6.3 Discussion

	7 Conclusion
	8 References

