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Parallel Methods for Visibility and Shortest-Path Problems 
in Simple Polygons 1 

Michael T. Goodrich, 2 Steven B. Shauck, 3 and Sumanta Guha 4 

Abstract. In this paper we give efficient parallel algorithms for solving a number of visibility and 
shortest-path problems for simple polygons. Our algorithms all run in O(log n) time and are based on 
the use of a new data structure for implicitly representing all shortest paths in a simple polygon P, 
which we call the stratified decomposition tree. We use this approach to derive efficient parallel methods 
for computing the visibility of P from an edge, constructing the visibility graph of the vertices of P 
(using an output-sensitive number of processors), constructing the shortest-path tree from a vertex of 
P, and determining all-farthest neighbors for the vertices in P. The computational model we use is the 
CREW PRAM. 
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1. Introduction. Problems involving visibility and shortest paths in simple poly- 
gons form a well-studied class of problems in computational geometry (e.g., see 
[4], [6], [10], [16], [20], [22], [23], [27], [28], [30], and [39]). Given a simple 
polygon P, these problems deal with properties of P relative to the 9eodesic metric 
[27], [28], [44], which is defined so that the distance between two points p and 
q is the length of the shortest path between p and q that does not cross the 
boundary of P. If the shortest path between p and q is a straight line, then we say 
that p is visible from q. 

We briefly review some of the previous sequential results for these types of 
problems (the reader is referred to [20] and [39] for other references). Some 
notable early examples of methods for solving such problems include the O(n)-time 
solution of E1Gindy and Avis [22] for computing the visibility polygon from a 
point, the O(n)-time solution of Avis and Toussaint [10] for determining if a simple 
polygon is weakly visible from a distinguished edge e (i.e., if every point in P is 
visible from some part of e), and the O(n log n)-time method of Lee and Preparata 
[34] for determining the shortest path between two points in a simple polygon. 
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More recently, ChazeUe and Guibas [16] have shown that the portion of a simple 
polygon weakly visible from an edge in O(n log n) time can be computed. In fact, 
they show that a data structure can be constructed in O(n log n) time that can be 
used to determine the first point on P that is hit by a query ray ~ in O(log n) time. 
These time complexities are improved to O('c(n) + n) by Guibas et al. [28], where 
z(n) is the time complexity of polygon triangulation [24], [48]. Addressing the 
shortest-path problem more specifically, Guibas and Hershberger [27] show that 
a data structure can be constructed in O(z(n) + n) time that can be used to compute 
the length of the shortest path between two points in P in O(log n) time. In [30] 
Hershberger shows that the visibility graph for the vertices of P in O(z(n) + n + k) 
time, where k is the number of edges, can be constructed. Recall that this is the 
graph defined so that (v, w) is an edge if and only if v is visible from w. Recently, 
Chazelle [14] has shown that z(n) is O(n), implying that all these time complexities 
involving z(n) are linear. 

In this paper we investigate the parallel complexity of solving visibility and 
shortest-path problems for simple polygons. In this domain the number of previous 
results is not as large as in the sequential case. In [7] Atallah et al. show that the 
portion of the plane visible from a point in a collection of line segments can be 
computed in O(log n) time using O(n) processors. The number of processors needed 
for this problem was improved by Atallah and Chert [6] to O(n/log n) for the case 
when the line segments form a simple polygon. In [-23] E1Gindy and Goodrich 
show that the shortest path between two points in a simple polygon can be 
determined in O(log n) time using O(n) processors, and the shortest-path tree from a 
vertex v (the union of all shortest paths from v to other vertices) can be constructed 
in O(log 2 n) time using O(n) processors. 

In this paper we give efficient parallel algorithms for a number of visibility and 
shortest-path problems for simple polygons. All of our algorithms run in O(log n) 
time with an efficient number of processors. The need for these new methods is 
based on the observation that a straightforward parallelization of any of the 
previous sequential methods seems to be either impossible or require O(log 2 n) 
time. Specifically, given a simple polygon P, we derive the following results: 

Shortest-path queries. We show how to build a data structure, called the 
stratified decomposition tree, in O(log n) time using O(n) processors (O(n/log n) 
processors if P is triangulated), that allows us to construct an implicit representa- 
tion of the shortest path between two points inside P in O(log n) time. 

Visibility from an edge. We show how to determine the subpolygon of P 
consisting of all points that are weakly visible from some distinguished edge e in 
O(log n) time using O(n) processors. 

Visibility graph. We show how to construct the visibility graph for the vertices 
of P in O(log n) time using O(n log n + k/log n) processors, where k is the number 
of edges in the graph. Our method involves exploiting a duality between the 
problem of computing all visibility-graph edges that intersect a diagonal of P and 
the problem of computing all intersections between two sets of nonintersecting 
segments. We develop a new parallel method for solving this intersecting pairs 
problem in O(log n) time using O(n + k/log n) processors, which is optimal, where 
k is the number of answers. 

Applications. We give a number of other applications that utilize our shortest- 
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paths data structure. These include computing the shortest-path tree from a vertex, 
computing the convex ropes for P, and finding all-farthest neighbors for the 
vertices of P. 

All of our results are in the CREW PRAM model, the synchronous parallel 
model where processors share a common memory in which simultaneous access 
to a memory cell is allowed only if all the accesses are reads. Results that use an 
output-sensitive number of processors assume the weakest form of processor- 
allocation, namely, that processors must be allocated globally [26,1. In this scheme 
we allow r new processors to be allocated in step t only if we have already 
constructed an r-element array that stores pointers to the r tasks these processors 
are to begin performing in step t + 1. 

In the next section we give some preliminary definitions and observations. In 
Section 3 we describe the stratified decomposition tree and how it can be used to 
answer shortest-path queries. In Section 4 we show how to compute visibility from 
an edge, and in Section 5 we show how to use our method for visibility from an 
edge to construct the visibility graph for the vertices of P. We give several 
applications of our approach in Section 6. 

2. Preliminaries. In this section we review a number of geometric observations 
concerning concepts relevant to visibility and shortest-path problems. We also 
introduce some miscellaneous algorithmic techniques, which we employ at various 
places in our solutions. We begin with some geometric observations. 

2.1. Point-Line Duality. One of the main tools in our constructions involves the 
well-known concept of point-line duality [20-1, [21], [29,1, [37], [39-1, [43]. In 
particular, we use the framework of the two-sided plane [29,1, [43,1. The two-sided 
plane is an extension of the normal plane in that each point in the plane becomes 
two points in the two-sided plane, one on the " top side" and one on the "bot tom 
side." Each line in the classical plane can map to one of two lines in the two-sided 
plane, which differ only in orientation. The two-sided plane has a well-known 
dualization where a point p maps to a line 2p,  where, if we let d denote the distance 
from p to the origin, then @p is the line perpendicular to I at a distance 1/d from 
the origin on the opposite side of the origin from p. ~p is defined to be oriented 
so that the origin is on its left (resp. right) relative to the top side of the plane if 
p is on the top (resp. bottom) side of the plane. The dualization maps lines to 
points by using the reverse of the above, thus the dualization is self-inverting, i.e., 
~gp = P. This dualization maps convex polygons to convex polygons [29], [43]. 

Using this point-line duality, we can change a line-oriented problem to a 
point-oriented problem, and in so doing, possibly gain some insights that allow 
us to apply a more efficient (point-oriented) algorithm. 

2.2. The Polygon-Cutting Theorem and Decomposition Trees. The last algor- 
ithmic topic we discuss in this section involves the use of another type of duality; 
namely, the relationships between planar graphs and their graph-theoretic planar 
duals. 

We begin with some definitions. Let T be a height-balanced binary tree, and, 
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for each node v, let nv denote the number of descendants v has (including itself). 
Given a positive integer, d, we define the d-contraction of T to be the tree T '  that 
results by contracting to a single node each subtree rooted at a node v, provided 
both of v's children have less than d descendants while v has at least d descendants. 
The notion of a d-contraction plays heavily in several of our solutions. 

As in many of the previous sequential algorithms, all of our algorithms assume 
that the input polygon P has been triangulated, i.e., P has been augmented by 
adding diagonals (between vertices of P) so as to partition the interior of P into 
triangles. If P is not given in this form, then we apply the following lemma, 
discovered independently by Goodrich [25] and Yap [50]: 

LEMMA 2.1 [25], [50]. Given a simply polyoon P, we can triangulate P in O(log n) 
time using O(n) processors in the C R E W  P R A M  model. 

Given a triangulation of P, we define a tree D to be the (graph-theoretic) planar 
dual of the triangulation, excluding the exterior face of P. Since D is built upon 
a triangulation of a simple polygon, it has degree 3. By the polygon-cutting 
theorem of Chazelle [12], there is an edge of D that, when removed, divides D 
into two subtrees such that the subpolygon associated with each subtree has at 
least one-third and most two-thirds as many vertices as P.-If we then recursively 
repeat this division on each subtree we define a binary tree, T, where each node 
v in T represents a subtree of D which we denote by D~, and v's children represent 
the two pieces D, was cut into. For  each node v in T we let nv denote the number 
of vertices in Pv. We refer to the tree T as the centroid decomposition tree for P. 

Each subtree D, implicitly defines a subpolygon Pv of P: namely, the union of 
the triangles corresponding to the vertices of D,. For  each node v in T the diagonal 
for v, denoted ev, is the diagonal in P that separates P ,  and Pw where u and w 
are the children of v. Note that an edge e on the boundary of the polygon Pv is 
either an edge on the boundary of P or a diagonal Of P in the triangulation. If 
an edge e on the boundary of Pv is a diagonal of P, we call e apseudoedoe of Pv. 

OBSERVATION 2.2. For any v in T, Pv has at most dv pseudoedges, where d~ is the 
depth of  v in T. 

Before we can describe our shortest-path data structure, we need to have a way 
to construct a centroid decomposition tree efficiently in parallel. The essential 
computation in this construction involves what is essentially a recursive determina- 
tion of the centroid in a degree-3 tree, a computation that can be done in O(n) 
time sequentially [12]. In fact, as Guibas et al. [28] show, we can perform the 
entire recursive decomposition of D to construct T in O(n) time by maintaining 
the appropriate data structures. Unfortunately, a straightforward parallelization 
of their method leads to a running time of O(log 2 n) using O(n/log 2 n) processors, 
which is too slow for our purposes. Nevertheless, using the "accelerated centroid 
decomposition" scheme of Cole and Vishkin [18], we can achieve O(log n) time 
for the construction while using only O(n/log n) processors, giving us the following 
lemma: 
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LEMMA 2.3. Given a triangulated simply polygon P, we can produce a centroid 
decomposition tree T for P in O(log n) time using O(n/log n) processors in the CREW 
PRAM model. 

3. Shortest-Path Queries. Having given our preliminary definitions and observa- 
tions, in this section we show how to construct a data structure in parallel 
efficiently for quickly answering shortest-path queries. We begin by reviewing a 
well-known sequential result in this area. 

LEMMA 3.1. Given a triangulated n-node simple polygon P and two points p and 
q inside P, we can construct a binary tree representation of the shortest path between 
p and q inside P in O(n) time. 

PROOf ~-. The method of Lee and Preparata [34] can be used to construct a list 
representation of the path between p and q in P in O(n) time. Given this list, it is 
a simple matter to construct a binary tree representation of this path. [] 

This result is clearly optimal if we do not allow the polygon P to be preprocessed 
for answering such queries. In our case, however, we do allow for preprocessing. 
Nevertheless, we apply the above lemma in our solution whenever we must solve 
a shortest-path query in a small (O(log n)-sized) subpolygon. In particular, we 
make use of a d-contraction of T, the centroid decomposition tree for P. Note 
that, by the polygon-cutting theorem, for each leaf w in T' ,  we have d _< nv _< 3d 
in such a case. The leaves of such a tree correspond to "small' subpolygons. 
For  larger subpolygons we rely on the use of geometric structures known as 
hourglasses. 

3.1. Hourglasses. An hourglass [23], [27] is a geometric structure defined on two 
diagonals of P. If e = (a; d) and f = (b, e) are the two diagonals, where the vertices 
occur in the order a, b, c, d in a clockwise listing of the vertices of P, then the 
hourglass between e and f,  denoted H(e,J), is the union of the shortest geodesic 
path from a to b and the shortest geodesic path from c to d. An hourglass is open 
if it consists of two disjoint inwardly convex chains. An hourglass is closed if it 
consists of two inwardly convex chains meeting at a point, followed by a path, 
followed by two inwardly convex chains again. (See Figure 1.) 

We represent hourglasses as two chains, each of which is stored in the leaves 
of a height-balanced binary tree (e.g., an AVL-tree [35] or a red-black tree [46]). 
By storing labels at the internal nodes of these binary trees as in [38], we can 
derive the following lemmas: 

LEMMA 3.2. Given two hourglasses H(e,f) and H(f, g), where f is a shared edge, 
represented as above, a single processor can construct a representation of H(e, g) in 
O(log n) time (without modifying the representation of H(e,f) and H(f, g)), in the 
CREW PRAM model. 
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Fig. l. An open (a) and closed (b) hourglass. 
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PROOV. The essential operation in "concatenating" two hourglasses is the de- 
termination of the (supporting and crossing) tangent lines between the four convex 
chains involved (see [23] and [27]). We can use the binary search method of 
Overmars and Van Luewen [38] to find each such tangent in O(log n) time. Given 
these tangents it is then a simple matter to split out the irrelevant portions of the 
chains H(e,j) and H(f, 9), and concatenate the relevant portions to form H(e, g). 
Since we are representing hourglasses in height-balanced binary trees, we can avoid 
the modification of H(e,f) and H ~  g) by creating new tree nodes to replace any 
that would have otherwise wished to modify. Clearly, this adds at most O(log n) 
nodes. [] 

In our parallel scheme we must also be able to concatenate chains of hourglasses, 
however. 
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LEMMA 3.3. Given a chain o f  hourglasses H(el, e2), H(e2, e3) . . . . .  H(e,,_,, era), 
where each consecutive pair o f  hourglasses shares a common edge, we can construct 
a representation o fH(e l ,  era) in O(log n) time and O(m log n) additional space using 
O(m z) processors in the C R E W  P R A M  model, where n is the total size o f  all the 
hourglasses. 

PROOF. The main idea is to determine the surviving portions of each hourglass 
and then concatenate them to form H(el, e,,). This resembles the approach of 
Atallah and Goodrich [8-] and Aggarwal et al. [3] for computing convex hulls, 
but is necessarily more involved, since hourglasses are more complicated than 
convex hulls. Let Bi,j (resp. T~,s ) denote the bottom (resp. top) chain of H(ei, ej). 
Our approach is as follows. We determine, for each B~,i+l, the surviving portion 
of B~,~+, in Bi.m, as well as the edge ri, connecting this surviving portion to the 
next vertex (to the right) in B~,,,. We then determine, for each B~,~+~, the surviving 
portion of B~,i+, in BI,~+ 1, as well as the edge li, connecting this surviving portion 
to the next vertex (to the left) in Bl,i+l. We then compare l~ and r~ to determine 
if any of B~,~+I survives in B1, m. A similar computation determines the surviving 
portion of T~,i+ 1 in TI,~. The details are as follows: 

1. We assign a processor to each pair (i,j) and use this processor to determine 
the two tangent lines defined by Bi,~+l and H(ej, ej+l), where j >  i. Let xri, j 
denote the cross tangents from Bi, i+l to Tj;j+~ and let sri,j denote the supporting 
tangent from Bi, i+l to Bj,j+I. If H(ei, ei+l) or H(ej, ej+l) is closed, then we use 
the "funnel" portion of the hourglass that is closer to the other hourglass for this 
tangent-finding procedure. Also, if H(ei, ei+l) or H(ej, e j+1) obscures ei+, from 
ej, then we let xri, j and srgj be undefined. 

2. Let us concentrate our attention on a specific hourglass chain, B~,i+l. For 
each j > i we compute the tangent line J(Rj, which is the "rightmost" cross 
tangent xri,j,, touching Bi and some Ty,, for i < f  _<j. By "rightmost" we mean 
the tangent touching B~ farthest to the right, and, if there are ties, the one among 
those with smallest slope. Intuitively, this is the most restrictive cross tangent that 
would be encountered in concatenating H(ei, ei+l) with any H(ej,, ej,+O, where 
i < j '  _< j. Also, by convention, we let an undefined tangent be the most restrictive 
tangent in this sense, Note that all the X R j  values for H(ei, ei+~) can easily be 
computed in O(logn) by a simple parallel prefix computation. By a similar 
computation, for each j > i, we determine S Rj, the leftmost supporting tangent 
srij,, touching Bi and some Bj,, for i < j '  < j .  If S R j  is to the right of X R j  for all 
j > i, then H(e~, era) is open to the right of H(ei ,  e i+l)  , for this implies that there 
is a vertex on H(e~, el+l) that has a clear line-of-sight to em. Thus, we take ri to 
be S R,~ in this case. (See Figure 2(a).) Otherwise, let j be first index greater than 
i such that S Rj is to the left of X Rj. In this case we take r i to be srj if srj = S Rj, 
or xrj if xrj = X Rj. (See Figure 2(b).) 

3. Perform a computation similar to Step 2 to compute tangents _J(Lj and SLj 
for each Bi, i+ 1 (analogous to X R j  and S Rj), and, more importantly, the tangent 
li, the edge of Bx,i+l tangent to  Bi, i+ 1. 

4. If li and rg cross, then there is no vertex of Bi, i+l on Ba,m. If li and ri do not 
cross, however, then Bl,m contains the chain formed by li, followed by the subchain 
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Fig. 2. The tangent edge to the right of Bi, i+ t. In case (a) it is to a Bi.i+l and H(ei, e~) is open through 
H(ei, ei+O. In case (b) it can either be to a Be, i+1 or to a T,.~+t and H(ei, em) is closed through 
H(ei, ei+ l). 

of Bi, i+ 1 from li's point  of tangency to ri 's  point of tangency, followed by r i. (See 
Figure 3.) 

5. We perform a computa t ion  analogous to Steps 1-4 to compute  the surviving 
port ion of Tia+ 1, if there is any, as well as the edges adjacent to such a surviving 
portion. 

6. Given all the surviving port ions of the hourglasses H(el, e2) . . . .  , H ( e m -  1, em). 

We can compute  all the pieces of  Tl,m and Bl,m by concatenating these chains via 
list-ranking 5 and parallel prefix computat ions.  This completes the construction. 
Since each of the above steps can easily be performed in O(log n) time using O(m 2) 
processors, this also completes the proof. []  

s A list-ranking procedure determines the rank of each element in a linked list, and can be implemented 
in O(log n) time using O(n/log n) processors [5], [17]. 
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Fig. 3. The edges l i and r i do not cross in (a); they do cross in (b). 

The hourglass structure provides the foundation upon which we build an 
efficient, but relatively slow, parallel method for preprocessing P, which we 
describe next. (We subsequently improve this approach using the statified de- 
composition tree.) 

3.2. The Factor Graph. Suppose we are given a triangulated polygon P, the dual 
graph D of this triangulation, and a centroid decomposition tree T for P. We 
augment Tas  in [16] and [27] so that there is an edge (v, w) added to Tfor  each 
pair of nodes v and w such that ev is a pseudoedge on Pw (note that v must be an 
ancestor of w in this case). The edges of T together with these new edges defines 
the factor graph of P [27], which we denote ~ (see Figure 4). 

The following lemma characterizes the size of T. 

LEMMA 3.4 [16]. A node v in T at depth dv has 

(a) at most one edge in ~ going to a node at depth d, if d is smaller than dr, and 
(b) at most two edges in ~ going to nodes at depth d, if d is larger than do. 

Therefore, each node of  ~ has degree at most O0og n), and all of  T has size O(n). 

We can use the factor graph for shortest-path queries simply by constructing a 
representation of the hourglass H(ev, ew) for each edge (v, w) in ~. Such a data 
structure can be built in O(log 2 n) time using O(n) processors by a simple "bottom. 
up" procedure, which is essentially a parallelization of the high-level description 
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Fig. 4. The factor graph. 

of a method given by Guibas and Hershberger [27]. In particular, we start with 
the triangles corresponding to the leaves in T, and construct a (trivial) hourglass 
for each edge (v, w) of 2P where w is a leaf (i.e., Pw is a triangle). Then we proceed 
up the tree, level by level, where we construct an hourglass representation for each 
edge (v, w) such that w is on the current level. Each such hourglass can be defined 
by concatenating two existing hourglasses; hence, be Lemma 3.2, each stage can 
be implemented in O(log n) time using O(n) processors. Thus, the entire computa- 
tion can be implemented in O(log a n) time and O(n log n) space using O(n) 
processors. Given two query points p and q inside P, we can use this structure to 
build a (binary tree) representation of the shortest path between p and q inside P 
by concatenating at most O(log n) hourglasses stored in T (e.g., see [27]). 

Guibas and Hershberger [27] show how to improve the sequential time and 
space complexity of this approach, but their methods do not seem to lead to a 
more time-efficient parallel algorithm. We can make a simple modification to 
improve the space and number or processors used by this method, however, 
without slowing down the time complexity for preprocessing or querying. Specific- 
ally, we can modify this computation by performing it on T', a d-contracted version 
of T, where d = Flog 2 n 7. Before performing the construction we perform a 
preprocessing step, where we construct the factor graph, T' for T', and build a 
representation of the hourglass associated with each (v, w) in T', where ev and ew 
are both on a P~ such that v is a leaf; we call each such edge a bottom edge. By 
Lemma 3.4, T' has size O(n/log 2 n). Thus, we can assign a processor to each 
bottom edge (v, w) in T', and use Lemma 3.1 to construct a binary tree representa- 
tion of the associated hourglass in O(log 2 n) time, since n~ < 3J-log 2 nT. We 
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then apply the bot tom-up parallel method given in the previous paragraph. This 
results in a structure with O(n) space (including the extra O(log n) for each edge 
in T'), which can be constructed in O(log 2 n) time using only O(n/log 2 n) processors. 
It can still be used to answer shortest-path queries in O(log 2 n) time, however. If 
our query points p and q are in the same P~, where v is a leaf, then we 
can simply apply Lemma 3.1 to construct a representation of the shortest path 
between p and q. Otherwise, if p e Pv and q ~ Pw, with v and w being different 
leaves, then we can apply Lemma 3.1 to construct binary tree representations of 
the two hourglasses needed for the two leaves v and w in T '  such that p e Pv 
and q ~ Pw, and then use the method of [27] to concatenate these with another 
at most O(log n) hourglasses stored in T'. Thus, we have the following: 

LEMMA 3.5. Given a triangulated n-node polygon P, we can construct an O(n)-space 
data structure that allows us to construct a binary tree representation of the shortest 
path between two points inside P in O(log 2 n) time. Moreover, this construction can 
be done in O(log 2 n) time and O(n) space usin9 0(n/log 2 n)processors in the C R E W  
P R A M  model 

Just as Lemma 3.1 provided the foundation for this result, Lemma 3.5 provides 
the foundation for an even faster parallel method, which we describe next. 

3.3. The Stratified Decomposition Tree. In this subsection we describe an 
O(log n)-time method for constructing a data structure that can be used to answer 
shortest-path queries in O(logn) time. Our  method .is based on the use of a 
structure we call the stratified decomposition tree. Suppose we have a centroid 
decomposition tree T for P, and are also given an integer parameter, r. For reasons 
that will soon become apparent, we define the stratified decomposition tree on 
T", a d-contraction of T, where d = r[-log 4 n-]. We use a recursive definition 
to mark certain nodes in T" as boundary nodes. The basis boundary node in T "  
is the root. Given a recursively defined boundary node v, we define each w in the 
subtree of T" rooted at v to be a boundary node if either of the following is satisfied: 

�9 w is at distance [-(log(nv/r))/47 from v. 
�9 w is at distance less than [-(log(nv/r))/47 from v, but w is a leaf. 

All such boundary nodes w define the boundary children of v. Note that any 
v-to-leaf path in T" must contain exactly one boundary child of v, and any 
boundary node v in T" can have at most O((nv/r) 1/4) boundary children. We define 
the boundary children of each nonleaf boundary child of v recursively. By repeating 
this definition until we include all the leaves of T" as boundary nodes we define 
the stratified decomposition tree for P, which we denote S(T"). The name of this 
structure is motivated by the "layering" of T" that is imposed by the boundary 
nodes. (See Figure 5(a).) Given the tree T", it is straightforward to determine all 
the boundary nodes in T" by a top-down procedure that runs in O(log n) time 
using O(n/log n) processors. 

The tree S(T") provides the "skeleton" for our data structure, which is defined 
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S(T'9: 

(a) 

Pseudo(z) = ( d,f)  

Pairs(z) = ((a,b),(a,c),(a,d),(a,e),(aJ),(b,a),(b,c), . . . )  

...G" 

~ ~ . . f . . .  

,,, o I 

(b) 

Fig. 5. (a) The stratified decomposition tree S(T'), and (b) its relationship to P. 

so that for each boundary node in z in S(T") we have the following: 

�9 A list of all the boundary children of z. 
�9 A list, Pairs(z), of all pairs (e,f), where e is a pseudoedge on some P~, where 

v is a child boundary node of z, and f is a pseudoedge on Pz or Pw, where w 
is another child boundary node of z. 

�9 A representation of H(e,f) for each pair (e,f) in Pairs(z). 
�9 A list, Pseudo(z), of the pseudoedges on Pz, listed in counterclockwise order 

around Pz. With each edge e in P~ we store the two values of sum(x), the 
prefix summation, associated with the two places in the Euler-tour of D where 
the dual of e appears. 

�9 A factor-graph data structure for each leaf of S(T"). 
Before we describe our method for constructing this structure, we make an 

important observation concerning its size. Clearly, the most space-consuming 
portion of this structure is that we store a representation of the hourglass H(e,f) 
for each (e,f) in Pairs(z) for each boundary node z in S(T"). (See Figure 5(b).) Note 
that for any such v we may need to store up to O((nz/r) 1/4 + log n) such hourglass 
representations, by Lemma 2.2; hence, we may need to store up to O((nz/r) 1/2 + 
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(nz/r) a/4 log n + log  2 n) such hourglass representations for all the children of z in 
S(T"). Nevertheless, since T" is an rFlog 4 n-I-contraction of T, Flog 4 n-] < nv/r 
for each v in T". Thus, we can characterize the number of hourglass representations 
we need to store for the children of z as being O((nz/r) 1/~) (this is the main reason 
for our choosing T" as an rFlog ~ n']-contraction of T). 

We begin our construction with a preprocessing step, where we apply Lemma 
3.5 to construct a factor-graph-based shortest-path data structure on Po for each 
leaf v in T". This takes O(log z no) = O((log r + log log n) 2) time and O(n) space 
using O(n/(log r + log log n) z) processors. We then apply the query result from 
Lemma 3.5 to construct a representation of each hourglass H(e,f) such that e and 
f a r e  pseudoedges on the boundary of Pv O.e., (e,f) is in Pairs(z)) for each leaf v of 
T". Since the number of such pairs (e,f) is O(log ~ n) for each v (by Lemma 2.2), 
this can be done in O(log 2 no) = O((log r + log log/,/)2) time using O(n/(r log  2 rt)) 
processors. 

Our method for constructing the other needed hourglass representations is a 
recursive procedure, which we call by passing it the name of a boundary node z 
(we call it initially with z being the root). The problem is to construct a 
representation of H(e,f) for each pair (e,f) in Pairs(z). As observed above, there 
are at m o s t  O((nz/r) 1/2) such pairs for z. In order to do this efficiently, we need a 
representation of each hourglass H(e',f') such that e' and f '  are pseudoedges on 
P~ for each child v of z. For each child v that is a leaf in T", we already have these 
representations, by our preprocessing step. For each child v of z that is not a leaf, 
we recursively construct an hourglass representation for each pair of edges (e,f) 
in Pairs(v). Having returned from this parallel recursive call, we assign O((nz/r) 1/2) 
processors to each pair (e,f) in Pairs(z)--we use these processors to construct 
H(e,f). Note that, since there are at most O((nz/r) 1/2) pairs in Pairs(z), this 
assignment requires only O(nJr) processors. The group of processors assigned to 
the pair (e,f) determine the at most O((nJr) 1/4) hourglasses Hi , / /2  . . . . .  /-/1 that 
belong to children boundary nodes of z and must be concatenated to produce a 
representation of H(e,f). Note that the Hi's are already available (either by our 
preprocessing step or by the recursive call). The processors assigned to (e,f) can 
easily determine the ordering of these hourglasses along the path in D in O(log nz) 
time (by a simple list-ranking procedure). Using the method of Lemma 3.3, these 
processors can then construct a representation of H(e,f) in O(log n~) time, since 
we have O((nz/r) i/2) processors available to concatenate O((nz/r) i/4) hourglasses. 
This completes the construction, as the other portions of our structure are easily 
constructed in O(log n) time using O(n/log n) processors, given T" and S(T"). 

Before we explain how to answer a shortest-path query with our stratified 
decomposition tree data structure, let us analyze the complexity of this construc- 
tion algorithm. By the polygon-cutting theorem [12], the subtree rooted at a child 
boundary node of z has at most (2/3)1n~ nodes, where l = (log(nJr))/4. This implies 
that each such subtree has at m o s t  (rnz)5/4-1/log3 16 nodes (which is less than 
(rn~)O.854). Thus, the time complexity, t(n~), of the recursive part of this construction 
is characterized by the following recurrence relation: 

(*) t(nz) < t((rnz) ~ + b log nz 
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for some constant b. This relation implies that t(n=) is O(log n= + log r log log nz). 
The number of processors, p(nz), needed for this construction satisfies the re- 
currence 

for some constant c. Since n~ < nz ~ for each child v of z, and nv >- r[-log ~ n7 
for each leaf v, this implies that p(nz) is O(nz/r). Finally, the space complexity 
satisfies the recurrence 

s(nz) = ~ s(nv) + d log nz 
c h i l d r e n  v of  z 

for some  constant d. SinCe log nz < (nz/r) 1/4, nv > rFlog4n7 for each leaf v, 
..o.854 for each child v or z in T", this implies that the space needed is nv <_ nz 

O(nz log nz/r). We have already observed that the preprocessing step can be 
implemented in O((log r + log log nz) 2) time and O(n) space using O(n) work (i.e., 
O(n/(~og r + log log nz) z) processors). Taking r = ~-lognT, and combining the 
above discussion with Lemma 2.3, gives us the following lemma. 

LEMMA 3.6. Given an n-node triangulated simply polygon P, we can construct 
S(T") and all its associated hourglass representations, as above, in O(log n) time 
and O(n) space using O(n/log n) processors in the C R E W  P R A M  model. 

3.4. Answering Shortest-Path Queries. Suppose we are given two points p and 
q inside P. We can use S(T") to construct a representation of the shortest path 
between p and q inside P. We first locate the polygons P~ and Pw, where v and 
w are leaves in S(T') with p ~ Pv and q~ Pw. This can be done in O(log n) 
time, assuming we have preprocessed P for planar point location [19], [-45], which 
requires O(n/log n) processors given a triangulation of P. If v -- w, then we apply 
Lemma 3.5 to construct the shortest path, and we are done. If v ~ w, then we 
determine the paths, no and z~w, from v and w, respectively, to their least common 
ancestor, z in S(T") (by "marching" up S(T") from v and w). We also determine 
the pseudoedge e (resp. h) that is on the boundary ofP~ (resp. Pw) and is intersected 
by the shortest path from p to q. We do this by a simple binary search through 
the list Pseudo(v) (resp. Pseudo(w)). Specifically, let sum(v) (resp. sum(w)) denote the 
prefix summation value for the dual of some pseudoedge on P~ (resp. Pw). We can 
locate the pseudoedge e in P~ by searching for the position of sum(w) among the 
sum values for the pseudoedges in Pseudo(v), and a similar search locates the 
pseudoedge h in Pw. 

We then apply Lemma 3.5 to construct a representation of the hourglass H(p, e) 
and H(h, q) in O(log log n) 2) time. By two more binary searches we can locate the 
pseudoedgesfand 9 on P= intersected by the shortest path from p to q. Since (f,, g) 
is, by definition, an edge in Pairs(z), we already have a representation of H~, 9)- 
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Fig. 6. The hourglasses needed to construct a representation of H(p, q). 

To implement the remainder of our search, then, we must construct a representa- 
tion of H(e,f)  and H(g, h), and then concatenate the representations H(p, e), H(e,f), 
H(f, g), H(g, h), and H(h, q). (See Figure 6.) Let us concentrate on the construction 
of H(e,f), as our method for constructing H(g, h) is si .milar. Let e = el, e2 . . . .  , ea = f  
be the pseudoedges that are on a Pu such that u is on rc~o and are intersected by 
the shortest path from p to q, listed in order as they are intersected by this path. 
Our method for constructing H(e,f)  is a very simple recursive procedure: to 
construct H(el, ei), we construct H(el, ei_l) recursively and concatenate this to 
H(ei_ 1, el) (which is already available in S(T")), using the method of Lemma 3.2. 
Given the edge el, we can determine the edge ei by a simple binary search in 
the list Pseudo(u), where Pu is the "current" polygon (associated with node u on 
nv). Since each ei is a pseudoedge belonging to a polygon P,  for u on rc~o, the time 
complexity of this simple procedure is the same as (,). Therefore, the construc- 
tion of H(e,f)  (hence, H(g, h)) can be implemented in O(log n) time. By Lemma 3.2 
this immediately implies we can compute a representation of H(p, q) in O(log n) 
time. Combining this with Lemma 3.6, we have the following theorem: 

THEOREM 3.7. Given a triangulated simple n-node polygon P, we can construct a 
data structure in O(log n) time using O(n/log n)processors, in the C R E W  P R A M  
model, that allows for a single processor to build a binary tree representation o f  the 
shortest path between two query points in O(log n) time. 

Note that our construction does more than simply determine the length of the 
shortest path between two query points p and q: it constructs a representation of 
the hourglass between the triangles Pa and Pb containing p and q, respectively. 
This representation can also be used to determine, for any i, the ith edge of the 
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shortest path between p and q in O(log n) time, or can be used to enumerate all 
the edges of the shortest path in O(log n) time using O([-k/log n-I) processors, where 
k is the number of edges in this path. In the next section we show how to apply 
this theorem to solve an important visibility problem. 

4. Visibility from an Edge. In this section we show how to use the result of the 
previous section to compute the portion of P that is visible from a distinguished 
edge e. Moreover, we show that it can in fact be used to compute a data structure 
similar to that of Chazelle and Guibas [16] for determining the first point on the 
boundary of P hit by a ray of emanating from a point on e. Our method runs in 
O(log n) time using O(n) processors, and, for the query problem, allows ray- 
shooting from e to be answered in O(log n) time by a single processor. 

Before we describe our method, let us review some properties observed by 
Chazelle and Guibas [16] for the geometry of hourglasses in the context of 
visibility queries. We note that if we are only interested in visibility queries a 
typical hourglass contains more information than we need. For example, if an 
hourglass H(e,f) is closed, we do not need any of the edges of H(e,f) to answer a 
visibility query for any pair of points lying on e and fr respectively, since no 
visibility is possible between these two diagonals. Even if an hourglass H(e,f) is 
open, there may be some edges that are not needed. In particular, the only edges 
of an open H(e,f) that will ever have any influence on a line-of-sight are those 
edges that lie between the cross tangents between the two convex chains of It(e,f). 

Given two diagonals e and f on P, we define the visibility polygon of between 
e and f in the dual plane, as follows: If H(e,f) is closed, then V(e,f) is a null 
polygon. IfH(e,f) is open, then we define V(e,f) as the dual of the polygon formed 
by removing the edges of H(e,f) that do not lie between the tangent points for the 
cross tangents between the two chains for H(e,f), and then extending the cross 
tangents to infinity. The polygon V(e,f) can be viewed as a convex polygon in the 
two-sided plane, for we can place the convex chain encountered in a counter- 
clockwise traversal from e to f on the top half of a two-sided plane and the other 
chain on the bottom. Note that a point p is inside F(e,f) if and only if p 
corresponds to a line in the primal plane that intersects e and f, but does not cross 
any of the edges of H(e,f). Also note that if we take a simple polygon P, fix an 
edge e on P, and construct all the visibility polygons F(e,f) such t h a t f i s  another 
edge on P, then we construct a subdivision in the two-sided plane. As observed 
by ChazeUe and Guibas [167, this subdivision constitutes a solution to the visibility 
from an edge problem, for each face F(e,f) corresponds to the set of lines that 
intersect e and f while missing the boundary of P. Moreover, this subdivision, 
which we denote Fis(e, P), has O(n) size [16]. (See Figure 7.) 

We show that Vis(e, P) for any fixed edge e on P can be constructed in O(log n) 
time using O(n) processors. We describe a procedure with essentially the same 
recursive structure as that used to construct the stratified decomposition tree. In 
our algorithm description whenever we refer to a node v in the stratified 
decomposition tree S(T"), we usefv to denote the pseudoedge on Pv that is closest 
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Fig. 7. The subdivision Vis(e, P). 

to the distinguished edge e (which can be determined by the relative position of 
their dual edges in D). 

In order to compute Vis(e, P) we recursively compute Vis(f~, Pz) for each node 
z in S(T") (where we view e to be the root of the polygon-cutting theorem 
decomposition). As a preprocessing step, for each leaf z in T", we use a straightfor- 
ward paralMization of the divide-and-conquer method of Chazelle and Guibas 
[16] to construct Vis([z, P~) in O(log 2 nz) time using O(n~) processors. Given a 
nonleaf boundary node z, we recursively compute Vis(fv, Pv) for each child 
boundary node v of z. Using the method of the previous section we then compute 
a representation of H(f~,f~) for each child boundary node v of z, which can be 
done in O(log nz) time using O((nJr) ~/2) processors, where, in this case, we take 
r = 1 (since we need O(n) processors anyway). Intuitively, the hourglass H(f~,f~) 
is a "tunnel" through which we must pass any line-of-sight from fz to f~. (See 
Figure 8.) Thus, our next step is to construct a representation of the visibility 
polygon VOr~,f~) defined by H(f~,f~). This is easily accomplished in O(log n~) time 
using O((nj@/2) processors, by determining the two cross-tangents if H(fz,f~) is 
open (if H(l;,fv) is closed, the computation is trivial). For each segment of s in the 
subdivision Vis(f~, P~), we then assign a single processor to the task of computing 
the intersection ors with the interior of V(f~,fz). This can also be done in O(log n~) 
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Fig. 8. The visibility through H(fz,f~ ). 

time, by a binary search type of computation, using a total of O(n~) processors for 
each child boundaiy node v of z. The surviving portion of each segment s (if there 
is any) defines a segment in Vis(fz, P~), by an argument similar to that given by 
Chazelle and Guibas [16]. 

THEOREM 4.1. Given a polygon P and a distinguished edge e on P, we can compute 
the portion of P visible from e in O(log n) time usino O(n) processors in the C R E W  
P R A M  model Moreover, in these same bounds we can construct a data structure 
that allows a single processor to determine the edge of P hit by any query ray 
emanatin9 from e in O(log n) time. 

PROOF. We have already discussed how to construct Vis(e, P), given a triangula- 
tion of P. By Lemma 2.1, we can triangulate P in O(log n) time using O(n) 
processors, as needed. For the query problem, we note that we can use any efficient 
parallel planar-point location data structure that runs in O(log n) time using at 
most O(n) processors and results in an O(log n) query time (e.g., [7], [19], and 
[45]) to locate the point that is dual to the query ray in Vis(e, P). [] 

5. The Visibility Graph. The problem we address in this section is the computa- 
tion of the visibility graph G, of P, which is defined on the vertices of P such that 
(v, w) is an edge in G if and only if v is visible from w (see [303 for references). Our 
method for constructing G is based on Theorem 4.1 and two important lemmas, 
one geometric and one algorithmic. We begin by describing our algorithmic 
lemma. 

5.1. Two-Set Intersection Reporting. The algorithm we describe in this subsec- 
tion is for a seemingly unrelated problem of computing the intersections between 
two collections of nonintersecting line segments. Our method improves a similar 
lemma of Riib 1-40], and may be of independent interest. 
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LEMMA 5.1. Suppose we are 9iven two sets of  line segments, A and B, such that 
no two segments in A (resp. B) intersect, except possibly al endpoints. The we can 
compute all the pairwise intersections between segments in A and B in O(log n) time 
usin9 0(n + k/logn) processors in the C R E W  P R A M  model, where n = ]A[ + IB[ 
and k is the number of answers. 

PROOF. The method is based on the approach of Riib, but improves the 
number of processors needed for reporting the answers by a logarithmic factor. 
The main idea is to build a (single) segment tree T on the x-coordinates defined 
by the segments in A and B as in [7]. The leaves of T correspond to slabs defined 
by placing vertical lines between consecutive endpoint x-coordinates. Internal 
nodes in T correspond to the union of the slabs associated with their descendants. 
For each v in T, we construct a list CA(v), where CA(V) is the list of all segments 
in A that span the slab, [Iv, for v, but do not span the slab, Hz, for v's parent z. 
These lists are sorted by the "above" relationship. We define CB(v) lists similarly 
for the segments in B. We then take a d-contraction of T, and let T' denote this 
new tree, where d = [-log n-]. Using the method of Atallah et al. [7], we can 
construct all the CA and Cn lists for T' in O(log n) time and O(n log n) space using 
O(n) processors. By a lemma similar to one given by Chazelle [131 it is easy to 
show that if two segments s e a  and t s B  intersect, then there must be a 
node v such that 

(1) s ~ CA(v) and t ~ CB(v), 
(2) s ~ CA(v) and t has an endpoint in Fir, 
(3) t E CB(v) and s has an endpoint in YI v, or 
(4) v is a leaf and both s and t have an endpoint in Hr. 

(See Figure 9.) We can determine all intersections of type 1 by merging the sorted 
lists CA(v) and CB(v) twice: the first time with comparisons based on segment 
intersections with the left vertical boundary of IIv (call this the "leftist" rule) and 
the second time with comparisons based on segment intersections with the right 
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Fig. 9. The characterization of intersections. 
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vertical boundary of IIv (call this the "rightist" rule). For a segment s in CA(V) the 
segments in Cs(v between s's rank in Ca(v ) based on the leftist rule verses s's rank 
based on the rightist rule are exactly the segments in Ca(v) that intersect s. This 
computation can be performed in O(log n) time using O((I Ca(v)l +lCB(v)l)/log n) 
processors, by the merging of [11] and [41], for each v, or O(n) processors overall. 
Type 4 intersections are even easier to detect, for we can assign a processor to 
each segment s and use this processor to compare s with all the other segments 
that have an endpoint in the same leaf slab(s) as s, since there are O(log n) such 
segments. 

For type 2 and type 3 intersections, we must use a more involved procedure 
than this, however. Since the segments in A (resp. B) do not intersect, we can apply 
the fractional cascading technique 6 of Chazelle and Guibas [15], as implemented 
in parallel by Atallah et al. [7]. This allows a single processor to locate a single 
point p in the CA(V) list (resp. Ca(v) list) for each v such that p is in IIv in O(log n) 
time, for these v's define a leaf-to-root path and each look-up ofp in a list is based 
on the "above-below" relation. Thus, by assigning a processor to each segment s 
in A we can locate the endpoints p and q of s in each Cs(v) such that p and q are 
in I/v in O(log n) time. We can then "read off" all the intersections of s with the 
segments in CB(v)--they are exactly the segments between the positions of p and 
q in the list Cn(v). If, on the other hand, only one of the endpoints for s (say, p) is 
in the slab II~, then we must locate, in the list CB(v), the point q' where s intersects 
one of the vertical boundaries for IIv. If the other endpoint, q, on s is in IIw, 
where w is v's sibling, then we can afford to perform a binary search to locate the 
position of q' in Ca(v), for this case can occur in at most two nodes in the tree. 
We cannot afford to perform a binary search for q', however, if q is not in rlw. 
Fortunately, if q is not in IIw, then s is in Ca(w) by definition. Therefore, we can 
find the position of q' in CB(v) by merging CB(V) with CA(W), basing comparisons 
on the y-coordinates of segment intersections with the vertical line separating rI~ 
and U w. For example, if w is the right child of v's parent, then we use the rightist 
ordering for C~(v) and the leftist ordering for Ca(w ). (See Figure 10.) This provides 
the position of q' in Ca(v) for all segments s with p ~ rI~ but q r II w, where 
w is v's sibling, and can be implemented in O(log n) time using O(n) processors 
[11], [41]. We can then "read off" all the intersections of s with the segments in 
Ca(v)--they are exactly the segments between the positions of p and q' in CB(v). 
We can perform a similar computation for each segment s from B. 

Note that this method gives us, in O(log n) time for each segment s, an implicit 
representation of all the intersections s has with segments in the other set. Given 
this information for all segments, we may, after a parallel prefix computation, 7 

6 Recall that in this technique we build a data structure upon a graph that has lists stored at its nodes. 
This structure allows a single processor to locate a key x in each list on a path n in O(log n + In[ log A) 
time, where A is the degree of the graph. This construction can be done sequentially in O(n) time 1-15] 
and in parallel in O(log n) time using O(n/log n) processors [71. 
v In a parallel prefix computation we reduce the problem at hand to that of computing all prefix sums 
s k = ~ =  t al for n values al ,  a 2 . . . . .  a,, which all can be found in O(log n) time using O(n/log n) 
processors [32], [33]. 
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Fig. 10. The relationship between Ca(v) and CA(w). 

globally allocate enough processors to report all of these intersections optimally 
in O(log n) time, i.e., O(k/log n + 1) processors. This established the lemma. [] 

We use the lemma to help solve the seemingly unrelated problem of constructing 
the visibility graph, using a point-line duality to drive the reduction. 

We have already given our algorithmic lemma in Lemma 5.1, thus we have only 
to give our geometric lemma. 

5.2. A Dual  Characterization. As observed by Edelsbrunner et al. ~21], the set 
of lines that intersect a line segment (p, q) corresponds to the set of points in the 
dual plane between the dual lines ~p and ~q. This structure is called the double 
wedge for the segment (p, q). As we observe in the following lemma, this structure 
can also be used to characterize visibility-graph edges (see Figure 11). 

LEMMA 5.2. Let  P~ and Pw be two disjoint subpolygons o f  P, separated by a 
common diagonal e. There is a visibility-graph edge f r o m  a vertex p in Pv to a vertex 
q in Pw i f  and only i f  all o f  the followin9 conditions hold: 

1. p is visible f rom e; hence, there is a segment s v correspondin9 to p in Vis(e, Pv). 
2. q is visible f rom e; hence, there is a segment Sq correspondin 9 to q in Vis(e, Pw). 
3. sp intersects sq and this intersection point is inside the double-wedge defined by e. 

PROOV. Suppose each of the above conditions hold. We must show that p is 
visible from q. Each point on sp is the dual of a line that passes through p. 
Moreover, by the definition of Vis(e, P~), each point on sp is the dual of a line that 
intersects e (and no other points on the boundary of P between p and e). A similar 
property holds for q, Sq, and e. Also, the intersection of sp and sq corresponds to 
the line f (in the primal plane) determined by p and q. Since the dual of Y lies 
inside the double-wedge for e (a shared edge of P,  and Pw), ( cannot intersect any 
points of P between p and q. The arguments for the "only if" part of the proof 
follow by a similar argument (in reverse order, of course). [] 

This establishes our geometric lemma. 
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F I n M ,  

Fig. 11. Visibility subdivisions and the double-wedge for e, 

5.3. Computing the Edges of  G. Having presented our two important lemmas, 
we are now ready to give our method for constructing G. Our method is to apply 
Theorem 4.1 to construct the subdivisions Vis(ev, P,) and Vis(ev, Pw) for each node 
v in the centroid decomposition tree T for P, where u and w are the children of 
v. Moreover, we perform this computation for each v in parallel. This can be done 
for all v in parallel in O(log n) time using O(n log n) processors by Theorem 4.1, 
since the total size of all the subdivisions can be O(n log n). We then use the method 
of Lemma 5.1 to compute for each node v in T the intersection of the segments in 
Vis(ev, P,) with the segments in Vis(e v, Pw). This requires O(log n) time using 
O(n log n + k/log n) processors, where k is the number of answers. By Lemma 5.2, 
each intersection point corresponds to an edge in the visibility graph. Thus, we 
have the following: 

THEOREM 5.3. Given an n-node polygon P, we can construct the visibility graph 
for P in O(log n) time using O(n log n + k) processors in the C R E W  P R A M  model, 
where k is the number of  edges. 

6. Applications. There are also a number of other problems that can be solved 
efficiently in parallel using the stratified decomposition tree approach. We mention 



Parallel Methods for Visibility and Shortest-Path Problems in Simple Polygons 483 

a few of them here, giving a brief description of how each of them can be solved 
in parallel. 

6.1. Shortest-Path Tree from a Vertex. An important problem dealing with 
shortest paths in a simple polygon is that of computing the shortest-path tree from 
a vertex v of P, i.e., the tree that is defined by the union of all the shortest paths 
from v to every other vertex of P. Using the shortest-paths data structure of Section 
3, it is straightforward to solve this problem in O(log n) time using O(n) processors. 
The method is to assign a processor to each vertex w of P and have that processor 
compute the first edge on the shortest path from w to v. 

6.2. Convex Ropes. Another important problem in this domain is that of 
computing the convex ropes of a simple polygon [28]. This problem is defined as 
follows. Let v be a vertex on the boundary of the convex hull of P, and let w be 
any other vertex of P. The clockwise convex rope from v to w is defined to be the 
shortest path from v to w that is clockwise convex (in that it always makes "right 
turns") and never enters P, if such a path exists. The counterclockwise convex 
rope from v to w is defined similarly. The problem is to compute all the nodes 
that have both clockwise and counterclockwise ropes from a vertex on the convex 
hull of P. Intuitively, if we imagine the convex hull of P is being a rubber band, 
then for each such point p we can push the rubber band to p without having the 
band becoming "pinched." In other words, p is visible from some point outside 
the convex hull of P. 

We can solve this problem in O(log n) time using O(n) processors as follows. 
We first construct the convex hull H of P. This can'be .done in O(log n) time using 
O(n/log n) processors [49] (or with O(n) processors by the more simple method of 
[3] and [8]). For  each edge e of H that is not an edge of P, we ~ n  then determine 
the "bay"  between the exterior of P and e, which is itself a simply polygon. Let 
B be the bay determined by such an edge e. We construct the shortest-path trees 
in B from both of e's endpoints, v and w. One of these trees can be viewed as the 
clockwise tree (say, the one from v) and the other can be viewed as the counter- 
clockwise tree (say, the one from w). We remove any edge from the clockwise tree 
from v if it forms a left turn with the previous edge, and remove any edge from 
the counterclockwise tree from w if it forms a right turn with the previous edge. 
The vertices that remain in both trees are the vertices that are visible from a point 
outside the convex hull of P. Note that all the above operations can be performed 
in O(log n) time using O(n) processors. 

6.3. All-Farthest Neighbors. Suppose we are given a simply polygon P. Another 
interesting distance problem is to compute the farthest neighbor for each vertex 
of P, where distance is measured by the shortest path inside P. This is known as 
the all-farthest neighbors problem for a simple polygon [2], [27]. Guibas and 
Hershberger [27], exploiting the fact that the matrix of distances defined by the 
vertices of P satisfies an important monotonicity property [4], give an O(n log n)- 
time algorithm to this problem sequentially. Atallah and Kosaraju [9] show how 
to find the all row-maxima for such arrays in O([(n)log n) time using O(n) 
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processors, where fln) is the time needed to determine the value of an (i,j) entry 
in this matrix. Therefore, since we show how to preprocess P to allow for fin) to 
be O(log n), this immediately implies that we can solve the all-farthest neighbors 
problem for a simple polygon in O(log 2 n) time using O(n) processors. 

7. Open Problems. We have shown how to solve a number of shortest-path and 
visibility problems for simple polygons efficiently in parallel. Indeed, our method 
for preprocessing a simple polygon for shortest-path queries is optimal if P is 
triangulated. Nevertheless, there are a number of interesting open problems that 
follow from this work: 

1. Can the visibility from an edge in a simple polygon be computed in O(log n) 
time with only O(n/log n) processors if P is triangulated? 

2. Can the visibility graph for a simple polygon be constructed in O(log n) time 
using only O(n + k/log n) processors, where k is the size of the output? 
What about the visibility graph of an arbitrary set of segment in the plane? 

3. Can a simple polygon be triangulated in O(log n) time using only O(n/log n) 
processors? 

4. What is the fastest that the all-farthest neighbors problem for a simple polygon 
can be solved using only O(n) processors? 
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