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ABSTRACT
We study parallel comparison-based algorithms for finding
all equivalence classes of a set of n elements, where sorting
according to some total order is not possible. Such scenar-
ios arise, for example, in applications, such as in distributed
computer security, where each of n agents are working to
identify the private group to which they belong, with the
only operation available to them being a zero-knowledge
pairwise-comparison (which is sometimes called a “secret
handshake”) that reveals only whether two agents are in the
same group or in different groups. We provide new parallel
algorithms for this problem, as well as new lower bounds
and distribution-based analysis.

1. INTRODUCTION
In the Equivalence Class Sorting problem, we are given

a set, S, of n elements and an equivalence relation, and we
are asked to group the elements of the set into their equiva-
lence classes by only making pairwise equivalence tests (e.g.,
see [15]). For example, imagine a convention of n political
interns where each person at the convention belongs to one
of k political parties, such as Republican, Democrat, Green,
Labor, Libertarian, etc., but no intern wants to openly ex-
press his or her party affiliation unless they know they are
talking with someone of their same party. Suppose further
that each party has a secret handshake that two people can
perform that allows them to determine whether they are in
the same political party (or they belong to different uniden-
tified parties). We are interested in this paper in the compu-
tational complexity of the equivalence class sorting problem
in distributed and parallel settings, where we would like to
minimize the total number of parallel comparison rounds
and/or the total number of comparisons needed in order to
classify every element in S.

An important property of the equivalence class sorting
problem is that it is not possible to order the elements in S
according to some total ordering that is consistent with the
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equivalence classes. Such a restriction could come from a
general lack of such an ordering or from security or privacy
concerns. For example, consider the following applications:

• Generalized fault diagnosis. Suppose that each of n
different computers are in one of k distinct malware
states, depending on whether they have been infected
with various computer worms. Each worm does not
wish to reveal its presence, but it nevertheless has an
ability to detect when another computer is already in-
fected with it (or risk autodetection by an exponential
cascade, as occurred with the Morris worm [18]). But
a worm on one computer is unlikely to be able to detect
a different kind of worm on another computer. Thus,
two computers can only compare each other to deter-
mine if they have exactly the same kinds of infections
or not. The generalized fault diagnosis problem, there-
fore, is to have the n computers classify themselves into
k malware groups depending on their infections, where
the only testing method available is for two computers
to perform a pairwise comparison that tells them that
they are either in the same malware state or they are
in different states. This is a generalization of the clas-
sic fault diagnosis problem, where there are only two
states, “faulty” or “good,” which is studied in a number
of interesting papers, including one from the very first
SPAA conference (e.g., see [4–6,11,20,21]).

• Group classification via secret handshakes. This is a
cryptographic analogue to the motivating example given
above of interns at a political convention. In this case,
n agents are each assigned to one of k groups, such
that any two agents can perform a cryptographic “se-
cret handshake” protocol that results in them learning
only whether they belong to the same group or not
(e.g., see [7, 14, 23,25]). The problem is to perform an
efficient number of pairwise secret-handshake tests in
a few parallel rounds so that each agent identifies itself
with the others of its group.

• Graph mining. Graph mining is the study of structure
in collections of graphs [9]. One of the algorithmic
problems in this area is to classify which of a collec-
tion of n graphs are isomorphic to one another (e.g.,
see [19]). That is, testing if two graphs are in the same
group involves performing a graph isomorphism com-
parison of the two graphs, which is a computation that
tends to be nontrivial but is nevertheless computation-
ally feasible in some contexts (e.g., see [3]).
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Note that each of these applications contains two important
features that form the essence of the equivalence class sorting
problem:

1. In each application, it is not possible to sort elements
according to a known total order, either because no
such total order exists or because it would break a se-
curity/privacy condition to provide such a total order.

2. The equivalence or nonequivalence between two ele-
ments can be determined only through pairwise com-
parisons.

There are nevertheless some interesting differences be-
tween these applications, as well, which motivate our study
of two different versions of the equivalence class sorting prob-
lem. Namely, in the first two applications, the comparisons
done in any given round in an algorithm must be disjoint,
since the elements themselves are performing the compar-
isons. In the latter two applications, however, the elements
are the objects of the comparisons, and we could, in prin-
ciple, allow for comparisons involving multiple copies of the
same element in each round. For this reason, we allow for
two versions of the equivalence class sorting problem:

• Exclusive-Read (ER) version. In this version, each el-
ement in S can be involved in at most a single com-
parison of itself and another element in S in any given
comparison round.

• Concurrent-Read (CR) version. In this version, each
element in S can be involved in multiple comparisons
of itself and other elements in S in any comparison
round.

In either version, we are interested in minimizing the number
of parallel comparison rounds and/or the total number of
comparisons needed to classify every element of S into its
group.

Because we expect the number parallel comparison rounds
and the total number of comparisons to be the main per-
formance bottlenecks, we are interested here in studying
the equivalence class sorting problem in Valiant’s parallel
comparison model [24], which only counts steps in which
comparisons are made. This is a synchronous computation
model that does not count any steps done between compar-
ison steps, for example, to aggregate groups of equivalent
elements based on comparisons done in previous steps.

1.1 Related Prior Work
In addition to the references cited above that motivate the

equivalence class sorting problem or study the special case
when the number of groups, k, is two, Jayapaul et al. [15]
study the general equivalence class sorting problem, albeit
strictly from a sequential perspective. For example, they
show that one can solve the equivalence class sorting prob-
lem using O(n2/`) comparisons, where ` is the size of the
smallest equivalence class. They also show that this prob-
lem has a lower bound of Ω(n2/`2) even if the value of ` is
known in advance.

The equivalence class sorting problem is, of course, related
to comparison-based algorithms for computing the majority
or mode of a set of elements, for which there is an extensive
set of prior research (e.g., see [1, 2, 10, 22]). None of these
algorithms for majority or mode result in efficient parallel
algorithms for the equivalence class sorting problem, how-
ever.

1.2 Our Results
In this paper, we study the equivalence class sorting (ECS)

problem from a parallel perspective, providing a number of
new results, including the following:

1. The CR version of the ECS problem can be solved
in O(k + log logn) parallel rounds using n processors,
were k is the number of equivalence classes.

2. The ER version of the ECS problem can be solved in
O(k logn) parallel rounds using n processors, were k
is the number of equivalence classes.

3. The ER version of the ECS problem can be solved in
O(1) parallel rounds using n processors, for the case
when ` is at least λn, for a fixed constant 0 < λ ≤ 0.4,
where ` is the size of the smallest equivalence class.

4. If every equivalence class is of size f , then solving
the ECS problem requires Ω(n2/f) total comparisons.
This improves a lower bound of Ω(n2/f2) by Jayapaul
et al. [15].

5. Solving the ECS problem requires Ω(n2/`) total com-
parisons, where ` is the size of the smallest equivalence
class. This improves a lower bound of Ω(n2/`2) by
Jayapaul et al. [15].

6. In Section 4, we study how to efficiently solve the ECS
problem when the input is drawn from a known distri-
bution on equivalence classes. In this setting, we as-
sume n elements have been sampled and fed as input
to the algorithm. We establish a relationship between
the mean of the distribution and the algorithm’s total
number of comparisons, obtaining upper bounds with
high probability for a variety of interesting distribu-
tions.

7. We provide the results of several experiments to val-
idate the results from Section 4 and study how total
comparison counts change as parameters of the distri-
butions change.

Our methods are based on several novel techniques, includ-
ing a two-phased compounding-comparison technique for the
parallel upper bounds and the use of a new coloring argu-
ment for the lower bounds.

2. PARALLEL ALGORITHMS
In this section, we provide efficient parallel algorithms

for solving the equivalence class sorting (ECS) problem in
Valiant’s parallel model of computation [24]. We focus on
both the exclusive-read (ER) and concurrent-read (CR) ver-
sions of the problem, and we assume we have n processors,
each of which can be assigned to one equivalence comparison
test to perform in a given parallel round. Note, therefore,
that any lower bound, T (n), on the total number of com-
parisons needed to solve the ECS problem (e.g., as given by
Jayapaul et al. [15] and as we discuss in Section 3), immedi-
ately implies a lower bound of Ω(T (n)/n) for the number of
parallel rounds of computation using n processors per round.
For instance, these lower bounds imply that the number of
parallel rounds for solving the ECS problem with n proces-
sors must be Ω(n/`) and Ω(k), respectively, where k is the
number of equivalence classes and ` is the size of the smallest
equivalence class.

266



With respect to upper bounds, recall that Jayapaul et
al. [15] studied the ECS problem from a sequential perspec-
tive. Unfortunately, their algorithm cannot be easily par-
allelized, because the comparisons performed in a “round”
of their algorithm depend on the results from other com-
parisons in that same round. Thus, new parallel ECS algo-
rithms are needed.

2.1 Algorithms Based on the Number of Groups
In this subsection, we describe CR and ER algorithms

based on knowledge of the number of groups, k.
If two sets of elements are sorted into their equivalence

classes, merging the two answers into the answer for the
union requires at most k2 equivalence tests by simply per-
forming a comparison between every pair of equivalence class
one from the first answer and one from the second. This idea
leads to the following algorithm, which uses a two-phased
compounding-comparison technique to solve the ECS prob-
lem:

1. Initialize a list of n answers containing the individual
input elements.

2. While the number of processors per answer is less than
4k2, merge pairs of answers by performing k2 tests.

3. While there is more than one answer, let ck2 be the
number of processors available per answer and merge
c answers together by performing at most

(
c
2

)
k2 tests

between each of the answers.

We analyze this algorithm in the following two lemmas
and we illustrate it in Figure 1.

Lemma 1. The first while loop takes O(k) rounds to com-
plete.

Proof. In each round the number of equivalence classes
in an answer at most doubles until it reaches the upper
bound of k. In loop iteration i ≤ dlog ke, the answers are size
at most 2i and there are 2i processors per answer. There-
fore it takes at most 2i rounds to merge two answers. The
number of rounds to reach the dlog ke loop iteration is O(k).
For loop iterations dlog ke < i < dlog ke2, the answers are
size at most k, but there are still at most 2i processors per
answer. The number of rounds needed for these iterations
is also O(k), as it forms a geometric sum that adds up to be
O(k). This part of the algorithm is illustrated in the bottom
half of Figure 1.

Lemma 2. The second while loop takes O(log logn) rounds
to complete.

Proof. When entering the second while, there are more
processors per answer than needed to merge just two an-
swers at a time. If an answer has access to ck2 processors,
then a group of

(
c
2

)
answers can merge into one answer in

a single round. This means that if there are n/(ck2) an-
swers at the start of a round, then we merge groups of c2/2
answers into one answer and there are n/(c3k/2) answers
remaining. Because c ≥ 4 by the condition of the first while
loop, in the iteration i of the second while loop, there are at

most n/(22ik) answers. And so the second while loop will
terminate after O(log logn) rounds with the single answer
for the entire input. This is illustrated in the top half of
Figure 1.

Combining these two lemmas, we get the following.

Theorem 1. The CR version of the equivalence class sort-
ing problem on n elements and k equivalence classes can be
solved in O(k+log logn) parallel rounds of equivalence tests,
using n processors in Valiant’s parallel comparison model.

Proof. Lemmas 1 and 2.

We also have the following.

Theorem 2. The ER version of the equivalence class sort-
ing problem on n elements and k equivalence classes can be
solved in O(k logn) parallel rounds of equivalence tests, us-
ing n processors in Valiant’s parallel comparison model.

Proof. Merging two answers for the ER version of the
ECS problem model will always take at most k rounds.
Repeatedly merging answers will arrive at one answer in
logn iterations. So equivalence class sorting can be done in
O(k logn) parallel rounds of equivalence tests.

2.2 Algorithms Based on the Smallest Group
Size

In this subsection, we describe ER algorithms based on
knowledge of `, the size of the smallest equivalence class. We
assume in this section that ` ≥ λn, for some constant λ > 0,
and we show how to solve the ECS problem in this scenario
using O(1) parallel comparison rounds. Our methods are
generalizations of previous methods for the parallel fault di-
agnosis problem when there are only two classes, “good” and
“faulty” [4–6,11]. Let us assume, therefore, that there are at
least 3 equivalence classes.

We begin with a theorem from Goodrich [11].

Theorem 3 (Goodrich [11]). Let V be a set of n ver-
tices, and let 0 < γ, λ < 1. Let Hd = (V,E) be a di-
rected graph defined by the union of d independent randomly-
chosen1 Hamiltonian cycles on V (with all such cycles equally
likely). Then, for all subsets W of V of λn vertices, Hd in-
duces at least one strongly connected component on W of
size greater than γλn, with probability at least

1− en[(1+λ) ln 2+d(α lnα+β ln β−(1−λ) ln(1−λ))]+O(1),

where α = 1− 1−γ
2
λ and β = 1− 1+γ

2
λ.

In the context of the present paper, let us take γ = 1/4, so
α = 1− (3/8)λ and β = 1− (5/8)λ. Let us also assume that
λ ≤ 0.4, since we are considering the case when the num-
ber of equivalence classes is at least 3; hence, the smallest
equivalence class is of size at most n/3.

Unfortunately, using standard approximations for the nat-
ural logarithm is not sufficient for us to employ the above
probability bound for small values of λ. So instead we use
the following inequalities, which hold for x in the range
[0, 0.4] (e.g., see [16]), and are based on the Taylor series
for the natural logarithm:

−x− x2

2
− x3

2
≤ ln(1− x) ≤ −x− x2

2
− x3

4
.

1That is, Hd is defined by the union of cycles determined by
d random permutations of the n vertices in V , so Hd is, by
definition, a simple directed graph.
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Figure 1: A visualization of the parallel algorithm with a table on the right keeping track of relevant numbers for each loop
iteration.

These bounds allow us to bound the main term, t, in the
above probability of Theorem 3 (for γ = 1/4) as follows:

t = α lnα + β lnβ − (1− λ) ln(1− λ)

= (1− 3

8
λ) ln(1− 3

8
λ) + (1− 5

8
λ) ln(1− 5

8
λ)

− (1− λ) ln(1− λ)

≤ (1− 3

8
λ)

(
−3

8
λ− 1

2

(
3

8
λ

)2

− 1

4

(
3

8
λ

)3
)

+ (1− 5

8
λ)

(
−5

8
λ− 1

2

(
5

8
λ

)2

− 1

4

(
5

8
λ

)3
)

− (1− λ)

(
−λ− λ2

2
− λ3

2

)
≤ −3743

8192
λ4 +

19

256
λ3 − 15

64
λ2,

which, in turn, is at most

−λ
2

8
,

for 0 < λ ≤ 0.4. Thus, since this bound is negative for any
constant 0 < λ ≤ 0.4, we can set d to be a constant (depend-
ing on λ) so that Theorem 3 holds with high probability.

Our ECS algorithm, then, is as follows:

1. Construct a graph, Hd, as in Theorem 3, as described
above, with d set to a constant so that the theorem
holds for the fixed λ in the range (0, 0.4] that is given.
Note that this step does not require any comparisons;
hence, we do not count the time for this step in our

analysis (and the theorem holds with high probability
in any case).

2. Note that Hd is a union of d Hamiltonian cycles. Thus,
let us perform all the comparisons in Hd in 2d rounds.
Furthermore, we can do this set of comparisons even
for the ER version of the problem. Moreover, since d is
O(1), this step involves a constant number of parallel
rounds (of O(n) comparisons per round).

3. For each strongly connected component, C, in Hd con-
sisting of elements of the same equivalence class, com-
pare the elements in C with the other elements in S,
taking |C| at a time. By Theorem 3, |C| ≥ λn/8.
Thus, this step can be performed in O(1/λ) = O(1)
rounds for each connected component; hence it re-
quires O(1) parallel rounds in total. Moreover, after
this step completes, we will necessarily have identified
all the members of each equivalence class.

We summarize as follows.

Theorem 4. Suppose S is a set of n elements, such that
the smallest equivalence class in S is of size at least λn, for a
fixed constant, λ, in the range (0, 0.4]. Then the ER version
of the equivalence class sorting problem on S can be solved in
O(1) parallel rounds using n processors in Valiant’s parallel
comparison model.

This theorem is true regardless of whether or not λ is
known. If the value of λ is not known, it is possible to
repeatedly run the ECS algorithm starting with an arbitrary
constant of 0.4 for λ and halving the constant whenever the
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algorithm fails. Once the value is less than the unknown λ,
the algorithm will succeed and the number of rounds will be
independent of n and a function of only the constant λ.

As we show in the next section, this performance is opti-
mal when ` ≥ λn, for a fixed constant λ ∈ (0, 0.4].

3. LOWER BOUNDS
The following lower bound questions were left open by

Jayapaul et al. [15]:

• If every equivalence class has size f , the total number
of comparisons needed to solve the equivalence class
sorting problem Θ(n2/f) or Θ(n2/f2)?

• Is the total number of comparisons for finding an el-
ement in the smallest equivalence class Θ(n2/`) or
Θ(n2/`2)?

Speaking loosely these lower bounds can be thought of as
a question of how difficult it is for an element to locate its
equivalence class. The Θ(n2/f) and Θ(n2/`) bounds can be
interpreted as saying the average element needs to compare
to at least one element in most of the other equivalence
classes before it finds an equivalent element. Because there
must be

(
x
2

)
comparisons between x equivalence classes, the

Θ(n2/f2) and Θ(n2/`2) bounds say we do not need too many
more comparisons then the very minimal number needed
just to differentiate the equivalence classes. It seems unlikely
that so few comparisons are required and we prove that this
intuition is correct by proving lower bounds of Ω(n2/f) and
Ω(n2/`) comparisons.

Note that these lower bounds are on the total number of
comparisons needed to accomplish a task, that is they bound
the work a parallel algorithm would need to perform. By
dividing by n, they also give simple bounds on the number
of rounds needed in either the ER or CR models.

With respect to such lower bound questions as these, let
us maintain the state of an algorithm’s knowledge about el-
ement relationships in a simple graph. At each step, the
vertex set of this graph is a partition of the elements where
each set is a partially discovered equivalence class for S.
Thus, each element in S is associated with exactly one ver-
tex in this graph at each step of the algorithm, and a ver-
tex can have multiple elements from S associated with it.
If a pair of elements was compared and found to not be
equal, then there should be an edge in between the two ver-
tices containing those elements. So initially the graph has a
vertex for each element and no edges. When an algorithm
tests equivalence for a pair of elements, then, if the elements
are not equivalent, the appropriate edge is added (if it is
absent) and, if the elements are equivalent, the two corre-
sponding vertices are contracted into a new vertex whose set
is the union of the two. A depiction of this is shown in Fig-
ure 2. An algorithm has finished sorting once this graph is a
clique and the vertex sets are the corresponding equivalence
classes.

An equitable k-coloring of a graph is a proper coloring of a
graph such that the size of each color class is either bn/kc or
dn/ke. A weighted equitable k-coloring of a vertex weighted
graph is a proper coloring of a graph such that the sum
of the weight in each color class is either bn/kc or dn/ke.
Examples of these can be seen in Figure 3.

An adversary for the problem of equivalence class sort-
ing when every equivalence class has the same size f (so f

divides n) must maintain that the graph has a weighted eq-
uitable n/f -coloring where the weights are the size of the
vertex sets. The adversary we describe here will maintain
such a coloring and additionally mark the elements and the
color classes in a special way. It proceeds as follows.

First, initialize an arbitrary equitable coloring on the start-
ing graph that consists of n vertices and no edges. For each
comparison of two elements done by the adversary algo-
rithm, let us characterize how we react based on the fol-
lowing case analysis:

• If either of the elements is unmarked and this com-
parison would increase its degree to higher than n/4f ,
then mark it as having “high” element degree.

• If either element is still unmarked, they currently have
the same color, and there is another unmarked vertex
such that it is not adjacent to a vertex with the color
involved in the comparison and no vertex with its color
is adjacent to the unmarked vertex in the comparison
(i.e. we can have it swap colors with one of the vertices
in the comparison), then swap the color of that element
and the unmarked element in the comparison.

• If either element is still unmarked, they currently have
the same color, and there is no other unmarked vertex
with a different unmarked color not adjacent to the
color of the two elements being compared, then mark
all elements with the color involved in the comparison
as having “high” color degree and mark the color as
having “high” degree.

• At this point, either both elements are marked and we
answer based on their color, or one of the elements is
unmarked and they have different colors, so we answer
“not equal” to the adversary algorithm.

At all times, the vertices that contain unmarked elements
all have weight one, because the adversary only answers
equivalent for comparisons once both vertices are marked.
When a color class is marked, all elements in that color
class are marked as having “high” color degree. A few of the
cases the adversary goes through are depicted in Figure 4.

Lemma 3. If n/8 elements are marked during the execu-
tion of an algorithm, then Ω(n2/f) comparisons were per-
formed.

Proof. There are three types of marked vertices: those
with “high” element degree marks, those with “high” color
degree marks, and those with both marks.

The color classes must have been marked as having “high”
degree when a comparison was being performed between two
elements of that color class and there were no unmarked
color candidates to swap colors with. Because one of the
elements in the comparison had degree less than n/4f , only
a quarter of the elements have a color class it cannot be
swapped with. So if there were at least n − n/4 unmarked
elements in total, then the elements in the newly marked
color class must have been in a comparison n/2 times.

The “high” element degree elements were involved in at
least n/4f comparisons each. So if i color classes were
marked and j elements were only marked with “high” ele-
ment degree, then the marked elements must have been a
part of a test at least ni/2 + nj/4f ≥ (i + j/f)n/4 times.
Once if + j ≥ n/8, then at least n2/64f equivalence tests
were performed.
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x ≡ y?

x
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y

True

False

Figure 2: We test if x and y are in the same equivalence
class. If they are, their vertices are contracted together. If
they are not, an edge is added.

3

2

1

1

1

Figure 3: On the left we have a graph with an equitable
3-coloring and on the right we have a graph with a weighted
equitable 3-coloring.

≡?

≡?

≡? ≡?

≡?

≡?

Marking an element with high element degree:

Swapping two colors:

Marking blue with high color degree:

Figure 4: Three cases of how the adversary works to mark vertices and swap colors. The dashed line indicates the two elements
being compared. Marked vertices are denoted with stars.

Theorem 5. If every equivalence class has the same size
f , then sorting requires at least Ω(n2/f) equivalence com-
parisons.

Proof. When an algorithm finishes sorting, each vertex
will have weight f and so the elements must all be marked.
Thus, by Lemma 3, at least Ω(n2/f) comparisons must have
been performed.

We also have the following lower bound as well.

Theorem 6. Finding an element in the smallest equiva-
lence class, whose size is `, requires at least Ω(n2/`) equiv-
alence comparisons.

Proof. We use an adversary argument similar to the pre-
vious one, but we start with ` vertices colored a special
smallest class color (scc) and seperate the remaining n − `
vertices into b(n−`)/(`+1)c color classes of size n

b(n−`)/(`+1)c
or n
b(n−`)/(`+1)c + 1.

There are two changes to the previous adversary responses.
First, the degree requirement for having“high”degree is now

n/4`. Second, if an scc element is about to be marked as
having “high” degree, we attempt to swap its color with any
valid unmarked vertex. Otherwise, we proceed exactly as
before.

If an algorithm attempts to identify an element as be-
longing to the smallest equivalence class, no scc elements
are marked, and there have been fewer than n/8 elements
marked, then the identified element must be able to be
swapped with a different color and the algorithm made a
mistake. Therefore, to derive a lower bound for the total
number of comparisons, it suffices to derive a lower bound
for the number of equivalence tests until an scc element is
marked.

The scc color class cannot be marked as having “high”
color degree until at least one scc element has high element
degree. However, as long as fewer than n/8 elements are
marked, we will never mark an scc element with “high” de-
gree. So at least n/8 elements need to be marked as having
“high” element degree or “high” color degree and, by the
same type of counting as in Lemma 3, Ω(n2/`) equivalence
tests are needed.
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4. SORTING DISTRIBUTIONS
In this subsection, we study a version of the equivalence

class sorting problem where we are given a distribution, D,
on a countable set, S, and we wish to enumerate the set in
order of most likely to least likely, s0, s1, s2, . . . . For exam-
ple, consider the following distributions:

• Uniform: In this case, D is a distribution on k equiva-
lence classes, with each equivalence class being equally
likely for every element of S.

• Geometric: Here, D is a distribution such that the
ith most probable equivalence class has probability
pi(1 − p). Each element “flips” a biased coin where
“heads” occurs with probability p until it comes up
“tails.” Then that element is in equivalence class i if it
flipped i heads.

• Poisson: In this case, D is model of the number of
times an event occurs in an interval of time, with an
expected number of events determined by a parameter
λ. Equivalence class i is defined to be all the samples
that have the same number of events occurring, where
the probability of i events occurring is

λie−λ

i!
.

• Zeta: This distribution, D, is related to Zipf’s law,
and models when the sizes of the equivalence classes
follows a power law, based on a parameter, s > 1,
which is common in many real-world scenarios, such as
the frequency of words in natural language documents.
With respect to equivalence classes, the ith equivalence
class has probability

i−s

ζ(s)
,

where ζ(s) is Riemann zeta function (which normalizes
the probabilities to sum to 1).

So as to number equivalence classes from most likely to
least likely, as i = 0, 1, . . ., define DN to be a distribution on
the natural numbers such that

Pr
x∼DN

[x = i] = Pr
y∼D

[y = si] .

Furthermore, so as to “cut off” this distribution at n, define
DN(n) to be a distribution on the natural numbers less than
or equal to n such that, for 0 ≤ i < n,

Pr
x∼DN(n)

[x = i] = Pr
y∼DN

[y = i]

and

Pr
x∼DN(n)

[x = n] = Pr
y∼DN

[y ≥ n] .

That is, we are “piling up” the tail of the DN distribution on
n.

The following theorem shows that we can use DN(n) to
bound the number of comparisons in an ECS algorithm when
the equivalence classes are drawn from D. In particular, we
focus here on an algorithm by Jayapaul et al. [15] for equiv-
alence class sorting, which involves a round-robin testing
regiment, such that each element, x, initiates a comparison
with the next element, y, with an unknown relationship to
x, until all equivalence classes are known.

Theorem 7. Given a distribution, D, on a set of equiva-
lence classes, then n elements who have corresponding equiv-
alence class independently drawn from D can be equivalence
class sorted using a total number of comparisons stochasti-
cally dominated by twice the sum of n draws from the distri-
bution DN(n).

Proof. Let Vi denote the random variable that is equal
to the natural number corresponding to the equivalence class
of element i in DN(n). We denote the number of elements
in equivalence class i as Yi. Let us denote the number of
equivalence tests performed by the algorithm by Jayapaul
et al. [15] using the random variable, R.

By a lemma from [15], for any pair of equivalence classes,
i and j, the round-robin ECS algorithm performs at most
2 min(Yi, Yj) equivalence tests in total. Thus, the total num-
ber of equivalence tests in our distribution-based analysis is
upper bounded by

R ≤
∞∑
i=0

i−1∑
j=0

2 min(Yi, Yj)

= 2

n∑
i=0

i−1∑
j=0

min(Yi, Yj) + 2

∞∑
i=n+1

i−1∑
j=0

min(Yi, Yj)

≤ 2

n∑
i=0

i−1∑
j=0

Yi + 2

∞∑
i=n+1

nYi

≤ 2

(
n∑
i=0

iYi +

∞∑
i=n+1

nYi

)
= 2

n∑
i=1

Vi

The second line in the above simplification is a simple
separation of the double summation and the third line fol-
lows because

∑i−1
j=0 min(Yi, Yj) is zero if Yi is zero and at

most n, otherwise. So the total number of comparisons in
the algorithm is bounded by twice the sum of n draws from
DN(n).

Given this theorem, we can apply it to a number of dis-
tributions to show that the total number of comparisons
performed is linear with high probability.

Theorem 8. If D is a discrete uniform, a geometric, or
a Poisson distribution on a set equivalence classes, then it
is possible to equivalence class sort using linear total number
of comparisons with exponentially high probability.

Proof. The sum of n draws from DN(n) is stochastically
dominated by the sum of n draws from DN. Let us consider
each distribution in turn.

• Uniform: The sum of n draws from a discrete uni-
form distribution is bounded by n times the maximum
value.

• Geometric: Let p be the parameter of a geometric dis-
tribution and let X =

∑n−1
i=0 Xi where the Xi are

drawn from Geom(p), which is, of course, related to
the Binomial distribution, Bin(n, p), where one flips
n coins with probability p and records the number of
“heads.” Then, by a Chernoff bound for the geometric
distribution (e.g., see [17]),

Pr[X − (1/p)n > k] = Pr[Bin(k + (1/p)n, p) < n]

≤ e
−2

(pk+n−n)2

k+(1/p)n

Pr[X > (2/p)n] ≤ e−np
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• Poisson: Let λ be the parameter of a Poisson distri-
bution and let Y =

∑n−1
i=0 Yi where the Yi are drawn

from Poisson(λ). Then, by a Chernoff bound for the
Poisson distribution (e.g., see [17]),

Pr[Y > (λ(e− 1) + 1)n] = Pr[eY > e(λ(e−1)+1)n]

≤ (E[eYi ])n

e(λ(e−1)+1)n

=
eλ(e−1)n

e(λ(e−1)+1)n
= e−n

So, in each case with exponentially high probability, the sum
of n draws from the distribution is O(n) and the round-robin
algorithm does O(n) total equivalence tests.

We next address the zeta distribution.

Theorem 9. Given a zeta distribution with parameter s >
2, n elements who have corresponding equivalence class inde-
pendently drawn from the zeta distribution can be equivalence
class sorted in O(n) work in expectation.

Proof. When s > 2, the mean of the zeta distribution is

ζ(s− 1)

ζ(s)
,

which is a constant. So the sum of n draws from the dis-
tribution is expected to be linear. Therefore, the expected
total number of comparisons in the round-robin algorithm
is linear.

Unfortunately, for zeta distributions it is not immediately
clear if it is possible to improve the above theorem so that
total number of comparisons is shown to be linear when
2 ≥ s > 1 or obtain high probability bounds on these
bounds. This uncertainty motivates us to look experimen-
tally at how different values of s cause the runtime to behave.
Likewise, our high-probability bounds on the total number
of comparisons in the round-robin algorithm for the other
distibutions invites experimental analysis as well.

5. EXPERIMENTS
In this section, we report on experimental validatations of

the theorems from the previous section and investigations
of the behavior of running the round-robin algorithm on the
zeta distribution. For the uniform, geometric, and Poisson
distributions, we ran ten tests on sizes of 10, 000 to 200, 000
elements incrementing in steps of 10, 000. For the zeta dis-
tribution, because setting s < 2 seems to lead to a super
linear number of comparisons, we reduced the test sizes by
a factor of 10 and ran ten tests each on sizes from 1, 000 to
20, 000 in increments of 1, 000. For each distribution we used
the following parameter settings for various experiments:

Uniform: k = 10, 25, 100
Geometric: p = 1

2
, 1
10
, 1
50

Poisson: λ = 1, 5, 25
Zeta: s = 1.1, 1.5, 2, 2.5

The results of these tests are plotted in Figure 5. Best
fit lines were fitted whenever we have theorems stating that
there will be a linear number of comparisons with high prob-
ability or in expectation (i.e., everything except for zeta with
s < 2). We include extra plots of the zeta distribution tests

with the s = 1.1 data and the s = 1.1, 1.5 data removed to
better see the other data sets.

We can see from the data that the number of comparisons
for the uniform, geometric, and Poisson distributions are so
tightly concentrated around the best fit line that only one
data point is visible. Contrariwise, the data points for the
zeta distributions do not cluster nearly as nicely. Even when
we have linear expected comparisons with s = 2, the data
points vary by as much as 10%.

6. CONCLUSION
In this paper we have studied the equivalence class sort-

ing problem, from a parallel perspective, giving several new
algorithms, as well as new lower bounds and distribution-
based analysis. We leave as open problems the following
interesting questions:

• Is it possible to find all equivalance classes in the ER
version of the ECS problem in O(k) parallel rounds, for
k ≥ 3, where k is the number of equivalence classes?
Note that the answer is “yes” for k = 2, as it follows
from previous results for the parallel fault diagnosis
problem [4–6].

• Is it possible to bound the number of comparisons away
from O(n2) for the zeta distribution when s < 2 even
just in expectation?

• Is it possible to prove a high-probability concentration
bound for the zeta distribution, similar to the concen-
tration bounds we proved for other distributions?
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Figure 5: The results of the experiments are plotted and best fit lines are placed when we have a linear number of comparisons
with high probability or in expectation.
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