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Abstract. We introduce models and algorithmic foundations for graph
watermarking. Our approach is based on characterizing the feasibility
of graph watermarking in terms of keygen, marking, and identifica-
tion functions defined over graph families with known distributions. We
demonstrate the strength of this approach with exemplary watermark-
ing schemes for two random graph models, the classic Erdős-Rényi model
and a random power-law graph model, both of which are used to model
real-world networks.

1 Introduction

In the classic media watermarking problem, we are given a digital representa-
tion, R, for some media object, O, such as a piece of music, a video, or an image,
such that there is a rich space, R, of possible representations for O besides R
that are all more-or-less equivalent. Informally, a digital watermarking scheme
for O is a function that maps R and a reasonably short random message, m, to
an alternative representation, R′, for O in R. The verification of such a marking
scheme takes R and a presumably-marked representation, R′′ (which was possi-
bly altered by an adversary), along with the set of messages previously used for
marking, and it either identifies the message from this set that was assigned to
R′′ or it indicates a failure. Ideally, it should difficult for an adversary to trans-
form a representation, R′ (which he was given), into another representation R′′

in R, that causes the identification function to fail. Some example applications of
such digital watermarking schemes include steganographic communication and
marking digital works for copyright protection.

With respect to digital representations of media objects that are intended to
be rendered for human performances, such as music, videos, and images, there
is a well-established literature on digital watermarking schemes and even well-
developed models for such schemes (e.g., see Hopper et al. [8]). Typically, such
watermarking schemes take advantage of the fact that rendered works have many
possible representations with almost imperceptibly different renderings from the
perspective of a human viewer or listener.

In this paper, we are inspired by recent systems work on graph watermarking
by Zhao et al. [18], who propose a digital watermarking scheme for graphs, such
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as social networks, protein-interaction graphs, etc., which are to be used for com-
mercial, entertainment, or scientific purposes. This work by Zhao et al. presents
a system and experimental results for their particular method for performing
graph watermarking, but it is lacking in formal security and algorithmic founda-
tions. For example, Zhao et al. do not provide formal proofs for circumstances
under which graph watermarking is undetectable or when it is computationally
feasible. Thus, as complementary work to the systems results of Zhao et al.,
we are interested in the present paper in providing models and algorithms for
graph watermarking, in the spirit of the watermarking model provided by Hopper
et al. [8] for media files. In particular, we are interested in providing a framework
for identifying when graph watermarking is secure and computationally feasible.

Additional Related Work. Under the term “graph watermarking,” there is
some additional work, although it is not actually for the problem of graph water-
marking as we are defining it. For instance, there is a line of research involving
software watermarking using graph-theoretic concepts and encodings. In this
case, the object being marked is a piece of software and the goal of a “graph
watermarking” scheme is to create a graph, G, from a message, m, and then
embed G into the control flow of a piece of software, S, to mark S. Examples of
such work include pioneering work by Collberg and Thomborson [6], as well as
subsequent work by Venkatesan, Vazirani, and Sinha [16] and Collberg et al. [5].
This work on software watermarking differs from the graph watermarking prob-
lem we study in the present paper, however, because in the graph watermarking
problem we study an input graph is provided and we want to alter it to add
a mark. In the graph-based software watermarking problem, a graph is instead
created from a message to have a specific, known structure, such as being a per-
mutation graph, and then that graph is embedded into the control flow of the
piece of software.

A line of research that is more related to the graph watermarking problem
we study is anonymization and de-anonymization for social networks. One of the
closest examples of such prior work is by Backstrom, Dwork, and Kleinberg [1],
who show how to introduce a small set of “rogue” vertices into a social network
and connect them to each other and to other vertices so that if that same network
is approximately replicated in another setting it is easy to match the two copies.
Such work differs from graph watermarking, however, because the set of rogue
vertices are designed to “stand out” from the rest of the graph rather than
“blend in,” and it may in some cases be relatively easy for an adversary to
identify and remove such rogue vertices. In addition to this work, also of note is
work by Narayanan and Shmatikov [13], who study the problem of approximately
matching two social networks without marking, as well as the work on Khanna
and Zane [9] for watermarking road networks by perterbing vertex positions
(which is a marking method outside the scope of our approach).

Our Results. In this paper, we introduce a general graph watermarking frame-
work that is based on the use of key generation, marking, and identification func-
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tions, as well as a hypothetical watermarking security experiment (which would
be performed by an adversary). We define these functions in terms of graphs
taken over random families of graphs, which allows us to quantify situations in
which graph watermarking is provably feasible.

We also provide some graph watermarking schemes as examples of our frame-
work, defined in terms of the classic Erdős-Rényi random-graph model and a
random power-law graph model. Our schemes extend and build upon previ-
ous results on graph isomorphism for these graph families, which may be of
independent interest. In particular, we design simple marking schemes for these
random graph families based on simple edge-flipping strategies involving high-
and medium-degree vertices. Analyzing the correctness of our schemes is quite
nontrivial, however, and our analysis and proofs involve intricate probabilistic
arguments, some of which we include in the ePrint version of this paper [7]. We
provide an analysis of our scheme against adversaries that can themselves flip
edges in order to defeat our mark identification algorithms. In addition, we pro-
vide experimental validation of our algorithms, showing that our edge-flipping
scheme can succeed for a graph without specific knowledge of the parameters of
its deriving graph family.

2 Our Watermarking Framework

Suppose we are given an undirected graph, G = (V,E), that we wish to mark. To
define the security of a watermarking scheme for G, G must come from a family
of graphs with some degree of entropy [19]. We formalize this by assuming a
probability distribution D over the family G of graphs from which G is taken.

Definition 1. A graph watermarking scheme is a tuple (keygen,mark, identify)
over a set, G, of graphs where

– keygen : N × N → Aux is a private key generation function, such that
keygen(�, n) is a list of � (pseudo-)random graph elements, such as vertices
and/or vertex pairs, defined over a graph of n vertices. These candidate loca-
tions for marking are defined independent of a specific graph; that is, ver-
tices in Aux are identified simply by the numbering from 1 to n. For example,
keygen(�, n) could be a small random graph, H, and some random edges to
connect H to a larger input graph [19], or keygen(�, n) could be a set of vertex
pairs in an input graph that form candidate locations for marking.

– mark : Aux × G → N × G takes a private key z generated by keygen, and
a specific graph G from G, and returns a pair, S = (id,H), such that id is
a unique identifier for H and H is the graph obtained by adding the mark
determined by id to G in the location determined by the private key z. mark is
called every time a different marked copy needs to be produced, with the i-th
copy being denoted by Si = (idi,Hi). Therefore, the unique identifiers should
be thought of as being generated randomly. To associate a marked graph Hi

with the user who receives it, the watermarking scheme can be augmented with
a table storing user name and unique identifiers. Alternatively, the identifiers
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can be generated pseudo-randomly as a hash of a private key provided by the
user.

– identify : Aux × G × N
k × G → N ∪ {⊥} takes a private key from Aux, the

original graph, G, k identifiers of previously-marked copies of G, and a test
graph, G′, and it returns the identifier, idi, of the watermarked graph that it
is identifying as a match for G′. It may also return ⊥, as an indication of
failure, if it does not identify any of the graphs Hi as a match for G′.

In addition, in order for a watermarking scheme to be effective, we require that
with high probability1 over the graphs from G and k output pairs, S1, . . . , Sk of
mark(z,G), for any (id, G′) = Si, we have identify(z,G, id1, . . . , idk, G′) = id.

Algorithm 1 shows a hypothetical security experiment for a watermarking
scheme with respect to an adversary, A : G → G, who is trying to defeat the
scheme. Intuitively, in the hypothetical experiment, we generate a key z, choose
a graph G, from family G according to distribution D (as discussed above),
and then generate k marked graphs according to our scheme (for some set of k
messages). Next, we randomly choose one of the marked graphs, G′, and commu-
nicate it to an adversary. The adversary then outputs a graph GA that is similar
to G′ where his goal is to cause our identification algorithm to fail on GA.

Algorithm 1. Hypothetical Watermarking Security Experiment
experiment(A, k, �, n):

1. z ← keygen(�, n)
2. G ←D G
3. Si ← mark(z, G), for i = 1, . . . , k
4. randomly choose Si = (id, G′) from {S1, . . . , Sk}
5. GA ← A(G′)

In order to characterize differences between graphs, we assume a similarity
measure dist : G × G → R, defining the distance between graphs in family G.
We also include a similarity threshold θ, that defines the advantage of an adver-
sary performing the experiment in Algorithm1. Specifically, the advantage of an
adversary, A : G → G who is trying to defeat our watermarking scheme is

P [dist(G,GA) < θ and identify(z,G, id1, . . . , idk, GA) �= id] .

The watermarking scheme is (D, dist, θ, k, �)-secure against adversary A if the
similarity threshold is θ and A’s advantage is polynomially negligible (i.e., is
O(n−a) for some a > 0).

Examples of adversaries could include the following:

– Arbitrary edge-flipping adversary : a malicious adversary who can arbitrarily
flip edges in the graph. That is, the adversary adds an edge if it is not already
there, and removes it otherwise.

1 Or “whp,” that is, with probability at least 1 − O(n−a), for some a > 0.
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– Random edge-flipping adversary : an adversary who independently flips each
edge with a given probability.

– Arbitrary adversary : a malicious adversary who can arbitrarily add and/or
remove vertices and flip edges in the graph.

– Random adversary : an adversary who independently adds and/or removes
vertices with a given probability and independently flips each edge with a
given probability.

Random Graph Models. As defined above, a graph watermarking scheme
requires that graphs to be marked come from some distribution. In this paper,
we consider two families of random graphs—the classic Erdős-Rényi model and
a random power-law graph model—which should capture large classes of appli-
cations where graph watermarking would be of interest.

Definition 2 (The Erdős-Rényi model). A random graph G(n, p) is a graph
with n vertices, where each of the

(
n
2

)
possible edges appears in the graph inde-

pendently with probability p.

Definition 3 (The random power-law graph model, Sect. 5.3 of [4]).
Given a sequence w = (w1, w2, . . . , wn), such that maxi w2

i <
∑

k wk, the general
random graph G(w) is defined by labeling the vertices 1 through n and choosing
each edge (i, j) independently from the others with probability p[i, j] = ρwiwj,
where ρ = 1/

∑
j wj.

We define a random power-law graph G(wγ) parameterized by the maximum
degree m and average degree w. Let wi = ci−1/(γ−1) for values of i in the range
between i0 and i0 + n, where

c =
γ − 2
γ − 1

wn
1

γ−1 , i0 = n

(
w(γ − 2)
m(γ − 1)

)γ−1

. (1)

This definition implies that each edge (i, j) appears with probability

P [i, j] = K0

(
nγ−3ij

)− 1
γ−1 , where K0

def
=

(
γ − 2
γ − 1

)2

w. (2)

Graph Watermarking Algorithms. We discuss some instantiations of the
graph watermarking framework defined above. Unlike previous watermarking
or de-anonymization schemes that add vertices [1,19], we describe an effective
and efficient scheme based solely on edge flipping. Such an approach would be
especially useful for applications where it could be infeasible to add vertices as
part of a watermark.

Our scheme does not require adding labels to the vertices or additional
objects stored in the graph for identification purposes. Instead, we simply rely
on the structural properties of graphs for the purposes of marking. In particu-
lar, we focus on the use of vertex degrees, that is, the number of edges incident
on each vertex. We identify high and medium degree vertices as candidates for
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finding edges that can be flipped in the course of marking. The specific degree
thresholds for what we mean by “high-degree” and “medium-degree” depend on
the graph family, however, so we postpone defining these notions precisely until
our analysis sections.

Algorithms providing an example implementation of our graph watermarking
scheme are shown in Algorithm 2. The keygen algorithm randomly selects a set
of candidate vertex pairs for flipping, from among the high- and medium-degree
vertices, with no vertex being incident to more than a parameter t of candidate
pairs. We introduce a procedure, label(G), which labels high-degree vertices by
their degree ranks and each medium-degree vertex, w, by a bit vector identifying
its high-degree adjacencies. This bit vector has a bit for each high-degree vertex,
which is 1 for neighbors of w and 0 for non-neighbors. The algorithm mark(z,G),
takes a random set of candidate edges and a graph, G, and it flips the correspond-
ing edges in G according to a resampling of the edges using the distribution D.
The algorithm, approximate-isomorphism(G,H), returns a mapping of the high-
and medium-degree vertices in G to matching high- and medium-degree vertices
in H, if possible. The algorithm, identify(z,G, id1, . . . , idk,H), uses the approxi-
mate isomorphism algorithm to match up high- and medium-degree vertices in
G and H, and then it extracts the bit-vector from this matching using z.

As mentioned above, we also need a notion of distance for graphs. We use two
different such notions. The first is the graph edit distance, which is the minimum
number of edges needed to flip to go from one graph to another. The second is
vertex distance, which intuitively is an edge-flipping metric localized to vertices.

Definition 4 (Graph distances). Let G be the set of graphs on n vertices. If
G,H ∈ G, define Π as the set of bijections between the vertex sets V (G) and
V (H). Define the graph edit distance diste : G × G → N as

diste(G,H) = min
π∈Π

|E(G) ⊕π E(H)| ,

where ⊕π is the symmetric difference of the two edge sets under correspondence
π. Define the vertex distance distv : G × G → N as

distv(G,H) = min
π∈Π

max
v∈V (G)

|E(v) ⊕π E(π(v))| ,

where E(v) is the set of edges incident to v.

3 Identifying High- and Medium-Degree Vertices

We begin analyzing our proposed graph watermarking scheme by showing how
high- and medium-degree vertices can be identified under our two random graph
distributions. We ignore low-degree vertices: their information content and dis-
tinguishability are low, and they are not used by our example scheme.

We first find a threshold number k such that the k vertices with highest
degree are likely to have distinct and well-separated degree values. We call these k
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Algorithm 2. Watermarking scheme for random graphs.
t: the maximum number of flipped edges that can be adjacent to the same
vertex. keygen(�, n):

1. Let x denote the total number of high- and medium-degree vertices
2. X = {(u, v) | 1 ≤ u < v ≤ x}
3. Let z be a list of � pairs randomly sampled (without replacement) from X such

that no end vertex appears more than t times
4. return z

label(G):

1. sort the vertices in decreasing order by degree and identify the high- and
medium-degree vertices

2. if the degrees of high-degree vertices are not unique, return failure
3. label each high-degree vertex with its position in the vertex sequence
4. label each medium-degree vertex with a bit vector encoding its high-degree

adjacencies
5. if the bit vectors are not unique, return failure
6. otherwise, return the labelings

mark(z, G):

1. S = ∅

2. V is the set of high- and medium-degree vertices of G, sorted lexicographically by
their labels given by L = label(G)

3. generate an �-bit string id where each bit i is independently set to 1 with
probability pz[i], where pz[i] is the probability of the edge z[i] in D

4. let H be a copy of G
5. for j from 1 to �:
6. (u, v) = z[j]
7. if id[j] is 1:
8. insert edge (V [u], V [v]) in H
9. else:

10. remove edge (V [u], V [v]) from H
11. return (id, H)

approximate-isomorphism(G, H):

1. call label(G) and label(H), returning failure if either of these fail.
2. match each of G’s high-degree vertices with the vertex in H with the same label.
3. match each of G’s medium-degree vertices with the vertex in H whose label is

closest in Hamming distance.
4. if H has a vertex that is matched more than once, return failure.
5. otherwise, return the (partial) vertex assignments between G and H.

identify(z, G, id1, . . . , idk, H):

1. find an approximate-isomorphism(G, H), returning ⊥ if failure occurred at any step.
2. V is the set of high- and medium-degree vertices of G, sorted lexicographically by

their labels given by L = label(G)
3. V ′ is the set of vertices of H identified as corresponding to those in V , in that

same order.
4. id is an empty bit string
5. for (u, v) in z (from left to right):
6. b = 1 iff there is an edge between V ′[u] and V ′[v] in H.
7. append b to id
8. return among the idi’s the one closest to id
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vertices the high-degree vertices. Next, we look among the remaining vertices for
those that are well-separated in terms of their high-degree neighbors. Specifically,
the (high-degree) neighborhood distance between two vertices is the number of
high-degree vertices which are connected to exactly one of the two vertices. Note
that we will omit the term “high-degree” in “high-degree neighborhood distance”
from now on, as it will always be implied.

In the Erdős-Rényi model, we show that all vertices that are not high-degree
nevertheless have well-separated high-degree neighborhoods whp. In the random
power-law graph model, however, there will be many lower-degree vertices whose
high-degree neighborhoods cannot be separated. Those that have well-separated
high-degree neighborhoods with high probability form the medium-degree ver-
tices, and the rest are the low-degree vertices.

For completeness, we include the following well-known Chernoff concentra-
tion bound, which we will refer to time and again.

Lemma 5 (Chernoff inequality [4]). Let X1, . . . , Xn be independent random
variables with

P [Xi = 1] = pi, P [Xi = 0] = 1 − pi.

We consider the sum X =
∑n

i=1 Xi, with expectation E [X] =
∑n

i=1 pi. Then

P [X ≤ E [X] − λ] ≤ e− λ2
2E[X] ,

P [X ≥ E [X] + λ] ≤ e− λ2
2E[X]+λ/3 .

Vertex Separation in the Erdős-Rényi Model. Let us next consider vertex
separation results for the classic Erdős-Rényi random-graph model. Recall that
in this model, each edge is chosen independently with probability p.

Definition 6. Index vertices in non-increasing order by degree. Let di represent
the i-th highest degree in the graph. Given h = O(n), we say that a vertex is
high-degree with respect to dh if it has degree at least dh. Otherwise, we say that
the vertex is medium-degree.

Note that in this random-graph model, there are no low-degree vertices.

Definition 7. A graph is (d, d′)-separated if all high-degree vertices differ in
their degree by at least d and all medium-degree vertices are neighborhood distance
d′ apart.

Note: this definition depends on how high-degree or medium-degree vertices
are defined and will therefore be different for the random power-law graph model.

Lemma 8 (Extension of Theorem 3.15 in [2]). Suppose m =
o(pqn/ log n)1/4, m → ∞, and α(n) → 0. Then with probability

1 − mα(n) − 1/
[
m (log(n/m))2

]
,
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G(n, p) is such that

di − di+1 ≥ α(n)
m2

(
pqn

log n

)1/2

for every i < m,

where q = 1 − p.

Proof. See the ePrint version [7]. ��
Lemma 9 (Vertex separation in the Erdős-Rényi model). Let 0 <
ε < 1/9, d ≥ 3, C ≥ 3, h = n(1−ε)/8. Suppose 0 < p = p(n) ≤ 1

2 is such
that p = ω(n−ε log n). Then G(n, p) is (d,C log n)-separated with probability
1 − O(n−(1−ε)/8).

Proof. See the ePrint version [7]. ��
Thus, high-degree vertices are well-separated with high probability in the

Erdős-Rényi model, and the medium-degree vertices are distinguished with high
probability by their high-degree neighborhoods.

Vertex Separation in the Random Power-Law Graph Model. We next
study vertex separation for a random power-law graph model, which can match
the degree distributions of many graphs that naturally occur in social network-
ing and science. For more information about power-law graphs and their appli-
cations, see e.g. [3,12,14].

In the random power-law graph model, vertex indices are used to define
edge weights and therefore do not necessarily start at 1. The lowest index that
corresponds to an actual vertex is denoted i0. So vertex indices range from i0
to i0 + n. Additionally, there are two other special indices iH and iM , which we
define in this section, that separate the three classes of vertices.

Definition 10. The vertices ranging from i0 to iH are the high-degree vertices,
those that range from iH + 1 to iM are the medium-degree vertices, and those
beyond iM are the low-degree vertices.

In this model, the value of i0 is constrained by the requirement that
P [i0, i0] < 1. When γ ≥ 3, this constraint is not actually restrictive. However,
when γ < 3, i0 must be asymptotically greater than n−(γ−3)/2. The constraints
on i0 also constrain the value of the maximal and average degree of the graph.

We define iH and iM to be independent of i0, but dependent on parame-
ters that control the amount and probability of separation at each level. The
constraints that i0 < iH and iH < iM translate into corresponding restrictions
on the valid values of γ, namely that γ > 5/2 and γ < 3. We define iH in the
following lemma.

Lemma 11 (Separation of high-degree vertices). In the G(wγ) model, let
δi = |wi+1 − wi| /2. Then,

c

2(γ − 1)
(i + 1)− γ

γ−1 ≤ δi ≤ c

2(γ − 1)
i−

γ
γ−1 . (3)
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Moreover, for all ε1 satisfying 0 < ε1 ≤ 1 and C1 > 0, the probability that

|deg(i) − wi| < ε1δi for all i ≤ iH
def
=

(
cε2

1

16(γ − 1)2C1 log n

) γ−1
2γ−1

is at least 1 − n−C1 .

Proof. The first statement follows from the fact that wi is a convex function of
i and from taking its derivative at i and i + 1.

For the second statement, let C > 0 and let i′H
def=

(
cε2

1
8(γ−1)2C log n

) γ−1
2γ−1

. We
will show that if i ≤ i′H , then

P [|deg(i) − wi| ≥ ε1δi] < n−C . (4)

Now we choose C such that C1 + log iH/ log n < C ≤ 2C1. The inequality
C ≤ 2C1 implies that iH ≤ i′H and (4) holds for all i ≤ iH . By the union bound
applied to (4)

P [∃i ≤ iH , |deg(i) − wi| ≥ ε1δi] ≤ iHn−C .

Since C1 + log iH/ log n < C, the right hand side is bounded above by n−C1 .
This proves the result.

Now, we prove (4). Clearly, since δi = (wi − wi+1)/2, we have that wi ≥ δi.
So if ε1 ≤ 1 and λi = ε1δi, then wi ≥ λi/3. This implies that

λ2
i

wi + λi/3
≥ λ2

i

2wi
≥ cε2

1

8(γ − 1)2
i−

2γ−1
γ−1 ,

where the second inequality follows from (3) and the definition of wi given in
Definition 3. If i ≤ i′H , the right hand side is lower-bounded by C log n. The
result follows by applying a Chernoff bound (Lemma5). ��

For simplicity, we often use the following observation.

Observation 12. Rewriting iH to show its dependence on n, we have

iH(ε1, C1) = K1(ε1, C1) n
1

2γ−1 (log n)
− γ−1

2γ−1 , K1(ε1, C1)
def
=

(
γ − 2

(γ − 1)3
wε2

1

16C1

) γ−1
2γ−1

. (5)

For the graph model to make sense, the high-degree threshold must be asymptoti-
cally greater than the lowest index. In other words, we must have that i0 = o(iH).
Since i0 = Ω(n−(γ−3)/2), this implies that γ > 5/2.

We next define iM , the degree threshold for medium-degree vertices, in the
following lemma.

Lemma 13 (Separation of medium-degree vertices). Let K0 be defined
as in Definition 3, K1(ε1, C1) be defined as in (5), and

K2(ε1, C1, ε2, C2)
def
=

Kγ−1
0 Kγ−2

1 (ε1, C1)
(C2 + 2Γ + 2 log(Kγ−1

0 Kγ−2
1 (ε1, C1)) + 2ε2)γ−1

. (6)
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Let Xij denote the neighborhood distance between two vertices i and j in G(wγ).
If 5/2 < γ < 3, for every ε2 > 0 and C2 > 0, the probability that

Xij > ε2 log n, for all iH ≤ i, j ≤ iM

where

iM (ε1, C1, ε2, C2)
def
= K2(ε1, C1, ε2, C2) nΓ (log n)

− 3(γ−1)2

2γ−1 , Γ
def
= −2γ2 − 8γ + 5

2γ − 1
, (7)

is at least 1 − n−C2 for sufficiently large n.

Proof. Let C > 0 and let

i′M
def=

(
C2 + 2Γ + 2 log(Kγ−1

0 Kγ−2
1 ) + 2ε2

C + 2ε2

)γ−1

iM .

We claim that if iH ≤ i, j ≤ i′M , then

P [Xij ≤ ε2 log n] ≤ n−C . (8)

If we choose C = C2 + 2Γ + 2 log Kγ−1
0 Kγ−2

1 , we have that iM = i′M , so that (8)
applies to all i, j such that i, j ≤ iM . Moreover, since

iM ≤ Kγ−1
0 Kγ−2

1 nΓ ≤ nlog(Kγ−1
0 Kγ−2

1 )nΓ,

our choice of C implies that i2M n−C ≤ n−C2 . By applying the union bound to
(8), we have

P [∃i, j s.t. iH ≤ i, j ≤ iM , Xij ≤ ε2 log n] ≤ i2Mn−C ≤ n−C2 ,

which establishes the lemma.
Let us now prove the claim. Observe that Xij is the sum over the high-degree

vertices k, of indicator variables Xk
ij for the event that vertex k is connected to

exactly one of the vertices i and j. It i For fixed i and j, these are independent
random variables. Therefore, we can apply a Chernoff bound. The probability
that Xk

ij = 1 is

P [i, k](1 − P [j, k]) + P [j, k](1 − P [i, k]) ≥ 2P [iM , iH ](1 − P [i0, iH ]).

Since P [i0, iH ] → 0, for sufficiently large n, this expression is bounded below by
P [iM , iH ], and

E [Xij ] ≥ iHP [iM , iH ] ≥ (C + 2ε2) log n,

by (2), (5) and (7), as can be shown by a straightforward but lengthy computa-
tion. Let d = ε2 log n. This implies that

(E [Xij ] − d)2

E [Xij ]
≥ E [Xij ] − 2d ≥ C log n.

Therefore, applying the Chernoff bound (Lemma5) to the Xk
ij for fixed i and j

and all high-degree vertices k proves the claim. ��
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Observation 14. We would have the undesirable situation that iM = o(1)
whenever 2γ2−8γ+5

2γ−1 > 0, or equivalently when γ > 2 +
√

3/2 > 3. In fact,
in order for iH = o(iM ), we must have γ < 3.

We illustrate the breakpoints for high-, medium-, and low-degree vertices in
Fig. 1.

iM
0

i0 iH vertex indexi0+n

high-degree medium-degree low-degree

Θ
(
n

1
2γ−1 (log n)− γ−1

2γ−1

)
Θ

(
n− 2γ2−8γ+5

2γ−1 (log n)− 3(γ−1)2

2γ−1

)
Ω(n

3−γ
2 )

Fig. 1. Degree breakpoints for the random power-law graph model.

The next lemma summarizes the above discussion and provides the forms of
iH and iM that we use in our analysis.

Lemma 15 (Vertex separation in the power-law model). Let 5/2 < γ <
3. Fix ε > 0, C1 > 0, C2 > 0. Let iH = iH(ε1, C1) and iM = iM (ε1, C1, ε2, C2)
where ε1 = 1 and ε2 = ε. Let

d = n
1

2γ−1 and d′ = log n.

For sufficiently large n, the probability that a graph G(wγ) is not (εd, εd′)-
separated is at most n−C1 + n−C2 .

Proof. Let δi be defined as in Lemma 11. A straightforward computation using
(1), (3), and (5) shows that

δiH
≥ constant · n

1
2γ−1 (log n)

γ
2γ−1 .

So for sufficiently large n, we have δiH
≥ 3εd/2. For all i ≤ iH , the average

degrees wi of consecutive vertices are at least 3εd/2 apart. So for two high-
degree vertices to be within εd of each other, at least one of the two must have
degree at least (3ε/2 − ε/2)d away from its expected degree. By Lemma 11, the
probability that some high-degree vertex i satisfies |deg(i) − wi| > δiH

is at most
n−C1 .

By Lemma 13, the probability that there are two medium-degree vertices
with neighborhood distance less than εd′ is at most n−C2 . ��

Thus, our marking scheme for the random power-law graph model is effective.
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4 Adversary Tolerance

In this section, we study the degree to which our exemplary graph watermarking
scheme can tolerate an arbitrary edge-flipping adversary.

Theorem 16 (Security against an arbitrary edge-flipping adversary in
the Erdős-Rényi model). Let 0 < ε < 1/9, d ≥ 3, h = n(1−ε)/8 and p ≤ 1/2
such that p = ω(n−ε log n). Let d be sufficiently large so that

ε
d + 1
d − 1

< 1. (9)

Suppose the similarity measure is the vertex distance distv, the similarity thresh-
old is θ = d, we have a number k = nC of watermarked copies, and their identi-
fiers are generated using � = 8(2C + C ′)nε bits. Suppose also that the identifiers
map to sets of edges of a graph constrained by the fact that no more than t = d
edges can be incident to any vertex. The watermarking scheme defined in Algo-
rithm 2 is (G(n, p), distv, θ, k, �)-secure against any deterministic adversary.

The proof of this theorem relies on two lemmas. Lemma 17 identifies con-
ditions under which a set of bit vectors with bits independently set to 1 is
unlikely to have two close bit vectors. Lemma 18 states that a deterministic
adversary’s ability to guess the location of the watermark is limited. Informally,
this is because the watermarked graph was obtained through a random process,
so that there are many likely original graphs that could have produced it.

Lemma 17 (Separation of IDs). Consider k = nC random bit strings of
length �, where each bit is independently set to 1, and the i-th bit is 1 with
probability qi satisfying p ≤ qi ≤ 1/2 for a fixed value p. The probability that at
least two of these strings are within Hamming distance D = 4(2C + C ′) log n of
each other is at most n−C′

if �p ≥ 2D.

Proof. See the ePrint version [7]. ��
Lemma 18 (Guessing power of adversary). Consider a complete graph on
N vertices, and let r of its edges be red. Let s be a sample of � edges chosen
uniformly at random among those that satisfy the constraint that no more than
t edges of the sample can be incident to any one vertex. Suppose also that �,N
and t are non-decreasing functions of n such that

�t+1

N t−1
→ 0 as n → ∞. (10)

For sufficiently large N , the probability that s contains at least R = 8�r/N2

red edges is bounded by 4 exp
(−12�r/(7N2)

)
. Moreover, if �r/N2 → 0,

then the probability that s contains at least R = 1 red edge is bounded by
4 exp

(−cN2/(�r)
)
, for some c > 0 and for sufficiently large N .

Proof. See the ePrint version [7]. ��
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Proof (Theorem 16). An upper bound on the advantage of any deterministic
adversary A : G → G on graphs on n vertices is given by the conditional proba-
bility

P [identify(z,G, id1, . . . , idk, GA) �= id|distv(G,GA) < θ] ,

where the parameters passed to identify are defined according to the experiment
in Algorithm 1. We show that this quantity is polynomially negligible.

For GA to be successfully identified, it is sufficient for the following three
conditions to hold:

1. the original graph G = G(n, p) is (4d, 4d)-separated;
2. the Hamming distance between any two id and id′ involved in a pair in S is

at least D = 4(2C + C ′) log n;
3. A changes no edges of the watermark.

These are sufficient conditions because we only test graphs whose vertices had
at most d incident edges modified by the adversary, and another d incident edges
modified by the watermarking. So for original graphs that are (4d, 4d)-separated,
the labeling of the vertices can be successfully recovered. Finally, if the adversary
does not modify any potential edge that is part of the watermark, the id of the
graph is intact and can be recovered from the labeling.

Now, by Lemma 9, the probability that G(n, p) is not (4d, 4d)-separated is
less than O(n−(1−ε)/8). Moreover, since �p ≥ 2D, by Lemma 17, the probability
that there are two identifiers in S that are within D of each other is at most n−C′

.
Finally, for graphs in which an adversary makes fewer than d modifications

per vertex, the total number of edges the adversary can modify is r ≤ dn/2.
Since all vertices are high- and medium-degree vertices in this model, N = n.
Therefore, �r/N2 = O(1/n(1−ε)) → 0. Eq. (9) guarantees that the hypothesis
given by (10) of Lemma 18 is satisfied. Consequently, the probability that A
changes one or more adversary edges is O(exp[cn1−ε]) for some constant c.

This proves that each of the three conditions listed above fails with polyno-
mially negligible probability, which implies that the conditional probability is
also polynomially negligible. ��
Theorem 19 (Security against an arbitrary edge-flipping adversary in
the random power-law graph model). Let 5/2 < γ < 3, C > 0, iH =
iH(ε1, C1) and iM = iM (ε1, C1, ε2, C2) where ε1 = 1, ε2 = 8(C + 1) and C1 =
C2 = C.

Let p = P [iM , iM ]. Suppose the similarity measure is a vector of distances
dist = (diste, distv), that the corresponding similarity threshold is the vector θ =
(r, log n) where r = p(iM )2/32 is the maximum number of edges the adversary
can flip in total, and log n the maximum number of edges it can flip per vertex.
Suppose that we have k = nC′′

watermarked copies of the graph, that we use
� = 8(2C ′′ + C ′)(log n)/p to watermark a graph.

Suppose also that the identifiers map to sets of edges of a graph constrained by
the fact that no more than t = log n edges can be incident to any vertex. Then the
watermarking scheme defined in Algorithm2 is (G(wγ), dist = (diste, distv), θ =
(r, log n), k, �)-secure against any deterministic adversary.
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Proof. See the ePrint version [7]. ��

Discussion. It is interesting to note how the differences in the two random
graph models translate into differences in their watermarking schemes. The
Erdős-Rényi model, with its uniform edge probability, allows for constant separa-
tion of high-degree vertices, at best. But all the vertices tend to be well-separated.
On the other hand, the skewed edge distribution that is characteristic of the ran-
dom power-law model allows high-degree vertices to be very well-separated, but
a significant number of vertices—the low-degree ones, will not be easily distin-
guished.

These differences lead to the intuition that virtually all edges in the Erdős-
Rényi model are candidates for use in a watermark, as long as only a constant
number of selected edges are incident to any single vertex. Therefore, both our
watermarking function and the adversary are allowed an approximately linear
number of changes to the graph. Theorem 16 confirms this intuition with a
scheme that proposes O(nε) bits for the watermark, and a nearly linear number
O(n) bits that the adversary may modify.

In contrast, the number of edges that can be used as part of a watermark in
the random power-law graph model is limited by the number of distinguishable
vertices, which is on the order of iM or O(nε), where ε = − 2γ2−8γ+5

2γ−1 .

5 Experiments

Although our paper is a foundational complement to the systems work of Zhao
et al. [18], we nevertheless provide in this section the results of a small set of
empirical tests of our methods, so as to experimentally reproduce the hypothet-
ical watermarking security experiment from Algorithm 1. Our experiments are
performed on two large social network graphs, Youtube [17] from the SNAP
library [10], and Flickr [11], as well as a randomly generated graph drawn from
the random power-law graph model distribution. Table 1 illustrates the basic
properties of the networks. To generate the random power-law graph, we set the
number of nodes to n = 10000, the maximum degree to m = 1000, the average
degree to w = 20, and γ = 2.75.

To adapt our theoretical framework to the rough-and-tumble world of empir-
ical realities, we made three modifications to our framework for the sake of our
empirical tests.

Table 1. Network statistics

Network # nodes # edges Max. degree Avg. degree Unique degree Estimated γ

Power-law 10, 000 94, 431 960 18.89 14 —

Youtube 1, 134, 890 2, 987, 624 28, 754 5.27 29 1.48

Flickr 1, 715, 256 15, 554, 181 27, 203 18.14 130 1.62
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Table 2. Experiment parameters

Network # high-degree # medium-degree Key size Marking dK-2 deviation

Power law 64 374 219 0.065

Youtube 256 113 184 0.033

Flickr 300 5901 3250 0.002

First, instead of using the high-degree and medium-degree thresholds derived
from Lemmas 11 and 13, for the power-law distribution, to define the cutoffs for
high-degree and medium-degree vertices, we used these and the other lemmas
given above as justifications for the existence of such distinguishing sets of ver-
tices and we then optimized the number of high- and medium-degree vertices to
be values that work best in practice. The column, “Unique degree,” from Table 1
shows, for each network, the number of consecutive nodes with unique degree
when considering the nodes in descending order of degree. Since this value is
too small in most cases, we applied the principles of Lemmas 9 and 11 again, in
a second-order fashion, to distinguish and order the high-degree nodes. In par-
ticular, in addition to the degree of each high-degree vertex, we also label each
vertex with the list of degrees of its neighbors, sorted in decreasing order. With
this change, we are not restricted in our choice of number of high-degree nodes
as required by applying these lemmas only in a first-order fashion. Table 2 shows
the values used in our experiments based on this second-order application. As
medium-degree vertices, we picked the maximum number such that there are no
collisions among their bit vectors of high-degree node adjacencies.

Second, instead of returning failure if (a) two high-degree nodes have the
same degree and list of degrees of their neighbors, (b) two medium-degree nodes
have the same bit vector, or (c) the approximate isomorphism is not injective,
we instead proceed with the algorithm. Despite the existence of collisions, the
remaining nodes often provide enough information to conclude successfully.

Finally, we simplified how we resampled (and flipped) edges in order to create
a graph watermark, using our approach for the Erdős-Rényi model even for
power-law graphs, since resampling uniformly among our small set of marked
edges is likely not to cause major deviations in the graph’s distribution and,
in any case, it is empirically difficult to determine the value of γ for real-world
social networks. Therefore, we set the resampling probability to 0.5 so that it is
consistent with the Erdős-Rényi model and so that each bit in the message is
represented uniformly and independently.

Experiment Parameters. For the experiment parameters other than the orig-
inal network and the number of high- and medium-degree nodes, we set the
following values.

Maximum Flips Adjacent to Any Given Node During Marking: 1.
Key size: We set this to the maximum possible value (i.e., the number of high-

and medium-degree vertices divided by two, as shown in Table 2), because the
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numbers of high- and medium- degree nodes are not large. This effectively
means that every high- and medium-degree node has exactly one edge added
or removed.

Number of Marked Graphs: 10.
Adversary: We used a time-efficient variation of the arbitrary edge-flipping

adversary. This adversary selects a set of pairs of nodes randomly, and flips
the potential edge among each pair.

Results. We evaluated how much distortion the adversary can introduce before
our method fails to identify the leaked network correctly. For this purpose, we
compared the identification success rate to the amount of distortion under dif-
ferent fractions of modified edges by the adversary. To estimate the success rate,
we ran the experiment 10 times and reported the fraction of times that the
leaked network was identified correctly. As a measure of distortion, we used the
dK-2 deviation [18] between the original network and the version modified by
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Fig. 2. Success rate and dK-2 deviation under different fractions of modified potential
edges by the adversary, for the Power law, Youtube, and Flickr networks.
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the adversary. The dK-2 deviation is the euclidean distance between the dK-2
series [15] of the two graphs, normalized by the number of tuples in the dK-
2 series. The dK-2 deviation captures the differences between the joint degree
distributions of the networks, that is, the probability that a randomly selected
edge has as endpoints nodes with certain degrees. We average the dK-2 deviation
among the 10 runs. Figure 2 shows the outcome of our experiments. Moreover,
Table 2 shows the dK-2 deviation introduced by the marking alone.

Based on our experiments, the success rate of our scheme is high but it
drops after a certain threshold. This demonstrates that there is a distinct range
of adversarial edge flips that can be tolerated by our scheme. Specifically, our
scheme worked well when the fraction of potential edges flipped by the adversary
is up to 10−3 and 10−5 for the random power-law and Youtube networks, respec-
tively. For these graphs, this number of flipped potential edges corresponds to
52.9% and 215.6% of the number of edges in the original graphs, respectively.
For the Flickr network, the runtime of the adversary modification became exces-
sive before the success rate could decrease, at a fraction of 10−4 of potential
edges flipped.

The distortion introduced by the watermark is negligible compared to the
distortion caused by the number of flips that the scheme can tolerate. On aver-
age, the marking modifies half of the edges on the key, which corresponds to
1.1 · 10−3, 3 · 10−5, and 10−4 of the number of edges in the original random
power-law, Youtube, and Flickr networks, respectively.

For the same number of flips, the dK-2 deviation in the Youtube network
was much larger than in the Flickr network, which in turn was larger than that
of the random power-law network. A possible explanation for this is that any
set of uniform edge flips has a bigger effect on the dk2-deviation of a skewed
graph than on the dK-2 deviation of a less skewed graph. Note that the Youtube
network has the largest skew, as the maximum degree is on the same order as
the Flickr network, but the average degree is less.
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