
Verifiable Zero-Knowledge Order Queries
and Updates for Fully Dynamic Lists and Trees

Esha Ghosh1(B), Michael T. Goodrich2, Olga Ohrimenko3,
and Roberto Tamassia1

1 Department Computer Science, Brown University, Providence, USA
{esha ghosh,roberto tamassia}@brown.edu

2 Department Computer Science, University of California, Irvine, USA
goodrich@uci.edu

3 Microsoft Research, Cambridge, UK
oohrim@microsoft.com

Abstract. We propose a three-party model for maintaining a dynamic
data structure that supports verifiable and privacy-preserving (zero-
knowledge) queries. We give efficient constructions supporting this model
for order queries on data organized in lists, trees, and partially-ordered
sets of bounded dimension.

1 Introduction

Cloud computing enables clients to outsource storage, computation, and ser-
vices to online service providers, thus benefiting from scalability, availability,
and usage-driven pricing. However, there are also some challenges that arise
from cloud computing, such as the difficulty of maintaining assurances of data
integrity and privacy as physical possession of data is delegated to a cloud storage
provider. Thus, we are interested in the study of technical solutions that allow a
cloud storage provider to prove the integrity of client data and the adherence to
privacy policies concerning this data. Of course, in order for any such technical
solution to be practically viable, the efficiency of such cloud-based integrity and
privacy solutions should be a major factor in evaluating them.

The need for simultaneously providing efficiency, integrity, and privacy in
cloud-based outsourced storage has motivated a considerable amount of recent
research on a three-party model, where a data owner uploads a database to a
cloud server so that a group of clients can interact with the server to execute
queries on the outsourced database (e.g., see [14–16,21,22,29]). This approach
has resulted in some interesting solutions, but most existing techniques appear
to be limited to static datasets, where data is uploaded only once by the data
owner and never updated, in spite of the fact that data changes over time in
many practical applications. There is only a small amount of prior work that
addresses integrity and privacy on dynamic outsourced data, and, to be best

Research supported in part by the U.S. National Science Foundation and by the
Kanellakis Fellowship at Brown University.

c© Springer International Publishing Switzerland 2016
V. Zikas and R. De Prisco (Eds.): SCN 2016, LNCS 9841, pp. 216–236, 2016.
DOI: 10.1007/978-3-319-44618-9 12

Verifiable Zero-Knowledge Order Queries and Updates 217

of our knowledge, all of this prior work considers only set membership and set
algebra queries (e.g., see [7,13,25,33]).

In this paper, we provide a framework and formal security definitions for
the problem of ensuring integrity and privacy in cloud services operating on
dynamic data, with an efficient construction that can process a rich set of queries.
The queries include membership and order queries on dynamic lists, trees, and
partially-ordered sets of bounded dimension.

Our first main contribution is to formally define a model we call dynamic
privacy-preserving authenticated data structure (DPPADS). In this model, a data
owner outsources his data structure to a server who answers queries issued
by clients. The owner can at any point update the data structure. The server
answers queries in such a way that the clients (1) can verify the correctness
of the answers but (2) do not learn anything about the data structure or the
updates besides what can be inferred from the answers. In other words, the
privacy property ensures that even a malicious client learns nothing about any
update, unless she specifically queries for the updated item before and after the
update. For example, consider the case when a new element, x, is inserted into a
dataset. If a client queried for x before and after this update, she will only learn
that x has been added to the database, but nothing else about the database.

The dynamic behavior of data structures raises challenges from a definitional
point of view since an adversary (i.e., a malicious client) may choose update
operations and later query the system to see their effect on nearby data, for
example. Pöhls and Samelin [33] consider updates in the three-party model only
for positive membership queries and their definition is specific to their data
structure and cannot be easily generalized to support richer data structures and
queries. Thus, we feel a richer framework, like DPPADS, is warranted.

Our DPPADS model strives to capture realistic uses of cloud services from
the data owner’s perspective. First, the owner’s online presence is required only
if he needs to update the data. Hence, clients’ queries are performed solely by the
server. Second, access control policies on the data can be seamlessly integrated
with our model since integrity tokens sent to the clients to enable verification of
query answers do not leak any information about the non-queried data.

Our second main contribution is to show how to efficiently instantiate
DPPADS with membership and order queries on lists, trees, and partial orders
of bounded dimension. Order queries are fundamental mechanisms for seeking
relative order information about the elements of a partial order. In the simplest
case, an order query for two elements, u and v, of a list L asks whether u precedes
or follows v in L. Consider now an ordered tree, T , i.e., a rooted tree where a
left-to-right ordering is defined among the descendants of each node. An order
query on two nodes u and v, of T asks which one of the following relations holds:
u is above v; u is below v; u is to the left of v; or u is to the right of v. The
first two cases occur when one of u and v is a descendant of the other and the
last two cases occur when u and v are in distinct subtrees of their least common
ancestor. We note that none of the previous works supported dynamic behavior
on such a rich set of structural data with integrity and privacy guarantees.

218 E. Ghosh et al.

Our model implies that the client should be able to verify the data she
queried with authentication tokens produced in part by the server (as the owner
is not present in the query phase). Building constructions with such authentica-
tion tokens is challenging for several reasons. Beside being hard to forge, these
tokens should bare no information about the rest of the data, not even the size
of the data; only in this case we can protect privacy of non-queried data. Fur-
thermore, dynamic datasets require corresponding updates to these tokens as a
consequence. Hence, these tokens should be easily updatable.

Existing work comes short in achieving all of the requirements above at once.
For example, commitments and zero-knowledge proofs [17] present a naive but
unfortunately inefficient solution. In particular, a naive approach would require
space and setup cost quadratic in the list/tree size and, hence, very inefficient.
Though more efficient solutions exist [10,14], they are set in the case where data
does not change after the owner uploads it and they consider only sets and lists
as underlying datasets. An attempt to cover dynamic datasets with integrity
and privacy guarantees was made by Liskov [25] and Catalano and Fiore [7].
These constructions are set in a weaker privacy model which we elaborate fur-
ther in Sect. 2. In fact, the authors comment on this limitation themselves: “Ide-
ally, the adversary should learn nothing more than the values of elements for
which a proof has been obtained (and possibly updated), and that updates have
occurred. However, we have not been able to realize this full level of security, and
instead offer a weaker but acceptable notion of security.” [25] (We also note that
the question of efficient constructions of zero-knowledge data structures more
complex than sets is left open in [33]; we answer it affirmatively here.)

Due to these limitations, we take an algorithmic approach to this problem
and identify efficient dynamic constructions for lists and trees. Then we integrate
the lightweight cryptographic primitive developed in [14] with our algorithmic
constructions in a novel way. But this alone was not sufficient to achieve our
strong notion of privacy for updates that are influenced by a strong adversary. To
this end, we have developed a technique of systematic, periodic re-randomization
to achieve strong privacy guarantees. However, for some application, even this
technique is not sufficient as the information that “an update has occurred” can
itself be regarded as sensitive information. This leakage is out of the scope of
the privacy definitions, but can be crucial for some applications from a practical
point of view. We address this issue further and propose a technique that can
be executed periodically in order to hide the existence of an update.

Our constructions strive to achieve good performance for all the three parties.
In particular, all the parties run in optimal time except for a logarithmic (in the
size of the source data structure) runtime overhead for the server. The client-
server interaction consists of a single round: the client sends a query and the
server returns the answer and the proof. The proof size and client verification
time are proportional to the answer. The owner interacts with the server only
when he needs to make an update to his data. We consider two types of owners:
one that can keep a copy of the data structure (DPPADS) and one that prefers
not to (due to limited storage resources) (SE-DPPADS). In the first case, the

Verifiable Zero-Knowledge Order Queries and Updates 219

owner performs an update operation himself, in time linear in the size of a batch
update. In the second case, he outsources the update operation to the server
and later verifies it, incurring a logarithmic multiplicative cost in the size of the
source data structure. In both cases, the owner performs constant-time updates,
this time is amortized over the number of elements queried or updated since the
last update. Our contributions can be summarized as follows:

– We formally define the DPPADS model for a dynamic privacy-preserving
authenticated data structure that supports zero-knowledge proofs for queries
and zero-knowledge updates (Sect. 3).

– We give an efficient construction of a DPPADS in the Random Oracle
model for a list that supports order queries and updates (Sect. 4).

– We give an overview of a space-efficient variant of the DPPADS model in
Sect. 4 and defer the detailed description to the technical report [12].

– We present an efficient extension of our DPPADS construction to trees and
partial orders of bounded dimension (Sect. 5).

2 Related Work

We describe the related primitives and discuss how we compare with them.
Detailed comparison of privacy properties and the asymptotic complexity of our
constructions with the most efficient constructions in the literature is in Table 1.

Traditional authenticated data structures (ADS) [11,18,31,37] are often set
in the three party model with a trusted owner, a trusted client and a malicious
server; the owner outsources the data to the server and later the client interacts
with the server to run queries on the data. The security requirement of such
constructions is data authenticity for the client against the server. This integrity
requirement is the same in our model. However, since the client is trusted, the
strong privacy requirement of our model is usually violated by the ADS proofs.
For example, Merkle Hash Tree (MHT) [26] reveals the number of elements in
the dataset and the proof path in a MHT reveals order information.

Authenticity and privacy together were considered in the two-party model
of zero knowledge set (ZKS) [8,10,24,27] introduced in [27] and later used in
knowledge lists [14], statistically hiding sets [34] and consistent query proto-
cols [30]. In this model a malicious prover commits to a database in the setup
phase and later a malicious verifier queries it. The prover and the verifier are
non-colluding. The prover may try to give answers inconsistent with the com-
mitted database, while the verifier may try to learn information beyond query
answers. In this paper, we study a three-party model which can be seen as a
relaxation of the ZKS model with similar privacy and integrity guarantees. That
is, the committer is “honest” and the (malicious) prover is different from the
committer. The three party model leads to efficiency enhancements since one
can use primitives with a trapdoor (like bilinear aggregate signature in our case)
as opposed to trapdoorless hash and commitments and generic zero-knowledge
proofs. As a result, efficient constructions were proposed for positive mem-
bership queries [1,2,38], dictionary queries on sets [16,29], range queries [15],

220 E. Ghosh et al.

order queries and statistics on lists [6,9,14,22,23,32,35]. However, all of these
models consider a static dataset. We enhance this three-party model to support
a fully dynamic dataset and formalize the notion of privacy and integrity.

Updates in both of the above models have received only limited attention.
The notion of updatable zero knowledge set was first proposed in [25]with two
definitions: transparent and opaque. The transparent definition explicitly reveals
that an update has occurred and the verifier can determine whether previously
queried elements were updated. Constructions satisfying transparent updates are
given in [7,25]. Our zero-knowledge definition in Sect. 3 supports opaque updates
in the three-party model, which is also satisfied by our constructions.

In the three-party model, updates on a set were considered in the recent work
of [33]. This work supports privacy-preserving verification of positive member-
ship only (i.e., a proof is returned only when the queried elements are members
of the given set). Their formal definition for updates is based on an indistin-
guishability game and is specific to their data structure and cannot be easily
extended to support richer data structures and queries. In comparison, we pro-
pose simulation based definition and our definition are not tailored to any spe-
cific data structure. Moreover, the construction of [33] supports only two update
operations: addition of new elements and merge of two sets. Here, we consider
operations on lists, trees and support addition, deletion and replace operations.

We compare privacy properties and the asymptotic complexity of our con-
structions with the static [14] and updatable [33] constructions in Table 1. We
note that, the static construction for order queries in [14] was shown to outper-
form the existing static constructions of [6,9,20,21,32,35,36]. We show that the
performance of our construction for queries is the same as that of [14]. More-
over, our list construction is the first to support fully dynamic zero-knowledge
updates (inserts and deletes) and zero-knowledge queries (order and positive
membership) with near optimal proof size and complexities for all three parties.
In particular, the time and space complexities for setup and verification and
space complexity of query phase are optimal.

Finally, we note that our work on privacy-preserving updates is not to be con-
fused with history independent data structures (HIDSs) [28]. HIDS is concerned
with the leakage one obtains when she looks at the layout of a data structure
before and after a sequence of updates on it. In our model, the client (i.e., the
adversary) obtains only some content of the data structure and not the layout.
Furthermore, we require the client to be able to verify that query answers are
correct and not leak any information about the rest of the content.

3 Dynamic Privacy Preserving Authenticated Data
Structure (DPPADS)

An Abstract Data Type (ADT) is a data structure (DS) D with two types of
operations defined on it: immutable operations Q() and mutable operations U().
Q(D, δ) takes as input a query δ on the elements of D and returns the answer

Verifiable Zero-Knowledge Order Queries and Updates 221

Table 1. Comparison of the efficiency of the dynamic operations of our construction
with an existing updatable construction that supports privacy-preserving queries in
the three party model. All the time and space complexities are asymptotic. Notation:
n is the list size, m is the query size, L is the number of insertions/deletions in a
batch, M is the number of distinct elements that have been queried since the last
update (insertion/deletion), k is the security parameter. Wlog we assume list elements
are k bit long. Following the standard convention, we omit a multiplicative factor of
O(k) for element size in every cell. Assumptions: Strong RSA Assumption (SRSA);
Random Oracle Model (ROM); Division Intractible Hash Function (DIHF); n-Bilinear
Diffie Hellman Inversion Assumption (nBDHI); (SE-)DPPAL/T denotes (space effi-
cient) Dynamic Privacy Preserving Authenticated Lists and Trees. We use ñ to denote
min(m log n, n).

[14] [33] DPPAL/T SE-DPPAL/T

Zero-knowledge update � �
Transparent update � � �
Owner’s state size n n 1

Server storage size n n n n

Order query time ñ ñ ñ

Order verification time m m m

Positive membership query time ñ m ñ ñ

Positive membership verif. time m m m m

Proof size m m m m

Insertion time L L + M L log n + M

Deletion time L + M L log n + M

Assumptions ROM, nBDHI DIHF, SRSA ROM, nBDHI ROM, nBDHI

Assumptions ROM DIHF ROM ROM

nBDHI SRSA nBDHI nBDHI

and it does not alter D. U(D, u) takes as input an update request u (e.g., insert
or delete), changes D accordingly, and outputs the modified data structure, D′.

We present a three party model where a trusted owner generates an instanti-
ation of an ADT, denoted as (D, Q, U), and outsources it to an untrusted server
along with some auxiliary information. The owner also publicly releases a short
digest of D. The curious (potentially malicious) client(s) issues queries on the
elements of D and gets answers and proofs from the server, where the proofs are
zero-knowledge, i.e., they reveal nothing beyond the query answer. The client
can use the proofs and the digest to verify query answers. Additionally, the
owner can insert, delete or update elements in D and update the public digest
and the auxiliary information that the server holds. (In this model the owner
is required to keep a copy of D to perform updates, while in the space efficient
version the owner keeps only a small digest.) We also require the updates to be
zero-knowledge, i.e., an updated digest should be indistinguishable from a new
digest generated for the unchanged D.

222 E. Ghosh et al.

Model. DPPADS is a tuple of six probabilistic polynomial time algo-
rithms (KeyGen,Setup,UpdateOwner,UpdateServer,Query,Verify). We describe
how these algorithms are used between the three parties and give their API.

The owner uses KeyGen to generate the necessary keys. He then runs Setup to
prepare D0 for outsourcing it to the server and to compute digests for the client
and the server. The owner can update his data structure and make corresponding
changes to digests using UpdateOwner. Since the data structure and the digest
of the server need to be updated on the server as well, the owner generates
an update string that is enough for the server to make the update itself using
UpdateServer. The client can query the data structure by sending queries to the
server. For a query δ, the server runs Query and generates answer. Using its
digest, it also prepares a proof of the answer. The client then uses Verify to verify
the query answer against proof and the digest she has received from the owner
after the last update.

(sk, pk) ← KeyGen(1k) where 1k is the security parameter. KeyGen outputs a
secret key (for the owner) and the corresponding public key pk.

(stateO, digest0C , digest0S) ← Setup(sk, pk,D0) where D0 is the initial data struc-
ture. Setup outputs the internal state information for the owner stateO,
digests digest0C and digest0S for the client and the server, respectively.

(stateO, digestt+1
C ,Updt+1,Dt+1, ut) ← UpdateOwner(sk, stateO, digesttC , digesttS ,

Dt, ut,SIDt) where ut is an update operation to be performed on Dt. SIDt is
a session information and is set to the output of a function f on the queries
invoked since the last update (Setup is counted as the 0th update).
UpdateOwner returns the updated internal state information stateO, the
updated public/client digest digestt+1

C , update string Updt+1 that is used
to update digesttS and the updated Dt+1 := U(Dt, ut).

(digestt+1
S ,Dt+1) ← UpdateServer(digesttS ,Updt+1,Dt, ut) where Updt+1 is used

to update digesttS to digestt+1
S and ut is used to update Dt to Dt+1.

(answer, proof) ← Query(digesttS ,Dt, δ) where δ is a query on elements
of Dt, answer is the query answer, and proof is the proof of the answer.

b ← Verify(pk, digesttC , δ, answer, proof) with input arguments are defined above.
The output bit b is accept if answer = Q(Dt, δ), and reject, otherwise.

Our model also supports the execution of a batch of updates as a single oper-
ation, which may be used to optimize overall performance (Sect. 4). We note that
SID and f are introduced for efficiency reasons only. Intuitively, function f can
be instantiated in a way that helps reduce the owner’s work for maintaining
zero-knowledge property of each update. We leave f to be defined by a par-
ticular instantiation. Once defined, f remains fixed for the instantiation. Since
the function is public, anybody, who has access to the list of (authentic) queries
performed since the last update, can compute it.

A DPPADS has three security properties: completeness, soundness and zero-
knowledge.

Completeness dictates that if all three parties are honest, then for an
instantiation of any ADT, the client will always accept an answer to her query

Verifiable Zero-Knowledge Order Queries and Updates 223

from the server. Here, honest behavior implies that whenever the owner updates
the data structure and its public digest, the server updates D and its digest
accordingly and replies client’s queries faithfully w.r.t. the latest data structure
and digest.

Definition 1 (Completeness). For an ADT (D0, Q, U), any sequence of
updates u0, u1, . . . , uL on the data structure D0, and for all queries δ on DL:

Pr[(sk, pk) ← KeyGen(1k); (stateO, digest0C , digest0S) ← Setup(sk, pk,D0);
{
(stateO, digestt+1

C ,Updt+1,Dt+1, ut) ←
UpdateOwner(sk, stateO, digesttC , digesttS ,Dt, ut,SIDt);

(digestt+1
S ,Dt+1) ← UpdateServer(digesttS ,Updt+1,Dt, ut);

}
0≤t≤L

(answer, proof) ← Query(digestLS ,DL, δ) :

Verify(pk, digestLC , δ, answer, proof) = accept ∧ answer = Q(DL, δ)] = 1.

Soundness protects the client against a malicious server. This property ensures
that if the server forges the answer to a client’s query, then the client will accept
the answer with at most negligible probability. The definition considers adver-
sarial server that picks the data structure and adaptively requests updates. After
seeing all the replies from the owner, it can pick any point of time (w.r.t. updates)
to create a forgery.

Since, given the server digest, the server can compute answers to queries
herself, it is superfluous to give Adv explicit access to Query algorithm.

Definition 2 (Soundness). For all PPT adversaries Adv and for all possible
valid queries δ on the data structure Dj of an ADT, there exists a negligible
function ν(.) such that, the probability of winning the following game is negligible:

Setup: Adv receives pk where (sk, pk) ← KeyGen(1k). Given pk, Adv picks an
ADT of its choice, (D0, Q, U) and receives the server digest digest0S for D0, where
(stateO, digest0C , digest0S) ← Setup(sk, pk,D0).

Query: Adv adaptively chooses a series of updates u1, u2, . . . , uL and correspond-
ing SIDs, where L = poly(k). For every update request Adv receives an update
string. Let Di+1 denote the state of the data structure after the (i)th update
and Updi+1 be the corresponding update string received by the adversary, i.e.,
(stateO, digesti+1

C ,Updi+1,Di+1, ui) ← UpdateOwner(sk, stateO, digestiC , digestiS ,
Di, ui,SIDi).

Response: Finally, Adv outputs (Dj , δ, answer, proof), 0 ≤ j ≤ L, and wins the
game if answer �= Q(Dj , δ) and Verify(pk, digestjC , δ, answer, proof) = accept.

Zero-knowledge captures privacy guarantees about the data structure against
a curious (malicious) client. Recall that the client receives a proof for every
query answer. Periodically she also receives an updated digest, due to the owner

224 E. Ghosh et al.

making changes to D. Informally, (1) the proofs should reveal nothing beyond
the query answer, and (2) an updated digest should reveal nothing about update
operations performed on D. This security property guarantees that the client
does not learn which elements were updated, unless she queries for an updated
element (deleted or replaced), before and after the update.

Definition 3 (Zero-Knowledge). Let RealE,Adv and IdealE,Adv,Sim be defined
as follows where, wlog the adversary is asks only for valid data and update
queries.1

RealE,Adv(1
k) IdealE,Adv,Sim(1k)

The challenger, C, runs KeyGen(1k) to generate

sk, pk, sends pk to Adv1.

Sim1 generates a public key, pk, sends it to Adv1
and keeps a state, stateS .

Given pk, Adv1 picks an ADT (D0, Q, U) of its choice.

Given D0, C runs Setup(sk, pk,D0) and sends digest0C
to Adv1.

Sim1 generates digest0C , sends it to Adv1, updates

stateS . (It is not given D0.)

With access to Adv1’s state, Adv2 adaptively queries {q1, q2, . . . , qM}, M = poly(k):

Let Dt−1 denote the state of the data structure at the time of qi.)

On data query qi:

C runs Query algorithm for the query on Dt−1 and

the corresponding digest as its parameters. C
returns answer and proof to Adv2

Given the answer to the query, Q(Dt−1, qi), and

stateS , Sim2 generates answer and proof, sends

them to Adv2 and updates its state.

On update query qi:

C runs UpdateOwner algorithm on qi and returns the

public digest digesttC

Given stateS , Sim2 returns updated digest digesttC
and updates its state. (It is not given the

update query qi.)

Adv2 outputs a bit b.

A DPPADS E is zero-knowledge if there exists a PPT algorithm Sim =
(Sim1,Sim2) s.t. for all malicious stateful adversaries Adv = (Adv1,Adv2) there
exists a negligible function ν(.) s.t.

|Pr[RealE,Adv(1k) = 1] − Pr[IdealE,Adv,Sim(1k) = 1]| ≤ ν(k).

We note that SID argument to UpdateOwner need not be used explicitly in the
definition: Adv implicitly controls the input of f by choosing queries on D (recall
that SID = f(. . .)), while the challenger and the simulator know all the queries
and can compute f themselves.

Comparison with the update definitions of [7,25]: Liskov [25] introduced
two notions of update (w.r.t. a zero-knowledge database): Opaque: an adver-
sary should learn nothing more than the values of queried elements and the
fact that an update has occurred. Transparent: in addition to what is revealed
in the opaque update, an adversary learns the pseudonym of an updated key;
pseudonyms are generated deterministically when keys are added to the data-
base and do not change. The constructions in [25] and [7] achieve only the weaker

1 This is not a limiting constraint, as we can easily force this behavior by checking if
a query/update is valid in the Real game.

Verifiable Zero-Knowledge Order Queries and Updates 225

of the two, that is, they satisfy the transparent definition. Our zero-knowledge
definition is close to the opaque definition where an updated client digest is indis-
tinguishable from a fresh digest, and old proofs are not valid after an update.

4 Dynamic Privacy-Preserving Authenticated List

In this section we instantiate a DPPADS with a list (an ordered set of distinct
elements) and refer to it as dynamic privacy-preserving authenticated list. We
first describe the cryptographic primitives and assumptions that our construction
relies on for security. We then explain how to maintain labeling of a dynamic
list and how we use it to achieve efficient updates in our construction.

Preliminaries. Let L denote a list and Elements(L) denote the unordered set
corresponding to L. We refer to element’s position in the list as it’s rank. We
define order queries on the elements of a list as δ. The query answer, answer, is the
elements of δ rearranged according to their order in L, i.e., answer = πL(δ). For
example, with L = {a, b, c, d, e} and δ = (d, a, e), answer is {a, d, e}. An update
operation on a list can be one of the following: linsertafter(x, y): insert element
x /∈ L after element y ∈ L; ldelete(x): delete element x from L; lreplace(x′, x):
replace element x′ ∈ L with element x /∈ L.

Bilinear Maps: Let k be the security parameter, p be a large k-bit prime and n =
poly(k). G and G1 are multiplicative groups of prime order p. A bilinear map
e : G×G → G1 is a map with properties: (1) ∀u, v ∈ G and ∀a, b ∈ Z, e(ua, vb) =
e(u, v)ab; (2) e(g, g) �= 1 where g is a generator of G. As is standard, we assume
that group action on G,G1 and the bilinear map e can be computable in one
unit time. We measure time complexity in terms of number of group actions.

Bilinear Aggregate Signature Scheme [5]: Given signatures σ1, . . . , σn on distinct
messages M1, . . . ,Mn from a user, it is possible to aggregate these signatures into
a single short signature σ such that it (and the n messages) convince the verifier
that the user indeed signed the n original messages. The scheme guarantees
that σ is valid iff the aggregator used all σi’s to construct it.

Hardness Assumption: Let p be a large k-bit prime where k ∈ N is a security
parameter. Let P ∈ N be polynomial in k, p = poly(k). Let e : G × G → G1 be a
bilinear map (as defined above) and g be a random generator of G. We denote a
probabilistic polynomial time (PPT) adversary A as a probabilistic polynomial
time Turing Machine running in time poly(k).

Definition 4 (P -Bilinear Diffie Hellman Inversion (P -BDHI) [4]). Let s
be a random element of Z

∗
p and P be a positive integer. Then, for every PPT

adversary A there exists a negligible function ν(.) such that: Pr[s $←− Z
∗
p; y ←

A(〈g, gs, gs2
, . . . , gsP 〉) : y = e(g, g)

1
s] ≤ ν(k).

226 E. Ghosh et al.

Online List Labeling (or File Maintenance) Problem [3,19,39]: In online list
labeling, a mapping from a dynamic set of n elements is to be maintained to the
integers in the universe U = [1, N] such that the order of the elements respect
the order of U . The integers, that the elements are mapped to, are called tags.
The requirement of the mapping is to match the order of the tags with the order
of the corresponding elements. Moreover, the mapping has to be maintained
efficiently as the list changes.

We use the order data structure OD presented in [3] for online list labeling.
We briefly describe OD and summarize its performance here. Let U = [1, N] be
the tag universe size and n be the number of elements in the dynamic set to be
mapped to tags from U , where N is a function of n and is set to be a power of
two. Then we consider a complete binary tree on the tags of U , where each leaf
represents a tag form the universe. Note that, this binary tree is implicit, it is
never explicitly constructed, but it is useful for the description and analysis.

At any state of the algorithm, n of the leaves are occupied, i.e., the tags used
to label list elements. Each internal node encloses a (possible empty) sublist of
the list, namely, the elements that have the tags corresponding to the leaves
below that node. The density of a node is the fraction of its descendant leaves
that are occupied. Then overflow threshold for the density of a node is defined
as follows. Let α be a constant between 1 and 2. For a range of size 20 (leaf), the
overflow threshold τ0 is set to 1. Otherwise, for a range of size 2i, τi = τi−1

α =
α−i. A range is in overflow if its density is above its overflow threshold. OD(n)
supports the following operations:
insertafter(x, y): To insert an element x after y, do the following: (1) Examine the
enclosing tag ranges of y. (2) Calculate the density of a tag range by traversing
the elements within the tag range. (3) Relabel the smallest enclosing tag range
that is not overflowing. (4) Return the relabeled tags and the tag of x.
delete(x): Delete x from the list and mark the corresponding tag as unoccupied.
tag(x): Return the tag of element x.

We note that the original list together with a sequence of updates on it
deterministically define the tags of all elements in OD.

Complexity: Initially, we set N = (2n)
1

1−log α , nmin = n/2 and nmax = 2n, where
n is the number of elements. As elements are inserted into or deleted from the
list, the data structure can generate tags while nmin ≤ n ≤ nmax. If at any
point, the current number of elements, n, falls below nmin or exceeds nmax, the
data structure is rebuilt for the new value of n and N is recomputed. Hence, the
algorithm needs log n

1−log α bits to represent a tag. The rebuild introduces a constant
amortized overhead (over the insert and delete operations). Hence, OD(n) uses
O(log n) bits per tag and O(n log n) bits for storing all tags. OD(n) has O(1)
amortized insert and delete time, and O(1) time for tag.

Dynamic Construction. Our construction of DPPAL uses as a starting point a
static privacy-preserving authenticated list [14]. At a high level, the construction
of PPAL works as follows: every element of the static list is associated with a

Verifiable Zero-Knowledge Order Queries and Updates 227

member witness that encodes the rank of the element (using a component of
the bilinear accumulator public key) “blinded” with randomness. Every pair of
element and its member witness is signed by the owner and the signatures are
aggregated using bilinear aggregate signature scheme (see above) to generate
the public list digest. The client and the server receive the list digest, while the
server also receives the signatures, member witnesses and the randomness used
for blinding. Given a query from the client on a sublist of the source list, the
server returns this sublist ordered as it is in the list with a corresponding proof
of membership and order. The server proves membership of every element in
the query using the homomorphic nature of bilinear aggregate signature, that is,
without the owner’s involvement. The server then uses the randomness and the
bilinear accumulator public key to compute the order witness. The order witness
encodes the distance between two elements, i.e., the difference between element
ranks, without revealing anything about it.

Although this construction is efficient for static lists, data structures are often
dynamic. The intuition behind our modifications is as follows. We first notice that
the rank information of each element used in the construction of [14] can actually
be replaced with any tag that respects the rank ordering. For example, let the
rank of elements x and y be 5 and 6, respectively. We can replace this information
with tag(x) and tag(y) as long as the following hold: 1) tag(x) < tag(y) and 2)
there is no other element in the list whose tag falls between tag(x) and tag(y).
The tag generation algorithm of the order labeling data structure OD(n) has
exactly this property: elements’ tags respect the order of elements’ ranks in the
list. Hence, we use OD(n) to generate tags for the elements (instead of their
ranks) to maintain list order. This enables efficient updates, albeit, in a non
privacy-preserving way (e.g., information about ranks as well as which elements
were updated is revealed). To this end, we develop a re-randomization method
(explained in the subsequent Update Phase) to preserve privacy.

Our construction consists of instantiating the algorithms of DPPADS: Setup,
UpdateOwner, UpdateServer, Query and Verify. We describe each algorithm in
this section and give their pseudo-code in Algorithms 1–6. We use the following
notation. H : {0, 1}∗ → G: cryptographic hash function that will be modeled
as a random oracle in the security analysis; all arithmetic/group operations are
performed mod p. System parameters are (p,G,G1, e, g,H), where p,G,G1, e, g
are defined in Sect. 4. L0 is the input list of size n = poly(k), where xi’s are
distinct. OD(n) is used to generate the tags for the list elements and supports
insertafter, delete, and tag operations.

KeyGen and Setup Phases: These algorithms proceed as follows. The owner ran-
domly picks s, v ∈ Z

∗
p and ω as part of his secret key sk and publishes pk = gv as

his public key as in [14]. But instead of using rank information, the owner inserts
the elements of L0 in an empty order data structure O := OD(n) respecting their
order in L0 and generating tag for each element. Hence, the order induced by
the tags of the elements is the list order. For every element xi ∈ L0, the owner
uses the following GenAuthTokens procedure: it generates fresh randomness ri to
blind tag(xi); computes member witness txi∈L0 as gstag(xi)ri and its signature σxi

228 E. Ghosh et al.

Algorithm 1. (stateO, digest0C , digest0S) ← Setup(sk, pk, L0) where L0 = {x1, . . . , xn}.

1: Set the internal state variable stateO := 〈L0, ⊥, ⊥, ⊥〉. salt ← (H(ω))v where ω is a nonce in sk.
% salt is treated as a list identifier that protects against mix-and-match attacks and from
revealing that the queried elements represent the complete list.

2: % Generate auxiliary data structure and authenticated information.
(σL0 ,O, ΣL0 , ΩL0) ← build(sk, stateO, L0)

3: stateO := 〈L0,O, ∀xi ∈ L0 : (txi∈L0 , σxi
, ri)〉 and digest0C := σL0

4: digest0S := 〈pk, σL0 , 〈g, gs, gs2 , . . . , gsn 〉, ΣL0 , ΩL0 〉
5: return (stateO, digest0C , digest0S)

as H(txi∈Lt
||xi)

v. The owner then executes standard signature aggregation by
multiplying element signatures into a list signature σL0 . To preserve privacy of
the size of the list, he further multiplies the list signature with salt = (H(ω))v.

The owner sends σL0 to the client, as the client digest digest0C . To the server,
he sends L0 and a digest digest0S which contains the tag, the random value used
for blinding, the member witness and the signature for every element in the list
(we refer to these four units as authentication units of an element). He also sends
gs0

, . . . , gsn

, that help the server compute proofs for the client during the query
phase. The owner saves L0,O, digest0S in his state variable stateO, which he later
uses to perform updates.

Update Phase: UpdateOwner (Algorithm 3) lets the owner perform update ut

on his outsourced data structure and propagate the update in the digests. For
the actual update, the owner uses O to efficiently compute the new tag of an
element and update the tags of the elements affected by the update. (We note
this may include rebuild of O itself when the size of the list either falls below n/2
or grows above 2n.) The owner then updates all the digests and authentication
units that have to be updated due to the tag change. For the server, the owner
computes the member witnesses and signatures since these operations rely on
the secret keys. As we argue later, updating only elements whose tags have been
modified due to the update is not sufficient to obtain zero-knowledge update. To
this end, the owner has to also rerandomize any authentication units that were
sent to the client. We elaborate on each step in the update below.

The update of authentication units depends on which one of the three update
operations was performed on the list. If a new element x has been inserted in
the list (i.e., linsertafter operation), then the owner recomputes all witnesses
and signatures of elements in Y where Y is a set of elements whose tags were

Algorithm 2. (σLt ,O, ΣLt , ΩLt) ← build(sk, stateO, Lt) where sk contains v and ω
and Lt = {x1, . . . , xn′}.

1: % Build the order labeling data structure O to generate tag(xi) ∀xi ∈ Lt.
O := OD(n′) where |Lt| = n′

2: For every i < i ≤ n′: O.insertafter(xi−1, xi).
3: For every xi ∈ Lt: ri, txi∈L0 , σxi

← GenAuthTokens(xi)
4: Compute list digest signature σLt ← salt ×

∏
xi∈Lt

σxi
, where salt = (H(ω))v .

5: ΣLt := 〈∀xi ∈ Lt : (txi∈Lt , σxi
), H(ω)〉 and ΩLt := 〈∀xi ∈ Lt : (ri, tag(xi)〉

6: return (σLt ,O, ΣLt , ΩLt)

Verifiable Zero-Knowledge Order Queries and Updates 229

Algorithm 3. (stateO, digestt+1
C ,Updt+1, Lt+1, ut) ← UpdateOwner(sk, stateO,

digesttC , digesttS , Lt, ut, SIDt), where digesttC and digesttS are the client and the server
digests corresponding to Lt, respectively; Lt is the list after (t − 1)th update, ut is the
update request (either linsertafter, ldelete or lreplace); and SIDt contains all the elements
that were accessed by queries since update operation ut−1.

1: Lt+1 := U(Lt, ut) % Update the list.
2: If n/2 ≤ |Lt+1| ≤ 2n, then:
3: Initialize Y := {} % Elements to refresh.
4: Initialize σtmp := 1 % Accumulates changes to list signature.
5: Initialize xnew := ⊥ % New element to add to list.
6: If ut = linsertafter(x, y):
7: Y ← O.insertafter(x, y) % Elements whose tags changed after insertion.
8: xnew ← x
9: Else if ut = lreplace(x′, x): % Replace x′ with x, where x /∈ Lt.

10: Replace x′ with x in O.
11: σtmp ← σ−1

x′ % Remove a signature of the old element x′.
12: xnew ← x
13: Else if ut = ldelete(z) % Delete z, its signature and auth. info.
14: O.delete(z)

15: σtmp ← σ−1
z (gvr′

), where r′ $←− Z
∗
p

16: % ΣUpd(+), ΩUpd(+) contain information of elements to be added/replaced:
17: ΣUpd(+) := 〈〉 and ΩUpd(+) := 〈(r′, ⊥)〉
18: % ΣUpd(−), ΩUpd(−) contain information of elements to be deleted:
19: ΣUpd(−) := 〈(tz∈Lt , σz)〉 and ΩUpd(−) := 〈(rz, tag(z))〉.
20: If xnew �= ⊥ % Generate auth. info. for new element.

21: r
$←− Z

∗
p

22: Generate member witness txnew∈Lt+1 ← (gstag(xnew)
)r.

23: Compute signature σxnew ← H(txnew∈Lt+1 ||xnew)v .

24: σtmp ← σtmpσxnew % Add a signature of new element.
25: ΣUpd(+) := 〈(txnew∈Lt+1 , σxnew)〉 and ΣUpd(−) := 〈〉.
26: ΩUpd(+) := 〈(rxnew , tag(xnew))〉 and ΩUpd(−) := 〈〉.
27: (σrefresh, ∀w ∈ SIDt ∪ Y : (rw, σw)) ← refresh(sk, stateO, SIDt ∪ Y)
28: ΣUpd(+) := ΣUpd(+) ∪ 〈∀w ∈ SIDt ∪ Y : (tw∈Lt+1 , σw)〉
29: ΩUpd(+) := ΩUpd(+) ∪ 〈∀w ∈ SIDt ∪ Y : (rw, tag(w))〉
30: σLt+1 ← σLtσtmpσrefresh % Update signature.

31: Updt+1 := 〈σLt+1 , ⊥, 〈ΣUpd(+), ΣUpd(−)〉, 〈ΩUpd(+), ΩUpd(−)〉〉
32: Else: % Update ut significantly changed list size.
33: (σLt+1 ,O, ΣLt+1 , ΩLt+1) ← build(sk, stateO, Lt+1) % Regenerate auth. info.

34: ΣUpd(+) := 〈∀w ∈ Lt+1 : (tw∈Lt+1 , σw)〉 and ΣUpd(−) = 〈〉.
35: ΩUpd(+) := 〈∀w ∈ Lt+1 : (ri, tag(wi))〉 and ΩUpd(−) = 〈〉.

36: Updt+1 := {σLt+1 , 〈g, gs, gs2 , . . . , gsn′
〉, 〈ΣUpd(+), ΣUpd(−)〉, 〈ΩUpd(+), ΩUpd(−)〉}.

37: digestt+1
C := σLt+1

38: stateO := 〈Lt+1,O, ∀xi ∈ Lt+1 : (txi∈Lt+1 , σxi
, ri)〉

39: return (Lt+1, digestt+1
C , ut,Updt+1, stateO)

updated due to insertion (recall that Y is of amortized size O(1)). The owner
also computes the member witness and a signature for the new x from scratch
(called, xnew in the pseudo-code). Note that this step is equivalent to the steps
in Setup for generating authentication units, only in this case it is for elements
in Y and element xnew instead of the whole list. The owner then propagates these
changes to the list digest signature σLt

as follows: (1) replaces signatures on the
elements that have changed (i.e., elements in Y); (2) adds a signature for xnew.

If an element x has been replaced with x′ (i.e., lreplace operation), then the
new member witness and signature is computed for x′. The owner propagates

230 E. Ghosh et al.

Algorithm 4. (digestt+1
S , Lt+1) ← UpdateServer(digesttS ,Updt+1, Lt, ut), where ut is

an update to perform on Lt and Updt+1 contains updates on authentication information
generated by the owner.

1: Update the list: Lt+1 := U(Lt, ut) where |Lt+1| = n′.
2: Parse Updt+1 as 〈σLt+1 , T , ΣUpd, ΩUpd〉.
3: Compute ΣLt+1 : add/replace/delete elements from ΣUpd in ΣLt .

4: Compute ΩLt+1 : add/replace/delete elements from ΩUpd in ΩLt .

5: If T �= ⊥: % ut caused regeneration of tags for all elements, hence authenticated information
needs to be replaced with new one

6: digestt+1
S := 〈pk, σLt+1 , 〈g, gs, gs2 , . . . , gsn′

〉, ΣLt+1 , ΣLt+1 〉.
7: Else % ut does not cause regeneration of tags for all elements

8: digestt+1
S := (pk, σLt+1 , 〈g, gs, gs2 , . . . , gsn 〉, ΣLt+1 , ΩLt+1) % where gsi

are from digesttS

9: return (Lt+1, digestt+1
S)

these change to the list digest signature σLt
as follows: (1) adds a signature

for x′; (2) removes the signature of the old element x.
In case when element z is deleted, the owner removes the signature of the

old element in the list digest signature σLt
and re-randomizes the list digest

signature with fresh randomness r′. Notice that, in case of insert and replace
operations, the list digest signature gets re-randomized implicitly, since the new
membership witness gets refreshed with fresh randomness.

As described so far, UpdateOwner has a viable leakage channel. Recall that
an update operation changes authentication units of elements in the update ut

and Y. Hence, if the client accesses an element in Y, before and after the
update, she will notice that its authentication unit has changed and infer that
a new element was inserted nearby. This violates the zero-knowledge property
of DPPADS: the client should not learn information about updates to elements
she did not query explicitly.

UpdateOwner achieves the zero-knowledge property as follows. We set f to be
a function that takes client queries that have occurred since the last update and
returns a set of elements accessed by them; recall that these are the elements
whose authentication units are known to the client. Given these elements in
UpdateOwner’s input SIDt, the owner can recompute the member-witnesses of
each of them using fresh randomness, update their signatures and the list digest
with GenAuthTokens. We define a subroutine refresh which calls GenAuthTokens
for each element in Y and SIDt, and returns σrefresh which contains old signatures
to be removed and new ones to be added to σLt+1 . Since the member-witnesses
and signatures of the elements in SIDt are changed independently of ut, seeing
refreshed units after the update reveals no information to the client. We define f
this way for optimization. In a naive implementation, where f is defined as a
constant function, or where SIDt is not used, the UpdateOwner algorithm has to
randomize member-witnesses and signatures for all the list elements.

Finally, the owner updates stateO and sends ut and authentication units
(updated due to ut and refresh) in Updt+1 to the server and updated list
digest σLt+1 to the client. The server runs UpdateServer (Algorithm 4) to

Verifiable Zero-Knowledge Order Queries and Updates 231

Algorithm 5. (answer, proof) ← Query(digesttS , Lt, δ), where δ = (z1, . . . , zm),
s.t. zi ∈ Lt, is the queried sublist and Lt is the most recent list.

1: answer = πLt (δ) = {y1, . . . , ym};
2: proof = 〈Σanswer, Ωanswer〉:
3: Σanswer := 〈σanswer, T, λL′ 〉 where L′ = Lt \ δ and:
4: σanswer ←

∏
yj∈answerσyj

. % Digest signature for the query elements.

5: T = (ty1∈Lt , . . . , tym∈Lt). % Member witnesses for query elements.
6: Let S be a set of random elements w/o tags, i.e., introduced in ΩLt due to ldelete.

7: The member verification unit: λL′ ← H(ω) × g
∑

r∈S r ×
∏

x∈L′ H(tx∈Lt ||x) where H(ω)

comes from digesttS .
8: Ωanswer = (ty1<y2 , ty2<y3 , . . . ,tym−1<ym):

9: For every j ∈ [1, m − 1]: Let i′ := tag(yj) and i′′ := tag(yj+1), and r′ := ΩL[i′]−1 and

r′′ := ΩL[i′′]. Compute tyj<yj+1 ← (gsd
)r′r′′

where d = |i′ − i′′|.
10: return (answer, proof)

Algorithm 6. b ← Verify(pk, digesttC , δ, answer, proof).

1: Compute ξ ←
∏

yj∈δH(tyj∈Lt ||yj)

2: e(σanswer, g)
?
= e(ξ, pk) % Verify answer digest is signed by the owner

3: e(σLt , g)
?
= e(σanswer, g) × e(λL′ , pk). % Verify answer is a part of the source list

4: ∀j ∈ [1, m − 1]: e(tyj∈Lt ,tyj<yj+1)
?
= e(tyj+1∈Lt , g). % Verify the returned order

5: If all equalities hold, then accept. Else reject.

propagate the update at its end. It uses ut to update the list and Updt+1 to
add/substitute/remove authentication units in its digest.

Query Phase: The server has to perform two tasks when it receives query δ. It
has to answer the query and compute the proof that the answer is correct. For
the former step, it simply reorders the elements in δ according to their order
in Lt, sets answer to πLt

(δ). The latter step consists of proving that elements
in answer are in Lt (i.e., membership) and that they are ordered correctly.

The detailed query phase is presented in Algorithm 5. In order to prove
membership of every element in answer, the server uses its digest to obtain
member witnesses tyj∈Lt

and signatures σyj
, for each element yi ∈ δ, and includes

them in the proof. It then proves that these yis are indeed part of the source
list Lt by computing the authentication digest for all elements not in the query.
Let L′ = Lt \ δ. Then, computing the authentication digest, λL′ , is very similar
to the computation of the list signature (i.e., client digest) by the owner albeit
without using secret key v. That is, λL′ is a product of hashed tags of elements
in L′ along with the hash of ω, given in the server digest.

The server proves the order condition as follows. For every pair of adjacent
elements yj , yj+1 in answer, the server computes an order witness tyj<yj+1 :=
(gsd

)r′′/r′
, where d = tag(yj+1) − tag(yj) and r′ and r′′ are randomness of yj and

yj+1 and gsd

is part of server’s digest. This part of the server digest, tyj<yj+1 , is

used for verification in the equation e(gtag(yj)
r′

, tyj<yj+1) = e(gtag(yj+1)
r′′

, g).
The above steps preserve privacy and integrity of the scheme. In particular,

tyj∈Lt
’s do not reveal element ranks since the witnesses have blinded using secret

232 E. Ghosh et al.

randomness during the setup. Furthermore, it is hard for the server to compute
an invalid order witnesses tyj<yj+1 as this would require computing (gs−d

)r′′/r′
.

This, in turn is (almost) equivalent to computing an inverse in the exponent,
violating the P -BDHI assumption as a result.

VerificationPhase: Given (answer, proof), the client usesVerify (Algorithm 6) and
her copy of the list digest signature to verify answer. She checks the membership
of elements in answer by using the properties of bilinear aggregate signatures. In
particular she canverify the relationship ofL′ = Lt\δ byknowing elements in δ and
their signatures, authentic list digest signature σLt

(received from the owner) and
server computed authentication digestλL′ .We note that the client cannot tell if δ is
the whole list or not, because of the blinding factor salt used in computing σLt

. The
client then uses bilinear map to verify order witnesses as it lets her verify algebraic
properties of the exponents, i.e., that d = tag(yj+1)−tag(yj) for tyj∈Lt

= gr′stag(yj)

and tyj+1∈Lt
= gr′′stag(yj+1)

.

Extensions: UpdateOwner can be easily generalized to batch updates for opti-
mization. Our construction can also hide from the client the fact that an update
has happened via periodic updates and refreshes. The details are in [12].

Efficiency: Our construction uses efficient cryptographic operations: multiplica-
tion and exponentiation in prime order groups, evaluation of a cryptographic
hash function and bilinear map. As is standard, we assume they take constant
time. Moreover, we use at most four of these operations per element. A mem-
ber/order witness and a signature is a group element and is represented using
O(1) space (by standard convention, the word size is log(poly(k)) and k is the
security parameter). Theorem 1 summarizes the security and performance.

Theorem 1. The dynamic privacy-preserving authenticated list (DPPAL) con-
struction of Sect. 4 satisfies the security properties of DPPADS including com-
pleteness, soundness (under the P -BDHI assumption [4]) and zero-knowledge
in the random oracle model (inherited from [5]). The construction has the fol-
lowing performance, where n is the list size, m is the query size, L is the number
of updates in a batch and M is the number of distinct elements that have been
queried since the last update:

– The owner uses O(n) time and space for setup, and keeps O(n) state;
– In the update phase the owner sends a message of size O(L+M) to the server

and a message of size O(1) to the client;
– The update phase requires O(L+M) time for the owner and the server, or O(1)

amortized over the number of elements queried or updated since the last update;
– The server uses O(n) space and performs the preprocessing in O(n) time;
– The server computes the answer to a query and its proof in time

O(min{m log n, n});
– The proof size is O(m);
– The client verifies the proof in O(m) time and space.

Verifiable Zero-Knowledge Order Queries and Updates 233

Space Efficient DPPADS: The model of Sect. 3 assumes the owner himself
updates his data structure and sends information to the server to propagate
the changes. So, the owner is required to keep the most recent version of Dt

and any associated auxiliary information. He gets the advantage of remaining
offline during the query phase and gets online only during an update. But this
may not be ideal for an owner with small memory requirement. So we propose a
model that is space efficient and relies on an authenticated data structure (ADS)
protocol executed between the owner and the server and give an instantiation
in [12]. We summarize the performance in Theorem 2 below.

Theorem 2. The space efficient dynamic privacy-preserving authenticated list
construction has the following performance, where n is the list size, L is the
number of updates in a batch and M is the number of distinct elements that
have been queried since the last update:

– The owner uses O(n) time and space for setup, and keeps O(1) state;
– The update phase requires one round of interaction between the owner and the

server where they exchange a message of size (L log n + M);
– The update phase requires O(L log n + M) time for the owner and the server,

or O(log n) amortized over the number of queried or updated elements.

5 Dynamic Privacy-Preserving Authenticated Tree

We now propose a tree instantiation of DPPADS: a dynamic privacy-preserving
tree (DPPAT) using a dynamic privacy-preserving authenticated list (Sect. 4).
We only give the summary of the performance here, in Theorem 3, and defer the
details of the construction to [12].

Order Queries: An order query on T is a pair of elements (x, y) from a tree T .
The corresponding answer is the pair rearranged according to their order in T
along with a bit b indicating if the relation in ancestry or left-right (i.e., one
node is to the left of the other with respect to their lowest common ancestor).
For generality, the data structure also supports a batch order query where the
returned answer is an induced forest of the queried elements.

DPPAT using DPPAL: A rooted tree T can be uniquely represented as two lists,
L-OrderT and R-OrderT , where the lists correspond to two different traversals of
the tree constructed as follows. Both traversals start from the root, process each
node they encounter, and recur on the subtrees of the current node. L-Order
traverses subtrees left to right while R-Order traverses subtrees right to left. To
construct a DPPAT, we construct two DPPAL’s: on L-OrderT and R-OrderT .
DPPAT uses DPPAL to augment the answer with proofs of membership of x
and y, and a proof of order. For a batch query of size m, the proof size is linear
in the answer size, i.e., it is sufficient to prove O(m) pairwise orders as we show
in [12]. DPPAT can support all the dynamic operations, namely, link, cut and
replace on T by making a constant number of update queries to the DPPALs
of L-OrderT and R-OrderT . We give the details in [12].

234 E. Ghosh et al.

Theorem 3. A dynamic privacy-preserving authenticated tree (DPPAT) can
be implemented using a DPPAL. This scheme satisfies the security properties of
a DPPADS: completeness, soundness and zero-knowledge. The runtime, space,
and message size for every party is proportional to the corresponding runtime,
space, and message size in the DPPAL scheme.

Remark: The technique used for DPPAT can be further extended to
d-dimensional Partial Orders (POs) for some constant d. The extension relies
on the unique intersection of d total ordered lists of a PO. Hence, the dynamic
privacy-preserving version can be implemented using d DPPALs (e.g., a tree is
a special case of d = 2).

References

1. Ahn, J.H., Boneh, D., Camenisch, J., Hohenberger, S., Waters, B.: Computing on
authenticated data. In: Cramer, R. (ed.) TCC 2012. LNCS, vol. 7194, pp. 1–20.
Springer, Heidelberg (2012)

2. Attrapadung, N., Libert, B., Peters, T.: Computing on authenticated data: new
privacy definitions and constructions. In: Wang, X., Sako, K. (eds.) ASIACRYPT
2012. LNCS, vol. 7658, pp. 367–385. Springer, Heidelberg (2012)

3. Bender, M.A., Cole, R., Demaine, E.D., Farach-Colton, M., Zito, J.: Two simplified
algorithms for maintaining order in a list. In: Möhring, R.H., Raman, R. (eds.) ESA
2002. LNCS, vol. 2461, pp. 152–164. Springer, Heidelberg (2002)

4. Boneh, D., Boyen, X.: Efficient selective-ID secure identity-based encryption with-
out random oracles. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004.
LNCS, vol. 3027, pp. 223–238. Springer, Heidelberg (2004)

5. Boneh, D., Gentry, C., Lynn, B., Shacham, H.: Aggregate and verifiably encrypted
signatures from bilinear maps. In: Biham, Eli (ed.) EUROCRYPT 2003. LNCS,
vol. 2656, pp. 416–432. Springer, Heidelberg (2003)

6. Brzuska, C., et al.: Redactable signatures for tree-structured data: definitions and
constructions. In: Zhou, J., Yung, M. (eds.) ACNS 2010. LNCS, vol. 6123, pp.
87–104. Springer, Heidelberg (2010)

7. Catalano, D., Fiore, D.: Vector commitments and their applications. In: PKC
(2013)

8. Catalano, D., Fiore, D., Messina, M.: Zero-knowledge sets with short proofs. In:
Smart, N.P. (ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp. 433–450. Springer,
Heidelberg (2008)

9. Chang, E.-C., Lim, C.L., Xu, J.: Short redactable signatures using random trees.
In: Fischlin, M. (ed.) CT-RSA 2009. LNCS, vol. 5473, pp. 133–147. Springer,
Heidelberg (2009)

10. Chase, M., Healy, A., Lysyanskaya, A., Malkin, T., Reyzin, L.: Mercurial commit-
ments with applications to zero-knowledge sets. In: Cramer, R. (ed.) EUROCRYPT
2005. LNCS, vol. 3494, pp. 422–439. Springer, Heidelberg (2005)

11. Devanbu, P.T., Gertz, M., Martel, C.U., Stubblebine, S.G.: Authentic third-party
data publication. In: DBSec (2000)

12. Ghosh, E., Goodrich, M.T., Ohrimenko, O., Tamassia, R.: Fully-dynamic verifiable
zero-knowledge order queries for network data. ePrint 2015/283 (2015)

13. Ghosh, E., Ohrimenko, O., Papadopoulos, D., Tamassia, R., Triandopoulos, N.:
Zero-knowledge accumulators and set operations. ePrint 2015/404 (2015)

Verifiable Zero-Knowledge Order Queries and Updates 235

14. Ghosh, E., Ohrimenko, O., Tamassia, R.: Verifiable member and order queries on
a list in zero-knowledge. In: ACNS (2015)

15. Ghosh, E., Ohrimenko, O., Tamassia, R.: Efficient verifiable range and closest point
queries in zero-knowledge. PoPETs 2016(4) (2016)

16. Goldberg, S., Naor, M., Papadopoulos, D., Reyzin, L., Vasant, S., Ziv, A.: NSEC5:
provably preventing DNSSEC zone enumeration. In: NDSS (2015)

17. Goldreich, O.: The Foundations of Cryptography - Basic Applications, vol. 2. Cam-
bridge University Press, Cambridge (2004)

18. Goodrich, M.T., Nguyen, D., Ohrimenko, O., Papamanthou, C., Tamassia, R.,
Triandopoulos, N., Lopes, C.V.: Efficient verification of web-content searching
through authenticated web crawlers. PVLDB 5(10), 920–931 (2012)

19. Itai, A., Konheim, A.G., Rodeh, M.: A sparse table implementation of priority
queues. In: Even, S., Kariv, O. (eds.) Automata, Languages and Programming.
LNCS, vol. 115, pp. 417–431. Springer, Heidelberg (1981)

20. Johnson, R., Molnar, D., Song, D., Wagner, D.: Homomorphic signature schemes.
In: Preneel, B. (ed.) CT-RSA 2002. LNCS, vol. 2271, pp. 244–262. Springer,
Heidelberg (2002)

21. Kundu, A., Atallah, M.J., Bertino, E.: Leakage-free redactable signatures. In:
CODASPY (2012)

22. Kundu, A., Bertino, E.: Structural signatures for tree data structures. In: PVLDB
(2008)

23. Kundu, A., Bertino, E.: Privacy-preserving authentication of trees and graphs. Int.
J. Inf. Secur. 12, 467–494 (2013)

24. Libert, B., Yung, M.: Concise mercurial vector commitments and independent zero-
knowledge sets with short proofs. In: Micciancio, D. (ed.) TCC 2010. LNCS, vol.
5978, pp. 499–517. Springer, Heidelberg (2010)

25. Liskov, M.: Updatable zero-knowledge databases. In: Roy, B. (ed.) ASIACRYPT
2005. LNCS, vol. 3788, pp. 174–198. Springer, Heidelberg (2005)

26. Merkle, R.C.: A certified digital signature. In: Brassard, G. (ed.) CRYPTO 1989.
LNCS, vol. 435, pp. 218–238. Springer, Heidelberg (1990)

27. Micali, S., Rabin, M.O., Kilian, J.: Zero-knowledge sets. In: FOCS (2003)
28. Naor, M., Teague, V.: Anti-presistence: history independent data structures. In:

Proceedings on 33rd Annual ACM Symposium on Theory of Computing, 6–8 July
2001 (2001)

29. Naor, M., Ziv, A.: Primary-secondary-resolver membership proof systems. In:
Dodis, Y., Nielsen, J.B. (eds.) TCC 2015, Part II. LNCS, vol. 9015, pp. 199–228.
Springer, Heidelberg (2015)

30. Ostrovsky, R., Rackoff, C., Smith, A.: Efficient consistency proofs for generalized
queries on a committed database. In: Dı́az, J., Karhumäki, J., Lepistö, A., Sannella,
D. (eds.) ICALP 2004. LNCS, vol. 3142, pp. 1041–1053. Springer, Heidelberg (2004)

31. Papadopoulos, D., Papamanthou, C., Tamassia, R., Triandopoulos, N.: Practical
authenticated pattern matching with optimal proof size. PVLDB 8(7), 750–761
(2015)

32. Poehls, H.C., Samelin, K., Posegga, J., De Meer, H.: Length-hiding redactable
signatures from one-way accumulators in O(n). Technical report MIP-1201, FIM.
University of Passau (2012)

33. Pöhls, H.C., Samelin, K.: On updatable redactable signatures. In: Boureanu, I.,
Owesarski, P., Vaudenay, S. (eds.) ACNS 2014. LNCS, vol. 8479, pp. 457–475.
Springer, Heidelberg (2014)

34. Prabhakaran, M., Xue, R.: Statistically hiding sets. In: Fischlin, M. (ed.) CT-RSA
2009. LNCS, vol. 5473, pp. 100–116. Springer, Heidelberg (2009)

236 E. Ghosh et al.

35. Samelin, K., Pöhls, H.C., Bilzhause, A., Posegga, J., de Meer, H.: Redactable sig-
natures for independent removal of structure and content. In: Ryan, M.D., Smyth,
B., Wang, G. (eds.) ISPEC 2012. LNCS, vol. 7232, pp. 17–33. Springer, Heidelberg
(2012)

36. Steinfeld, R., Bull, L., Zheng, Y.: Content extraction signatures. In: Kim, K. (ed.)
ICISC 2001. LNCS, vol. 2288, pp. 285–304. Springer, Heidelberg (2002)

37. Tamassia, R.: Authenticated data structures. In: Di Battista, G., Zwick, U. (eds.)
ESA 2003. LNCS, vol. 2832, pp. 2–5. Springer, Heidelberg (2003)

38. Wang, Z.: Improvement on Ahn et al.’s RSA P-homomorphic signature scheme.
In: Keromytis, A.D., Di Pietro, R. (eds.) SecureComm 2012. LNICST, vol. 106,
pp. 19–28. Springer, Heidelberg (2013)

39. Willard, D.E.: A density control algorithm for doing insertions and deletions in a
sequentially ordered file in good worst-case time. Inf. Comput. 97, 150–204 (1992)

	Verifiable Zero-Knowledge Order Queries and Updates for Fully Dynamic Lists and Trees
	1 Introduction
	2 Related Work
	3 Dynamic Privacy Preserving Authenticated Data Structure (DPPADS)
	4 Dynamic Privacy-Preserving Authenticated List
	5 Dynamic Privacy-Preserving Authenticated Tree
	References

