
More Practical and Secure History-Independent
Hash Tables

Michael T. Goodrich1, Evgenios M. Kornaropoulos2(B),
Michael Mitzenmacher3, and Roberto Tamassia2

1 Department of Computer Science, University of California, Irvine, USA
goodrich@acm.org

2 Department of Computer Science, Brown University, Providence, USA
{evgenios,rt}@cs.brown.edu

3 School of Engineering and Applied Science, Harvard University, Cambridge, USA
michaelm@eecs.harvard.edu

Abstract. Direct-recording electronic (DRE) voting systems have been
used in several countries including United States, India, and the
Netherlands to name a few. A common flaw that was discovered by
the security researchers was that the votes were stored sequentially
according to the time they were cast, which allows an attacker to
break the anonymity of the voters. Subsequent research pointed out
the connection between vote storage and the privacy property history-
independence. In a weakly history-independent data structure, every pos-
sible sequence of operations consistent with the current set of items is
equally likely to have occurred. In a strongly history-independent data
structure, items must be stored in a canonical way, i.e., for any set of
items, there is only one possible memory representation. Strong history-
independence implies weak history-independence but considerably con-
strains the design choices of the data structures. In this work, we present
and analyze an efficient hash table data structure that simultaneously
achieves the following properties:
– It is based on the classic linear probing collision-handling scheme.
– It is weakly history-independent.
– It is secure against collision-timing attacks. That is, we consider adver-

saries that can measure the time for an update operation, but cannot
observe data values, and we show that those adversaries cannot learn
information about the items in the table.

– All operations are significantly faster in practice (almost 2x faster for
high load factors) than those of the commonly used strongly history-
independent linear probing method proposed by Blelloch and Golovin
(FOCS’07), which is not secure against collision-timing attacks.

To our knowledge, our hash table construction is the first data structure
that combines history-independence and protection against a form of
timing attacks.

Keywords: Hash table · History-independence · Timing attack · Vote
storage

c© Springer International Publishing Switzerland 2016
I. Askoxylakis et al. (Eds.): ESORICS 2016, Part II, LNCS 9879, pp. 20–38, 2016.
DOI: 10.1007/978-3-319-45741-3 2

More Practical and Secure History-Independent Hash Tables 21

1 Introduction

Hashing is a classic technique [21] for implementing a dynamic dictionary of
key-value items supporting the following operations:

– insert(k, v): Insert item1 (k, v).
– find(k): Return the value with key equal to k, or null if none exists.
– delete(k): Delete the item with key equal to k.

The are many applications of such a data structure and it is well-known that
hashing can achieve O(1) expected-time performance for each operation (e.g.,
see [16]). In such a scheme, the items are stored in an array, T , according to
a mapping derived from a hash function, hash(·), such that the item (k, v) is
ideally stored in the cell T [hash(k)]. If multiple items map to the same cell, then
we say that a collision has occurred, and we need some way of resolving the
collision. One of the classic collision resolution methods is linear probing [21].
In this scheme, one simply incrementally searches the next cells in the array,
T [hash(k) + 1], T [hash(k) + 2], and so on, modulo the size of T , until one finds
an empty cell. Linear probing achieves O(1) expected time performance if the
ratio of the number of occupied cells to the total number of cells, which is known
as the load factor, is a constant strictly less than 1 (e.g., see [16,21]). Although
this is a classic hashing scheme, its use is nevertheless ubiquitous in computing
today, including many instances where security and privacy are essential. Thus,
we are interested in this paper in hash table schemes that can provide measurable
protections against various security and privacy attacks.

History-Independence. The property of history-independence was introduced
by Naor and Teague [29] by extending a related structural obliviousness property
by Micciancio [25]. The goal of history-independence is to design a data structure
so that an adversary who examines the computer memory will only discover the
current contents of the data structure but will not learn anything about the
sequence of operations that led to the current state of the data structure. History-
independence comes in two flavors [29]—in weakly history-independence (WHI),
the adversary can examine the memory only once, whereas in strongly history-
independence (SHI), the adversary may examine the memory multiple times.
Several history-independent data structures have been proposed. Blelloch and
Golovin [7] present a SHI hash table based on linear probing. The work of Naor
et al. [28] presents a SHI Cuckoo Table that performs insertions and deletions in
O(log n) time, with high probability, where n is the current number of elements
in the table. Buchbinder et al. [8] show time complexity separation between the
weak and the strong notions of history-independent data structure. Our focus
in this paper is on the WHI framework, as we feel it is has a more realistic risk
scenario. Moreover, by a lower bound due to Hartline et al. [18], in order for
a data structure to be SHI, it must have a canonical memory representation,
which is a fairly restrictive requirement that seems to conflict with protections
against the next type of attack that we consider in this paper.
1 We assume that keys are unique, but all of our results extend to the setting where

insertion of an already allocated key with a new value replaces the current value.

22 M.T. Goodrich et al.

Vote Storage. The DRE AccuVote-TS voting machine was used by 10 % of the
voters in the 2006 US general election. Security flaws were found both in the
software [22] and the hardware [12] of the device. For example, Kohno et al. [22]
found that each vote is written sequentially to the file that stores the votes, which
can break the anonymity of the system. An attacker with some side-channel
information can link the ballot to a voter based on the order that the votes are
stored. The same privacy flaw was also found in the Indian Electronic Voting
Machines that have been used for national elections of India since 2004. The
work by Wolchok et al. [33] reports that votes are stored in the order cast. Later
work recognized the connection of the above privacy issue with the notion of
history-independence and suggested the use of strongly history-independent data
structures [6,26,27]. In fact, in March 2015 the United States Election Assistance
Committee approved the next generation of Voluntary Voting System Guidelines
where they specify that ballot images must be recorded in a randomized order by
the DRE for the election (Sect. 2.4.4.2 in [1]). Given that the voting machines
are examined usually after the election process, i.e. post-election audits [2,31],
the notion of weak history-independence seems to be more appropriate than the
stronger notion of strong history-independence.

Memory Attacks. Beyond voting machines, there are other cases where
an adversary can obtain access to a snapshot of the working memory and
weak history-independence can be usefully applied. A direct memory access
attack, or DMA attack, is an attack where the adversary with physical access
to the machine bypasses all security measures of the operating system and
directly accesses the memory via the high-speed expansion ports. Tools such
as “Inception” [24] mount a DMA attack over PCI interfaces and acquire a com-
plete image of the working memory. Cold boot attacks [17] allow the attacker to
dump the image of the memory to an external medium, which can even iden-
tify and reconstruct the cryptographic keys from the acquired image and thus
overcome disk encryption. In application scenarios such as ballot storage [26] or
hospital admission management [4] such leakage might violate desired privacy.

Other History-Independent Systems. Bajaj and Sion proposed a history-
independent file system named HIFS [3] that provides history-independence
across both file system and disk layers of the storage stack. We note here that
HIFS deploys the SHI hash table from [7], which is significantly slower than our
WHI construction. A direct substitution, followed by some minor changes, would
significantly speed up their design while maintaining suitable privacy guarantees
for many applications. Unfortunately, the history-independence of HIFS [3] is
not guaranteed for flash storage devices. The reason is that the block placement
algorithms in flash storage devices are managed internally (in a non-history-
independent manner) in order to maximize performance and lifetime of the stor-
age. To remedy that, Chen and Sion proposed history-independent schemes that
are tailored for flash-based block devices [10]. Another system, Ficklebase [4],
suggests the use of history-independent data structures within a relational data-
base architecture for the underlying database storage engine in order to avoid
unwanted recovery of deleted information through forensic analysis.

More Practical and Secure History-Independent Hash Tables 23

Timing Attacks. Another type of attack that can cause a data structure to leak
information is a timing attack. In such a side-channel attack, an adversary does
not get direct access to the memory layout of a data structure or to the operands
of the executed operation, but he can nevertheless precisely time the execution
of data structure operations. Such attacks typically come in two forms—in the
first form, an attacker passively observes the timing of data structure operations
performed by others, and in the second form, he is allowed to directly interact
with the data structure, e.g., to form malicious inputs that cause errors or sig-
nificant time delays that can reveal information put into the data structure by
others.

In the first type of attack, the eavesdropping adversary gains knowledge
about the private data using the duration of an abstract-data-type operation of
the data structure. An example of such a real-world attack is presented in [13],
where an attacker can measure the execution time of an insertion in a B-tree in
order to detect a node split. Using this split detection information, the attacker
can recover values from the database table that is under attack. As a means to
formally characterize such attacks, Lipton and Naughton [23] define a clocked
adversary to be an eavesdropping attacker who can accurately time operations
of a data structure and who succeeds if he can distinguish whether the system
is in a state s1 or state s2 given just the timing information.

For the second type of timing attack, an adversary utilizes the predictable
time performance of known data structure implementations to mount an active
attack. For example, Crosby and Wallach [11] introduce algorithmic complexity
attacks, where an adversary provides inputs to a data structure so as to trigger
its worst case performance. In addition, Bethea and Reiter [5] introduce timing-
unpredictability, which is used to quantify the uncertainty of an attacker about
the time performance of future operations.

Our Results. In Sect. 3, we present and analyze the first efficient hash table
data structure that defends against the above information leakage attacks. Our
construction, denoted as WHI, achieves the following properties:

– It is weakly history-independent.
– It is secure against collision-timing attacks (see Definition 3 below).
– Operations find, insert and delete are significantly faster in practice than the

strongly history-independent linear probing scheme of [7].

In Table 1, we qualitatively compare our WHI scheme to several previous
linear-probing hashing schemes that achieve some degree of history-independence
or defend against collision-timing attacks, noting that none of them achieves
protection against both types of attacks. We review these other schemes in Sect. 4
and we provide the results of experimental comparisons in Sect. 5.

24 M.T. Goodrich et al.

Table 1. Privacy properties of hashing with linear probing

History-Independence Secure Against

Collision-Timing

Attacks

Strong HI Weak HI

First-Come-First-Served (FCFS) - - ✓

Last-Come-First-Served (LCFS) [30] - - ✓

Robin Hood, Tie-Break w. FCFS/LCFS [9] - - ✓

Robin Hood, Tie-Break w. Key Sort ✓ ✓ -

Blelloch & Golovin [7] ✓ ✓ -

WHI (This work) - ✓ ✓

2 Security Model

2.1 History-Independence

An Abstract Data Type (ADT) is a mathematical model of a data structure
that describes the type of the data stored, the operations that can be performed
on the data as well as the parameters of each operation. In this work, a data
structure is associated with a set of items that is also called the logical state
of an ADT, or simply state. An ADT operation deterministically transforms
the state of the data structure. A sequence of operations S is an ordered list
of ADT operations of the data structure as defined by the corresponding ADT.
A memory representation of an ADT, or simply a representation, is a mapping
of the state of the data structure into the memory. In general, there can be
multiple memory representations for a given state. An implementation of a data
structure is a function F : M × O → M , where M is the set of all possible
memory representations and O is the set of all possible ADT operations.

Following the terminology of Hartline et al. [18], let a and b denote the
memory representation of states A and B respectively. Let S be a sequence of
operations then by A

S−→ B we indicate that the sequence of operations S takes
state A to state B. Let also Pr[a S−→ b] denote the probability that starting from
memory representation a of state A, the sequence of operations S run by the
corresponding implementation yields memory representation b of state B. The
initially empty memory representation is denoted as �.

Definition 1 (Hartline et al. [18]). A data structure is weakly history-
independent if, for any two sequences of operations S1 and S2 that take the
data structure from the initialization to state A, the distribution over the mem-
ory after sequence S1 is performed is identical to the distribution after sequence
S2 is performed. That is:

(� S1−→ A) ∧ (� S2−→ A) ⇒ ∀a ∈ A,Pr[� S1−→ a] = Pr[� S2−→ a].

More Practical and Secure History-Independent Hash Tables 25

Definition 2 (Hartline et al. [18]). A data structure is strongly history-
independent if, for any two (possibly empty) sequences of operations S1 and
S2 that take a data structure from state A to state B, the distribution over the
memory representations of B after sequence S1 is performed on representation a
is identical to the distribution after sequence S2 is performed on representation
a. That is:

(A S1−→B) ∧ (A S2−→B) ⇒ ∀a ∈ A,∀b ∈ B,Pr[a S1−→b] = Pr[a S2−→b].

2.2 Collision-Timing Attack

For an adversary with timing capabilities, the duration of an insert/delete opera-
tion in a hash table can reveal significant information. In our motivating scenario
for this security notion, the attacker cannot read the data transferred in the com-
munication channel between the user and the cloud provider (i.e., the encrypted
channel) but he can accurately time the interaction between the two entities.
We model the desired security property by introducing a game where the adver-
sary picks two input items that collide in the hash table, the cloud provider
inserts/deletes only one of them. The goal of the adversary is to distinguish
which of the two items was processed relying solely only the execution time of
the operation. We consider a hash table secure against collision-timing attacks
if the adversary succeeds in the above game with negligible probability.

Our model only deals with the timing of colliding items. In order not to leak
whether a collision occurs, one would have to deploy a hash table for which
the execution time is not affected by collisions. Notice that it is particularly
challenging to decouple the time performance of a hash table from the occurrence
of collisions. One may think that in order not to leak whether collision occurs it
is enough to have constant worst-case time performance for updates. This is not
necessarily true since there can be maintenance actions in the hash table, that
take constant time but reveal whether a collision took place.

Finding Colliding Items. As shown in the work of Lipton and Naughton [23],
there is a straightforward process for an adversary to generate a pair of colliding
items, i.e., a collision-discovery attack, even if the hash function is not known. As
a first step, we describe a process from [23] that checks whether two items collide.
Let t0 be the time it takes to insert item u0 to an empty hash table, similarly let
t1 be the time it takes to insert u1 to an empty table. Now we insert u1 in a hash
table that already contains u0 and check whether the time for insertion is larger2

than t1, if yes then the items u0, u1 collide. In order to find which pair of items
to test for a collision, we can simply generate Ω(

√
m) random items, where m

is the table size. Indeed, assuming that the hash function distributes the items

2 In the work of [23] the authors define a clocked adversary that has access to a clock
that is accurate to within ε and can discover the difference between two measure-
ments t0 and t1 with O(ε/|t1 − t0|) repetitions of the corresponding operations. For
the ease of exposition we assume that our measurements are always accurate (i.e.
ε = 0) therefore no repetitions are required.

26 M.T. Goodrich et al.

to the m bins uniformly at random, we can use the birthday-paradox and show
that within this set of items there is a pair of colliding items with probability
roughly 1/2. Given that collision-discovery attacks for hash tables are difficult to
avoid in practice, we focus on preventing information leakage from the eviction
strategy, i.e., a collision-timing attack.

Security Definition. We indicate with λ the security parameter and with Op
an update operation of the hash table, Op ∈ {insert, delete}. We indicate with
a ∈ A a memory representation of the state A of the hash table and with u0, u1

two items from the universe of input keys, K. With the term HT we denote
an implementation of the hash table that has access to a source of randomness,
e.g., a pseudorandom generator G. A memory representation is called admissible
with respect to the implementation HT and the hash function hash(), if it can
be reached with non-zero probability. We define an evidence of admissibility of
a, denoted as evda, a pair consisting of (1) a sequence of operations Sa and (2) a
random tape rnda such that if Sa is applied to an empty hash table using rnda

when necessary, then the hash table reaches memory representation a. We use a
game-based definition to describe the security of our setup. The game is denoted
with PRV-CTAA

HT (λ) and is shown in Fig. 1, where CTA stands for collision-
timing attack. The game begins with an algorithm run by adversary A. When A
finishes executing, the game performs further steps with A’s output to produce
the challenge for A. The adversary processes the challenge and outputs a bit,
which is returned by the game.

PRV-CTAA
HT (λ):

1. (a, hash, evda,Op, u0, u1) ← A(1λ), where hash(u0) = hash(u1)
2. if evda is not an evidence of admissibility of a return 0
3. Initialize the implementation HT with memory

representation a and G(λ)
4. Choose at random a bit b ∈ {0, 1}
5. Execute operation Op according to HT with input argument ub

and record the execution time in tb

6. b′ ← A(tb)
7. return (b = b′)

Fig. 1. Indistinguishability game for the security of a hash table against collision-timing
attacks.

Indistinguishability game PRV-CTA assumes a powerful adversary that is
allowed to choose the memory representation of the hash table, i.e. the state, the
allocation of the items to the cells of the table as well as its hash function hash().
We denote as advantage of A the quantity 2 · Pr

(
PRV-CTAA

HT (λ) = 1
) − 1.

Definition 3. Let λ be the security parameter and let HT be an implementation
of a hash table. We say that implementation HT is secure against collision-
timing attacks if for all PPT adversaries A, the advantage A in game PRV-
CTAA

HT (λ) is negligible.

More Practical and Secure History-Independent Hash Tables 27

3 Weakly History-Independent Linear Probing

In this section, we describe a weakly history-independent dictionary that is based
on an open addressing hash table. For the proofs see the full version [15]. Let T
be a hash table of size m and let K be the universe of keys. We hash the set of
keys U ⊆ K into T using hash function hash() and handle collisions with linear
probing. In the following, the symbol ⊥ indicates an empty cell and arithmetic
over cell indices is modulo m. A cluster of T is a maximal contiguous sequence
of nonempty cells of T .

Profile of a Set. Following the terminology of [20], we define the following sets
and values for a cell i of T :

– Hi: set of items of U that hash to cell T [i], of size hi = |Hi|;
– Pi: set of items of U that probed cell T [i], of size pi = |Pi|.

The above quantities are a function of the set U and of hash(), but for
succinctness we do not denote that explicitly. Clearly, we have Hi ⊆ Pi. Also,
if pi ≥ 1, then exactly one of the items in Pi ends up in cell T [i] while the
remaining pi − 1 items probe the next cell T [i + 1]. This observation yields the
following recurrence relation (same relation as in [20] but different notation):

Pi+1 = Hi+1 ∪ (Pi − {vi}) and pi+1 = hi+1 + max(pi − 1, 0), (1)

where vi indicates the item allocated in T [i]. Sequence (p0, . . . , pm−1) is called
the profile of set U . Note that set Pi depends on both the performed sequence of
operations and on the eviction strategy between colliding items. In contrast, the
profile of U does not depend on the eviction strategy [20], since it only counts
the number of items that probed a cell. Using the above fact one can easily show
that the profile is also independent of the order in the sequence of operations.

Intuition. In our insertion algorithm, we use a randomized eviction strategy.
Suppose pi ≥ 1 items have probed the i-th cell so far. When a new item u probes
the i-th cell, it evicts the current item with probability 1/(pi + 1). Hence, each
cell is a reservoir sample [32] of size 1, so that every item probing that cell has
an equal likelihood of being stored there.

We show that this technique gives a weakly history-independent insertion
process. The challenge is that, to delete an item u from a cell i, we must construct
a memory representation that is consistent with u never having been inserted.
Note that algorithm find(u) simply performs a linear forward scan starting from
hash(u) until we either find u or an empty cell.

3.1 Insertion

We use an auxiliary table, P [], to keep track of the profile, where P [i] = pi. All
entries in P [] are initially set to 0. We assume that the hash table can access
random values on the fly as we need them by means of method getRand(s), which
returns a random integer in the range {1, . . . , s}.

28 M.T. Goodrich et al.

Analysis. Let T be a hash table with linear probing where insertions are per-
formed with Algorithm1. As defined before, a memory representation is called
admissible if it can be reached with non-zero probability.

Algorithm 1. WHI.insert(u)
Input : an item u to be inserted

1 i ← hash(u)
2 while T [i] �= ⊥ do
3 P [i] ← P [i] + 1

// Item u is stored in T [i] with probability 1/pi

4 r ← getRand(P [i])
5 if r = 1 then
6 Swap the content of T [i] and u
7 end
8 i ← i + 1
9 end

10 P [i] ← 1
11 T [i] ← u

Lemma 1. Let U be a set of items and let R be the random variable over the set
of admissible representations of U in table T . Let S be a sequence of insert oper-
ations, according to Algorithm1, that insert the items of U . Then the probability
that R takes value ρ given that we follow S is given by:

Pr(R = ρ) =
m−1∏

j=0

1
max(pj , 1)

.

The next lemma follows immediately from Lemma 1.

Lemma 2. A hash table with linear probing where only insertions are per-
formed, according to Algorithm1, is weakly history-independent.

We note here that since the notion of history-independence was originally
formed under an information-theoretic security framework, for consistency with
previous work, our lemmas above assume the availability of true randomness.

It is straightforward to relax both strong and weak history-independence def-
initions to a semantically secure framework and extend our results accordingly.
In this case, denoting with λ the security parameter, getRand would be derived
from the output of a cryptographic pseudorandom generator with security para-
meter λ [14] to which the hash table, but not the adversary, has oracle access.
In practice, we implement getRand by means of the secure hardware random
number generator provided by modern microprocessors.

3.2 Deletion

To delete an item u from the hash table we must change the memory represen-
tation, with the right probability, so that it is as though u was never inserted.

More Practical and Secure History-Independent Hash Tables 29

Algorithm. The deletion method is shown in Algorithms 2–3. Given that item u
is allocated in cell T [i] and that it hashes to cell hash(u) we have to: (1) decrease
by one the values of P [hash(u)], P [hash(u) + 1], . . . , P [i] and (2) cover the gap
at T [i] by picking an item uniformly at random among the items that probed
T [i]. The above two steps are repeated, in case we create an additional gap by
covering the first one.

Algorithm 2. WHI.delete(u)
Input : an item u to be deleted

1 i ← hash(u)
2 while T[i] �= ⊥ do

// Reverse the effect of u on table P
3 P [i] ← P [i] − 1
4 if T[i] = u then
5 T [i] ← ⊥

// Fill the gap at cell T [i]
6 CoverGap(i)
7 return
8 end
9 i ← i + 1

10 end

Algorithm 3. CoverGap
Input : the index ig of the gap in T

1 if P [ig] = 0 then
2 return
3 end
// There are pig items that probed T [ig]. Cover with the

rightmost.
4 cnt ← P [ig]
5 i ← ig + 1
6 while T[i] �= ⊥ do
7 P [i] ← P [i] − 1
8 if the item in T [i] probed cell T [ig] then
9 cnt ← cnt − 1

10 if cnt = 0 then
// Cover the gap at T [ig], recurse for the new gap at

T [i]
11 T [ig] ← T [i]
12 T [i] ← ⊥
13 CoverGap(i)
14 return
15 end
16 end
17 i ← i + 1
18 end

An interesting question is how to pick an item to cover the gap. One approach
is to scan the cells from T [i+1] until the end of the cluster and choose one of the

30 M.T. Goodrich et al.

items of Pi uniformly at random. The above randomized approach is correct but
requires additional randomness and can potentially lead to a significant number
of moves between the allocated items. Our technique takes advantage of the fact
that in an admissible memory representation of U , the relative order of the items
that probed T [i] is a random permutation. Therefore, by picking the item of T [i]
placed furthest from T [i] in the cluster, the “rightmost” item or else the pi-
th eligible item to cover the gap, is equivalent to sampling uniformly at random
among the items of set Pi. Besides maintaining the weak history-independence of
our construction, the benefit of this technique is twofold in terms of performance.
By recursively choosing items as far to the right as possible from the gap we
reduce the number of moves between the allocated items, and we do not require
any randomness for the deletion process. In Algorithm 2, we locate and delete the
item u; an action that creates a gap. Let T [ig] be the cell where u was allocated
before the deletion. Algorithm 3 covers the gap in T [ig] with the rightmost item
that probed cell T [ig].

Line 8 of Algorithm 3 checks whether the item in cell T [i] probed cell T [ig]
on its way to cell T [i]. This can be implemented as follows, if the distance of
the hashed location hash(T [i]) from the start of the cluster is less than or equal
to the distance of cell T [ig] from the start of the cluster, then the item in T [i]
probed cell T [ig].

Analysis. We build our WHI proof based on two lemmas. Given a sequence of
insertions S, we first prove that the relative order of Hi in the resulting memory
representation is a random permutation. Using this, we prove the more general
statement that the relative order of Pi in the resulting memory representation is
a random permutation. Thus, by picking the rightmost item of Pi in the memory
representation, we cover the gap with a randomly chosen item from Pi. Finally,
by recursively covering the gaps in this manner, we create the same probability
distribution over the memory representation as if the deleted item was never
inserted.

Lemma 3. Let U be a set of items, let π1, π2 be two permutations of Hi ⊆ U and
let S be a sequence of insertions of U according to Algorithm1. For a location
i in the hash table, let Ri be the random variable that represents the relative
order of set Hi associated with cell T [i] in the resulting memory representation
ρ. Then, by inserting the items of U into T according to S, we have:

Pr(Ri = π1) = Pr(Ri = π2)

Lemma 4. Let U be a set of items, let π1, π2 be two permutations of Pi ⊆ U and
let S be a sequence of insertions of U according to Algorithm1. For a location
i in the hash table, let R′

i be the random variable that represents the relative
order of set Pi associated with cell T [i] in the resulting memory representation
ρ. Then, by inserting the items of U into T according to S, we have:

Pr(R′
i = π1) = Pr(R′

i = π2)

The next theorem summarizes the history-independence of our construction.

More Practical and Secure History-Independent Hash Tables 31

Theorem 1. The linear probing hash table implementation described by
Algorithms 1, 2 and 3 is a weakly history-independent data structure that per-
forms searches, insertions and deletions in O(1) expected time.

3.3 Protection Against Collision-Timing Attacks

Section 2.2 gives the definition of security against collision-timing attacks for the
case of general hash table implementation. We consider now the case where the
hash table follows a linear probing approach.

When using linear probing, the execution time of a find, insert, or delete
operation of the hash table depends on two factors, (1) whether the input item
collides with an item that is already in the hash table and (2) on the eviction
strategy in case there is a collision. The work of Lipton et al. [23] addresses
the first timing factor for hash tables with chaining as well as for hash tables
with open addressing. The authors propose attacking strategies that only use the
execution time to discover if two given items collide in a hash table as well as a
method to generate a pair of colliding items for a given hash table. In the same
spirit, the adversary of PRV-CTA chooses two items that hash to the same cell.
In case the items were allowed to hash to different cells, then it would be trivial
for the adversary to win game PRV-CTA. Specifically, it would be enough for
the adversary to pick a memory representation in which u0 hashes to an empty
cell while u1 hashes to the beginning of a long cluster of consecutive items. Thus
we turn our attention to the second timing factor, that is on the eviction policy.

Due to the nature of linear probing, the insertion/deletion process will probe
the same cells regardless of whether u0 or u1 is chosen in PRV-CTA. Therefore,
what can potentially make a hash table insecure with respect to PRV-CTA is
the eviction policy. Hash tables that are secure according to Definition 3 should
follow an eviction policy that is oblivious to the value of the items. The SHI linear
probing scheme proposed in [7] is not secure against collision-timing attacks since
a priority function that takes the values of the two items as an input (See [29] for
a thorough treatment of the subject) is necessary to decide which item to evict.

We note here that the definition of security against collision-timing attacks
is formed under a semantically-secure framework, thus we use the notion of a
cryptographic PRNG G with a given security parameter λ in our analysis.

Theorem 2. Let WHI be the implementation of a hash table where the insertion
and deletion methods follow Algorithms 1, 2 and 3. If G is a pseudorandom
number generator then the implementation WHI is secure against collision-timing
attacks according to Definition 3.

3.4 Analysis of Individual Displacement

In a hash table with linear probing, the individual displacement of an item is the
distance between (a) the location where the item hashes to and (b) the location
where the item is placed.

32 M.T. Goodrich et al.

In this section, we derive the asymptotic performance of the individual dis-
placement in the case of our WHI linear probing variation. In case the individual
displacement is large the algorithm find has to scan a large number of cells in
order to locate the requested item which slows down the performance of the oper-
ation. We note that the techniques we use are standard but the analysis appears
novel. In particular, we focus on the distribution of the individual displacement
in the case n/m → α for 0 < α < 1. We note that the total displacement is inde-
pendent of the insertion policy (as long as the policy falls within the standard
class of policies; see e.g. [20]); hence the average displacement is the same for all
policies, but the distribution of displacements is not. Our starting point is the
Eq. (1): pi+1 = hi+1 + max(hi − 1, 0). Given a table with load α, it is helpful to
start by obtaining a distribution on the entries of the profile. That is, let ηk be
the fraction of bins with a count of k in the asymptotic regime as the number of
bins grows to infinity. Thus, we have ηk = #{i : pi = k}/m.

Asymptotically, we can use the standard Poissonization approach of letting
the hi be distributed as independent Poisson random variables with parameter α.
In this case, the pi form a simple Markov chain, and we can consider its stationary
distribution; this gives us the asymptotic distribution for ηk. In particular, a cell
i has pi = 0 only if the previous cell has pi−1 = 0 or pi−1 = 1 and no items hash
to i, hence, η0 = (η0 + η1) Pr(hi = 0) ⇒ η0 = (η0 + η1)e−α.

More generally, for k ≥ 1, we find

ηk+1 = ηk
1 − e−αα

e−α
− η0

αk

k!
−

k−1∑

l=1

ηl
αk−l+1

(k − l + 1)!
. (2)

From these equations, we can numerically derive the distribution using the
fact that

∑n
k=0 ηk = 1. For the individual displacement, we work with a random

item u, and compute the limiting distribution of its displacement. Let Xq be a
random variable that takes value 0 with probability 1/q and value 1 otherwise.
Let also Zk be the random variable that takes as a value the displacement of
u given that phash(u) = k. For a given k ≥ 1 we have the following recursive
function:

Zk = Xk

⎛

⎝1 +
n−k+1∑

j=0

Zk−1+je
−α αj

j!

⎞

⎠ . (3)

That is, with probability 1/k there is no displacement because u is stored in the
cell it hashed to; otherwise, 1 is added to the displacement and it moves to the
next cell, which has Zk−1+j items that probed it, where j is the number of items
that hash to that cell.

As Zk is conditioned on the event that for cell hash(u) we have that phash(u) =
k, the displacement of u is a random variable Du given by:

Du =
n−1∑

k=0

Zk+1ηk (4)

More Practical and Secure History-Independent Hash Tables 33

Using Eqs. (2) and (3) one can numerically derive the distribution of the
individual displacement of u for a fixed α. In Sect. 5 we show the sample variance
of the individual displacement for various load factors and compare it to the
variance of other linear probing schemes.

4 Previous Linear Probing Schemes

The standard linear probing scheme is a first-come-first-served (FCFS) policy,
since previously allocated items do not move during an insertion. Poblete and
Munro [30] propose a last-come-first-served (LCFS) policy, where an incoming
item has higher priority than those previously allocated. These two policies are
easily seen not to be weakly history-independent, since the resulting memory
representation clearly depends on the order of updates.

Consider, instead, an alternative scheme inspired by the well-known Fisher-
Yates random shuffling algorithm. That is, in the case of collision occurring in the
insertion of an item, u, place the item u in the first available cell found by linear
probing under the FCFS rule. Then swap u with a uniformly randomly chosen
item from range of cells T [hash(u)] to the last cell of the cluster (wrapping around
the beginning of T if needed). Let us call this eviction technique,“Random-Swap”
it is easy to see that this variation is not weakly history-independent either.

In Robin Hood hashing [9], when we probe an occupied cell T [i] during the
insertion of an item u, we swap u into T [i] if u is further from its desired cell
than the current occupant (and we then probe T [i + 1] for the remaining item).
Ties occur when u and T [i] are equidistant from their desired cell. Different
tie-breaking techniques give different security properties to the resulting con-
struction. If we break ties based on the arrival time (“Robin Hood, Tie-Break
w. FCFS/LCFS” in Table 1) then the scheme is secure against collision-timing
attacks since the evictions do not depend on the value but it is not history-
independent. Suppose, instead, that we break ties fairly, by randomly choosing
between the two items with probability 1/2, to split the “arrow” in half, using
the Robin Hood metaphor. One might think that this fair-split strategy allows
Robin Hood hashing to be weakly history-independent, but that is not the case.

Lemma 5. FCFS, LCFS, Random-Swap, Robin Hood where ties break with
FCFS, Robin Hood where ties break with LCFS, and Robin Hood where ties
break with fair-split are (1) secure against collision-timing attacks but (2) not
weakly history-independent, even in an insertion-only scenario.

If we follow a Robin Hood hashing and break ties by choosing the larger/
smaller value (“Robin Hood, Tie-Break w. Key Sort” in Table 1, also addressed as
“age-rules” in [29]), then the scheme becomes strongly history-independent but it
is not secure against collision-timing attacks. Note that one has to design a new
appropriate deletion process that respects the SHI property of the above RH varia-
tion, in this work we only consider the insertion process of this scheme (see Sect. 5).
Finally the strongly history-independent linear probing technique from [7] is also
not secure against collision-timing attacks.

34 M.T. Goodrich et al.

Lemma 6. Robin Hood hashing where ties break with key-sort as well as the
SHI scheme of [7] are (1) strongly history-independent but (2) not secure against
collision-timing attacks.

The above observations are summarized in Table 1. The proposed linear prob-
ing scheme of this work is the first that satisfies both privacy properties.

5 Evaluation

We have implemented the strongly history independent linear probing scheme
of [7], denoted as SHI, and our WHI linear probing scheme in C++ and conducted
experiments to compare the performance of the two history independent tech-
niques. The values in the (key, value) pairs consist of 10-character strings. All
experiments were performed in the same machine running OSX 10.10.5 with
Quad Core 2.6 GHz Intel Core i7 processor and 8 GB RAM. We used Intel’s on-
chip hardware random generator, instruction RdRand, that is available in “Ivy
Bridge” processors [19].

Method find. The first set of experiments, depicted in Fig. 2, addresses the
performance of method find. We focus on the displacement, i.e., the distance
of an item from its hashed location, which affects the performance of find. For
completeness, we also show the results for Robin-Hood hashing, which is known
to minimize the variance of the displacements among all linear probing algo-
rithms. We use a table of size m = 107 and we initialize the data structures

Load Factor
0.6 0.7 0.8 0.9

M
ax

im
um

 D
is

pl
ac

em
en

t (
Lo

g-
S

ca
le

)

25

50
75

125

250

500

1000

2500

5000

10,000
Distribution of Maximum Displacement, m=107

SHI
WHI
RH

(a)

Load Factor
0.6 0.7 0.8 0.9

V
ar

ia
nc

e
(L

og
-S

ca
le

)

10-6

10-5

10-4

10-3Variance of Individual Displacement, m=107

SHI
WHI
RH

(b)

Fig. 2. Comparison of the displacement of items in Robin Hood (where ties-break with
FCFS), SHI [7] and WHI (our scheme). The plot summarize results from experiments
run 100 times on a table of size m = 107 with varying load factors: (a) maximum
displacement; (b) variance of individual displacement.

More Practical and Secure History-Independent Hash Tables 35

up to load factors α = 0.6, 0.7, 0.8, 0.9 by inserting the same set of unique ran-
domly generated items in the same randomly chosen order to all hash tables.
After the initialization, we record the displacement of each item and compute
the sample variance and the maximum displacement. The above process was
repeated for 100 distinct initializations. The box-plot of the maximum displace-
ment, Fig. 2(a), shows that the average maximum displacement of WHI is much
smaller than that of SHI. As another data point, in a similar experiment with
a table of size m = 107, for load α = 0.9 the maximum recorded displacement
for WHI is 476 whereas for SHI it is 2228. Finally, in the plot of Fig. 2(b) shows
that the variance of the individual displacement for WHI is much lower than that
for SHI.

Methods insert and delete. The second set of experiments, depicted in Fig. 3,
addresses the performance of methods insert and delete. In this experiment we use
a table of size m = 105 and initialize the data structures up to a fixed load factor,
i.e. α = 0.6 − 0.9 by inserting the same set of unique randomly generated items
in the same randomly chosen order. After the initialization we perform 103 find
calls that take as an input a randomly chosen item among those that are already
in the table in order to warm-up the cache. Then we perform an insertion (resp.
deletion) of a randomly generated (resp. chosen) item and record the number of
cycles executed by the method. We obtain the number of cycles as the difference
between processor time stamps by means of instruction rdtsc. The above process

Load Factor
0.6 0.7 0.8 0.9

N
um

be
r

of
 C

yc
le

s
(L

in
ea

r-
S

ca
le

)

0

5000

10,000

15,000

20,000

25,000

30,000

35,000

40,000

45,000

50,000

55,000

60,000
Timing Single Operation, m=105

 SHI Delete
 WHI Delete
 SHI Insert
 WHI Insert
 RH Insert

(a)
Load Factor

0.6 0.7 0.8 0.9

R
at

io
 S

H
I P

er
fo

rm
an

ce
 to

 W
H

I P
er

fo
rm

an
ce

1

1.25

1.5

1.75

2

2.25

2.5

2.75

3

3.25

3.5

3.75

4
Overall Comparison, m=105

 find (avgMaxDisplacement)
 insert (NumberOfCycles)
delete (NumberOfCycles)

(b)

Fig. 3. Comparison of methods insert and delete in Robin Hood (where ties-break with
FCFS), SHI [7] and WHI (our scheme). Plot (a) summarizes the experiments conducted
103 times on a table of size m = 105 with varying load factors. In each experiment,
we measured the number of CPU cycles executed by a single call of method insert or
delete. Plot (b) depicts the ratio between the performance of SHI to WHI.

36 M.T. Goodrich et al.

was repeated 103 times for various values of α. Figure 3(a) presents the sample
mean of the number of cycles, showing that our WHI scheme is significantly faster
than SHI. For comparison, we also include the performance of the variation of
Robin Hood linear probing where ties break in a FCFS fashion. This variation
gives the fastest insertion process over all Robin Hood variations since we don’t
move items in case of a tie.

Overall Comparison. As an overall comparison Fig. 3(b) shows the ratio of
SHI’s performance to WHI’s performance for each of the above operations. Each
line represents an operation (i.e. find, insert, delete) and each data point of the
line represents the ratio of SHI performance (in terms of average maximum dis-
placement or number of cycles) to WHI’s performance. It is clear that the average
maximum displacement of WHI is significantly smaller compared to SHI, which
translates to a faster worst-case time performance for find method. Specifically,
the average maximum displacement of an item for the SHI eviction strategy is
almost 4 times higher than the average maximum displacement of WHI, for high
load factors. As for the update operations, WHI performs almost 2x faster than
SHI for high load factors.

6 Conclusion and Discussion

In this paper, we have presented a linear probing hashing scheme that is weakly
history-independent and secure against collision-timing attacks. According to our
evaluation, all three methods of the proposed hash table (find, insert, delete) are
much faster than those of the strongly history-independent analogue proposed
by Blelloch and Golovin [7]. Our results suggest that weakly history-independent
data structures can be more efficient than strongly history-independent ones in
real-world privacy-preserving applications such as ballot storage and hospital
admissions management.

Acknowledgments. This work was supported in part by the U.S. National Science
Foundation under grants CCF–1535795, CCF–1320231, CNS–1228485, CNS–1228598,
and CNS–1228639, and by the Kanellakis Fellowship at Brown University.

References

1. Voluntary Voting System Guidelines, Ver. 1.1, vol. 1. Technical report,
United States Election Assistance Commission (2015). www.eac.gov/assets/1/
Documents/VVSG.1.1.VOL.1.FINAL.pdf

2. Aslam, J.A., Popa, R.A., Rivest, R.L.: On auditing elections when precincts have
different sizes. In: Proceedings of the USENIX EVT (2008)

3. Bajaj, S., Sion, R.: Ficklebase: looking into the future to erase the past. In: Pro-
ceedings of 29th IEEE ICDE, pp. 86–97 (2013)

4. Bajaj, S., Sion, R.: HIFS: history independence for file systems. In: Proceedings of
20th ACM CCS, pp. 1285–1296 (2013)

www.eac.gov/assets/1/Documents/VVSG.1.1.VOL.1.FINAL.pdf
www.eac.gov/assets/1/Documents/VVSG.1.1.VOL.1.FINAL.pdf

More Practical and Secure History-Independent Hash Tables 37

5. Bethea, D., Reiter, M.K.: Data structures with unpredictable timing. In: Backes,
M., Ning, P. (eds.) ESORICS 2009. LNCS, vol. 5789, pp. 456–471. Springer,
Heidelberg (2009)

6. Bethencourt, J., Boneh, D., Waters, B.: Cryptographic methods for storing ballots
on a voting machine. In: Proceedings of 14th NDSS, pp. 209–222 (2007)

7. Blelloch, G.E., Golovin, D.: Strongly history-independent hashing with applica-
tions. In Proceedings of 48th IEEE FOCS, pp. 272–282 (2007)

8. Buchbinder, N., Petrank, E.: Lower and upper bounds on obtaining history inde-
pendence. Inf. Comput. 204(2), 291–337 (2006)

9. Celis, P., Per-Ake Larson, J., Munro, I.: Robin hood hashing. In: Proceedings of
26th IEEE FOCS, pp. 281–288 (1985)

10. Chen, B., Sion, R.: Hiflash: a history independent flash device. CoRR,
abs/1511.05180 (2015)

11. Crosby, S.A., Wallach, D.S.: Denial of service via algorithmic complexity attacks.
In: Proceedings of 12th USENIX Security Symposium (2003)

12. Feldman, A.J., Alex Halderman, J., Felten, E.W.: Security analysis of the Diebold
AccuVote-TS voting machine. In: Proceedings of the USENIX EVT (2007)

13. Futoransky, A., Saura, D., Waissbein, A.: Timing attacks for recovering private
entries from database engines. In: BlackHat USA (2007)

14. Goldreich, O.: The Foundations of Cryptography, Basic Techniques, vol. 1.
Cambridge University Press, Cambridge (2001)

15. Goodrich, M.T., Kornaropoulos, E.M., Mitzenmacher, M., Tamassia, R.: More
practical and secure history-independent hash tables. Cryptology ePrint Archive,
Report 2016/134 (2016). http://eprint.iacr.org/2016/134

16. Goodrich, M.T., Tamassia, R.: Algorithm Design and Applications, 1st edn. Wiley
(2014). ISBN:1118335910, 9781118335918

17. Alex Halderman, J., Schoen, S.D., Heninger, N., Clarkson, W., Paul, W.,
Calandrino, J.A., Feldman, A.J., Appelbaum, J., Felten, E.W.: Lest we remember:
cold boot attacks on encryption keys. In: Proceedings of 17th USENIX Security
Symposium, pp. 45–60 (2008)

18. Hartline, J.D., Hong, E.S., Mohr, A.E., Pentney, W.R., Rocke, E.: Characterizing
history independent data structures. Algorithmica 42(1), 57–74 (2005)

19. Hofemeier, G.: Intel Digital Random Number Generator (DRNG) software imple-
mentation guide. Technical report (2012)

20. Janson, S.: Individual displacements for linear probing hashing with different inser-
tion policies. ACM Trans. Algorithms 1, 177–213 (2005)

21. Knuth, D.E.: The Art of Computer Programming: Sorting and Searching, vol. 3,
2nd edn. Pearson (1998)

22. Kohno, T., Stubblefield, A., Rubin, A.D., Wallach, D.S.: Analysis of an electronic
voting system. In: Proceedings of 25th IEEE S&P, pp. 27–40 (2004)

23. Lipton, R.J., Naughton, J.F.: Clocked adversaries for hashing. Algorithmica 9(3),
239–252 (1993)

24. Maartmann-Moe, C.: Inception: a physical memory manipulation and hacking tool
exploiting PCI-based DMA

25. Micciancio, D.: Oblivious data structures: applications to cryptography. In: Pro-
ceedings of 29th ACM STOC, pp. 456–464 (1997)

26. Molnar, D., Kohno, T., Sastry, N., Wagner, D.: Tamper-evident, history-
independent, subliminal-free data structures on PROM storage-or-how to store
ballots on a voting machine. In: Proceedings of IEEE S&P, pp. 365–370 (2006)

http://eprint.iacr.org/2016/134

38 M.T. Goodrich et al.

27. Moran, T., Naor, M., Segev, G.: Deterministic history-independent strategies for
storing information on write-once memories. In: Arge, L., Cachin, C., Jurdziński,
T., Tarlecki, A. (eds.) ICALP 2007. LNCS, vol. 4596, pp. 303–315. Springer,
Heidelberg (2007)

28. Naor, M., Segev, G., Wieder, U.: History-independent cuckoo hashing. In: Aceto,
L., Damg̊ard, I., Goldberg, L.A., Halldórsson, M.M., Ingólfsdóttir, A., Walukiewicz,
I. (eds.) ICALP 2008, Part II. LNCS, vol. 5126, pp. 631–642. Springer, Heidelberg
(2008)

29. Naor, M., Teague, V.: Anti-presistence: history independent data structures. In:
Proceedings of 33rd ACM STOC, pp. 492–501 (2001)

30. Poblete, P.V., Munro, J.I.: Last-come-first-served hashing. J. Algorithms 10(2),
228–248 (1989)

31. Rivest, R.L., Shen, E.: A Bayesian method for auditing elections. In: Proceedings
of USENIX EVT/WOTE (2012)

32. Vitter, J.S.: Random sampling with a reservoir. ACM Trans. Math. Softw. 11(1),
37–57 (1985)

33. Wolchok, S., Wustrow, E., Halderman, J.A., Prasad, H.K., Kankipati, A.,
Sakhamuri, S.K., Yagati, V., Gonggrijp, R.: Security analysis of India’s electronic
voting machines. In: Proceedings of 17th ACM CCS, pp. 1–14 (2010)

	More Practical and Secure History-Independent Hash Tables
	1 Introduction
	2 Security Model
	2.1 History-Independence
	2.2 Collision-Timing Attack

	3 Weakly History-Independent Linear Probing
	3.1 Insertion
	3.2 Deletion
	3.3 Protection Against Collision-Timing Attacks
	3.4 Analysis of Individual Displacement

	4 Previous Linear Probing Schemes
	5 Evaluation
	6 Conclusion and Discussion
	References

