
A Topological Algorithm for Determining How
Road Networks Evolve Over Time

Michael T. Goodrich
Dept. of Computer Science

Univ. of California, Irvine
Irvine, CA 92697 USA
goodrich@uci.edu

Siddharth Gupta
Dept. of Computer Science

Univ. of California, Irvine
Irvine, CA 92697 USA
guptasid@uci.edu

Manuel R. Torres
Dept. of Computer Science

Univ. of California, Irvine
Irvine, CA 92697 USA
mrtorres@uci.edu

ABSTRACT
We provide an efficient algorithm for determining how a road
network has evolved over time, given two snapshot instances
from different dates. To allow for such determinations across
different databases and even against hand-drawn maps, we
take a strictly topological approach in this paper, so that
we compare road networks based strictly on graph-theoretic
properties. Given two road networks of same region from
two different dates, our approach allows one to match road
network portions that remain intact and also point out
added or removed portions. We analyze our algorithm both
theoretically, showing that it runs in polynomial time for non-
degenerate road networks even though a related problem is
NP-complete, and experimentally, using dated road networks
from the TIGER/Line archive of the U.S. Census Bureau.

CCS Concepts
•Information systems→Geographic information sys-
tems;

Keywords
map evolution; isomorphism; conformal matching

1. INTRODUCTION
Road network algorithms are an important topic of study

in Geographic Information Systems (GIS), in that road
networks facilitate transportation and are the products of
social, geographic, economic, and political forces. In addition,
road networks are interesting data types, in that they combine
both geometric information and graph-theoretic information.
(E.g., see [4].) Formally, we view a road networks as a graph,
where we create a vertex for every road intersection or major
jog, and we create an edge for every pair of such vertices
that have a road segment that joins them. In addition,
some road networks are annotated with geometric/geographic
information, such as the GPS coordinates of some vertices
or labels identifying road names. Nevertheless, because road

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

SIGSPATIAL’16, October 31-November 03, 2016, Burlingame, CA, USA
c© 2016 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ISBN 978-1-4503-4589-7/16/10. . . $15.00

DOI: http://dx.doi.org/10.1145/2996913.2996976

networks may contain many vertices and edges without such
geometric/geographic information, we are interested in this
paper in studying road networks from strictly a topological
viewpoint, that is, as embedded graphs. Specifically, we are
interested in the problem of determining how road networks
evolve over time, e.g., highlighting places where new roads
and bridges are added and where old roads and bridges are
removed. (See Figure 1.)

6/13/2016 san_francisco_1915.jpg (2097×1270)

http://www.lib.utexas.edu/maps/historical/san_francisco_1915.jpg 1/1

6/13/2016 OpenStreetMap

http://www.openstreetmap.org/#map=13/37.8045/-122.4275 1/1

http://openstreetmap.org/copyright http://openstreetmap.org
Copyright OpenStreetMap and contributors, under an open license

Figure 1: A map of San Francisco from 1915 and one from
2016 (taken from OpenStreetMap). The top image is in the
public domain; the bottom image is licensed under the Open
Database License, CC BY-SA. Note that most of the roads
in both maps are not labeled.

1

http://dx.doi.org/10.1145/2996913.2996976


1.1 Problem Definition
Viewed topologically in terms of their graph properties,

road networks are embedded graphs, that is, the edges
incident on each vertex are given in a particular order (i.e.,
clockwise or counterclockwise), which defines a topological
structure for the graph known as a rotation system (e.g.,
see [15]). Road networks are not typically planar graphs
(e.g., see [4]), however, since there are edge crossings, for
example, at overpasses. Thus, we cannot in general apply
algorithms for planar graphs to road networks. Nevertheless,
the vertices in road networks have bounded degrees (since
the number of roads that meet at a single junction cannot
be arbitrarily large); hence, a road network with n vertices
has O(n) edges.

Given two undirected graphs, G1 and G2, an isomorphism
of G1 and G2 is a bijection, f , from the vertices of G1 to
the vertices of G2 such that (u, v) is an edge in G1 if and
only if (f(u), f(w)) is an edge in G2 (e.g., see [10]). In the
subgraph isomorphism problem, we are given two graphs, G1

and G2, and asked to determine whether there is a subgraph
of G1 isomorphic to G2. This problem is NP-complete, even
if G1 is an embedded planar graph, by a reduction from the
planar Hamiltonian circuit problem [6]. Thus, defining the
best matching between two road networks simply in terms
of a maximum common subgraph is unlikely to lead to a
polynomial-time algorithm. So let us restrict the types of
matchings we consider.

Suppose we are given a subgraph, G′
1, of a graph, G1,

and a subgraph, G′
2 of a graph, G2, such that G1 and G2

are embedded graphs, i.e., having specified rotation systems.
Suppose further that f is an isomorphism from G′

1 to G′
2. We

say that f is conformal if it satisfies the following conditions:

1. For every vertex v in G′
1, v has the same degree in G1

as f(v) has in G2. That is, we only match vertices
having the same degree.

2. For every pair of incident edges, (v, u) and (v, w), in G′
1,

(v, u) precedes (v,w) in the clockwise order of edges
around v in G1 if and only if (f(v), f(u)) precedes
(f(v), f(w)) in the clockwise order of edges around f(v)
in G2. That is, we match vertices consistently with the
edge orderings around each vertex.

Since road evolution tends to involve adding or removing
whole roads or neighborhoods, we restrict our notion of
road network evolution in this paper to be defined in terms
conformal matchings. There is still one more restriction that
we need to add, however, which deals with degeneracies that
are unlikely to occur in real-world road networks.

Suppose we are given two road networks, G1 and G2, and
a maximum-cardinality subgraph, G′

1, having a conformal
matching, f , to a subgraph of G2 (which is how we determine
the parts of G1 that are the same in G2). We say that G1

and G2 are degenerate if, for any vertex v in G′
1 and edge

(v,w) in G1, we can change the assignment, f(w), for w
and still have f be a conformal matching (even allowing
for f(w) to be undefined). Since our intended applications
involve the second road network being a newer copy of the
first, a maximum-cardinality subgraph with a conformal
matching identifies the portions of the road network that
have not changed over time; hence, the portions outside of
this maximum-cardinality subgraph identify the portions that
have changed. Thus, we argue that such applications involve

non-degenerate graphs, since it is unlikely, for example, for
us to encounter an 8× 16 grid that evolves into a grid-like
annulus of 64 nodes with radius 8, which would be degenerate.
Given that such configurations are likely to be rare in the
real world, we are interested in this paper only in finding
maximum conformal matchings in non-degenerate pairs of
road networks, which is a problem we refer to as the map
evolution problem.

Incidentally, the map evolution problem should not be
confused with the map matching problem (e.g., see [8, 9]),
which is the unrelated problem of matching a trajectory of
(possibly noisy) GPS coordinates, as might be produced by
a moving vehicle, to the geometry of the road network in
which the trajectory is traveling.

1.2 Prior Related Work
As noted above, the map evolution problem is related to

the graph isomorphism problem, which has a rich history
(e.g., see [7,10]), due to the fact that it is not known to be NP-
complete, and the best known worst-case algorithm runs in
quasipolynomial time [2], but the problem tends to be feasible
in practice (e.g., see [10]). For the generalized approximate
graph isomorphism problem, which is NP-hard, Arvind
et al. [1] give a quasipolynomial approximation algorithm.
Such algorithms are necessarily not taking advantage of
any efficiencies, however, that could come from topological
considerations like our restrictions to embedded graphs and
conformal matchings.

The map evolution problem is also related to the map
alignment problem, which is also known as GIS conflation
(e.g., see [11, 12]). In this problem, one is given two road
networks, including both topological information (such as
vertex-edge-face relationships) and geometric information
(such as vertex coordinates and edge directions and lengths),
and one is interested in computing a “most likely” matching
between the two networks. Rosen and Saalfeld [11, 12]
develop an iterative process involving a human operator based
on matchings that use topology/geometry classifications
of the vertices, edges, and faces of the maps. Xiong [19]
extends these topological/geometric approaches using more
sophisticated classifications. Savary and Zeitouni [13] and
Zhang [20] extends these approaches further by including
additional properties, such as geographic data, including
road names and shapes. Their use of geometry, however,
implies that all of these conflation methods are not strictly
topological algorithms and their performance degrades when
roads or vertices lack geometric or geographic information.

Detecting changes in road networks and geographic regions
has also been studied from the perspective of image process-
ing, e.g., using satellite images (e.g., see [18]). For example,
Zhang and Couloigner [21] use image analysis to extract
polylines defining roads and match them between two images
of the same geographic region taken at different times. Such
image-analysis approaches are inherently geometric, however;
hence these are also not strictly topological algorithms and
do not apply when image data is not available.

Our topological approach is more closely aligned with the
work of Eppstein et al. [5], which uses a topological approach
for approximately matching for quadrilateral meshes used in
computer-generated animations. Our approach differs from
their methods, however, in that we do not consider faces in
our matching algorithm (since road network faces can be
large and complex), whereas their method crucially depends

2



on matching faces (which in their application are always
quadrilaterals or triangles).

1.3 Our Results
In this paper, we study the map evolution problem, for

matching two road network graph of same area but from
different time, by using only topological properties. The
primary motivation for this approach is to show that the
map evolution problem problem can be solved effectively
using only topological information. Thus, this gives GIS
practitioners a tool that can be applied for solving the
map evolution problem even for problem instances where
geometric and geographic information is missing, such as in
older hand-drawn maps, pairs of maps where only one of
them is derived from an image, pairs of maps annotated
in different languages, or maps missing geographic and
geometric annotations due to scaling resolution.

We develop an algorithm for the map evolution problem
that runs in polynomial time for finding conformal matchings
between non-degenerate embedded graphs, such as real-
world road networks. Our algorithm uses a breadth-first
flooding technique that begins each flooding phase by finding
potentially-matching “seed” vertices using a labeling tech-
nique similar to that used in the the Weisfeiler-Leman (WL)
graph isomorphism algorithm (e.g., see [7]). So as to limit
the amount of flooding done in subgraphs that ultimately
are determined not to match, our algorithm is probabilistic
in nature—when we don’t have any pair of unique starting
nodes, we take the pair which minimizes an estimate of the
probability of a wrong match. We provide verification of
our algorithm in experiments and case studies that show
empirically that our algorithm produces good matches in
practice.

2. OUR ALGORITHM
In this section, we describe our topological algorithm

for finding a best conformal matching between two non-
degenerate road networks, G1 and G2:

1. Create quasi-unique labels for each vertex, v, in G1

and G2 based on the degrees of the nodes at distance
at most k from v, for an input parameter, k. (We show
in our experimental section that choosing k between 5
and 8 tends to give the best results.)

2. Choose a good pair of starting nodes, s1 ∈ G1 and
s2 ∈ G2, with the same quasi-unique label, L, and, for
each such pair having label L, perform the following:

(a) Perform a breadth-first search (BFS) matching of
the corresponding portions in G1 and G2 that are
respectively reachable from s1 and s2 according to
a greedy conformal matching that emanates out
from these starting nodes.

(b) Save this conformal matching that starts from s1
and s2 if it is the best (highest cardinality) such
matching found so far for this quasi-unique label.

3. Commit the conformal matching that began with s1
and s2, removing all matched nodes as candidates for
starting nodes.

4. Repeat the above process for another good pair of
starting nodes, if such a pair of nodes still remains.

We describe these steps in more detail below.

2.1 Labeling Vertices
The first step of our algorithm is to give each vertex, v, in

G1 and G2 a quasi-unique label, based on the degrees of the
nodes at distance at most k from v, for a given parameter,
k. This approach is similar to a labeling method used in
the (exact) graph isomorphism algorithm by Weisfeiler and
Leman (WL) [7]. Specifically, we begin by determining the
degree, deg(v), of each vertex, v. Then we create a list for
each vertex, v, which contains its degree, followed by the
degrees of nodes at distance 1 from v, nodes at distance
2 from v, and so on, up to a distance k, where k is an
input parameter for this step. So as to make sure that these
labels are quasi-unique, we add the degrees of these nodes at
distance at most k from v according to a canonical ordering,
which in our case is a lexicographically minimum breadth-
first search (BFS) ordering. This BFS ordering sorts the
immediate neighbors of v according to a lexicographically
minimum cyclic ordering of v’s neighbors based on their
degrees, and then it performs a BFS from this queue, adding
nodes to the queue based on the cyclic ordering of edges
around each vertex so long as they are at distance at most k
from v.

We return a dictionary for Gi (for i = 1, 2), which we call
masterTable(Gi), such that each entry in this dictionary is a
list of vertices having the same quasi-unique label. That is,
the keys we use to index the (list) entries in masterTable(Gi)
are the label[v] lists produced by our quasi-labeling method.

The pseudocode for this step is given in Algorithm 1.

Algorithm 1: Algorithm for labeling each vertex with a
quasi-unique label. The method, lexicographicBFS(v, k),
returns an ordered list of nodes as would be visited
a breadth-first search (BFS) from v, starting with the
neighbors of v enqueued according to a lexicographically
minimum cyclic ordering of v’s neighbors based on their
degrees. This BFS explores all nodes at distance at most
k from v.

function labelNodes(k,G);
for each v ∈ G do

label[v] = (deg(v)) # label is a list;
for u ∈ lexicographicBFS(v, k) do

Append deg(u) to end of label[v];
end
Add v to masterTable(G) [label[v]];

end

With respect to the efficiency for performing this step,
note that the time needed for this step is dominated by our
doing a BFS from each node, v, to explore those other nodes
at distance k from v. Since the vertices of a road network
have degree bounded by some parameter, d, this step takes
worst-case time O(dkn), for a road network of n nodes. In
practice, k is a constant, d is usually 3 or 4, and the graph is
rather sparse; hence, this step runs in O(n) time in practice.

2.2 Choosing Pairs of Starting Nodes
After we have labeled each vertex of G1 and G2 with quasi-

unique labels, we need to choose a pair of starting nodes in
G1 and G2 with the same label to start the matching process.
If we are able to find a unique pair of nodes having the same
label, then we can take them as starting nodes and start our

3



matching. But it may happen that we don’t have any such
unique pair of nodes; that is, it might be the case that there
are at least 3 nodes from G1 ∪G2 for each quasi-unique label
of vertices in the master table.

For each distinct label, L, let n1(L) denote the number of
vertices in G1 with label L and let n2(L) denote the number
of vertices in G2 with label L. As mentioned above, if we
have a label, L, such that n1(L) = n2(L) = 1, then we choose
the unique pair of vertices, s1 ∈ G1 and s2 ∈ G2, with label
L as a good pair of starting vertices.

Otherwise, we would like to choose a pair, s1 ∈ G1 and
s2 ∈ G2, that maximizes the probability that there is a
large conformal matching of the connected components of
G1 and G2 respectively containing s1 and s2, such that s1
and s2 have the same quasi-unique label, L. For any such
label, L, the number of such candidate pairs is n1(L) · n2(L);
hence, to maximize the probability of finding a good pair of
starting nodes, we choose a pair, s1 and s2, that minimizes
the product, n1(L) · n2(L), since the probability such a pair
actually correspond to corresponding nodes in G1 and G2,
conditioned on their having the same label, L, is at least
1/(n1(L) · n2(L)).

We then perform a flooding-based search from each such
s1 and s2 with label L, committing to the pairing that
results in the largest matched components in G1 and G2.
Then, we remove all the matched vertices in G1 and G2 from
consideration (since they are now matched), and we repeat
our search for another good pair of starting seed vertices.

In order to perform such searches and updates quickly, we
use an auxiliary priority queue data structure that stores each
quasi-unique label, L, according to its priority, n1(L) · n2(L).
Such products can be found by taking the product of lengths
of both lists for each label used as a key in masterTable. As
we are performing our greedy matching processes, we also
need to update these lists by removing each matched pair
of nodes. Of course, this will also change the product for
each label, so we have to update labels in our priority queue
to now have new priorities. Since these products are always
integers in the range [1, C], for some parameter, C ≤ n2, let
us use a van Emde Boas tree [16, 17] (vebTree) for storing
non-zero products, n1(L) · n2(L), for each label, L, as well
as a hash table, productTable, that gives us the product for
any existing label, L. This allows us to perform searches,
updates, and finding of labels with minimal product values
in O(log logC) time.

Every time the algorithm needs a pair of starting nodes, it
finds a label, L, with minimum product, n1(L) · n2(L), from
vebTree. If there are multiple labels having that product, we
randomly choose any one of them. After finding the required
label, we take a pair of nodes having the same label from
the masterTable. After finding the starting pair of nodes,
we update these data structures, and the productTable, so
that we don’t consider this pair of nodes again. Note this
approach works even when we have unique pair of nodes
having the same label. In that scenario, the product will be
1 and that will be minimum product in vebTree.

With respect to efficiency, we can do all the setup for this
step in O(n log logC) time. Moreover, we can determine
already at this point what is the maximum product, n1(L) ·
n2(L), over all labels, L, for a given value of k. Since k is a
constant for real-world road networks and there is an inverse
relationship between k and the size of these products, we can
perform a (binary) search to choose k so that the maximum

product size is bounded by some constant, C. The running
time of this search would be O(n) for constants k and C.

There is a tradeoff, however, between using a large value
for k and getting good matches, since two starting nodes are
paired only if their quasi-unique labels are the same, that
is, if the respective portions of the road network at distance
k from these nodes is the same. Since we are considering
road networks that are evolving, we therefore don’t want to
set too high a value for k. Thus, we would like to choose k
as small as possible so that the products, n1(L) · n2(L), are
bounded by a constant, C. (Say, C ≤ 24.) As we note in
the experimental section of this paper, choosing k between 5
and 8 seems to work well in practice for this purpose.

2.3 Flood-based Conformal Matching
After finding a starting pair of nodes, we start our greedy

BFS matching process. We begin by marking the starting
nodes as matched and we add them to our current tentative
matching. As we perform our BFS matching process, we
will tentatively be matching up additional pairs of nodes
from G1 and G2, updating our supporting data structures
as we go, e.g., to tentatively remove each such pair from
consideration in vebTree. Moreover, if a starting node has
more than one lexicographically minimum ordering of the
degrees of its neighbors, then we also consider each such
ordering of the edges, performing our BFS matching process
for each. Tentative matchings are compared on the basis of
number of matched nodes and the matching with maximum
number of matched nodes is taken as best matching.

This raises an important implementation detail, which
we should probably discuss before going on to other details.
Our matching algorithm considers different pairs of starting
vertices (and even possibly different starting orientations
of their incident edges), looking for the pair that produces
the largest portions of matching subgraphs. Thus, we may
have tentative matches that need to be undone so that other
tentative matches can be considered.

There are at least two possible ways to deal with this
branch-and-bound element in our conformal matching al-
gorithm. One way is to checkpoint our supporting data
structures, like vebTree, masterTable, and productTable,
saving the version that produced the best tentative match so
far. This is the method we use, for example, in the version
of our algorithm that we implemented for our experiments,
since it is easy to implement. Another way is to perform
a two-phase commit, where we perform updates to global
copies of these data structures, but keep a history of the
updates we have performed during a tentative matching, so
that we can then roll back these updates if we do not commit
to that tentative matching (because there is another one
that gave a larger number of matched vertices). This is the
version of our algorithm that we analyze for our theoretical
analysis.

Given that there is some method that allows us to roll
back to an earlier state of our supporting data structures,
vebTree, masterTable, and productTable, let us discuss in
more detail how our conformal BFS proceeds.

Once we map the neighbors around a pair of starting
nodes, as discussed above, we flood-search both graphs using
a conformal-matching BFS. When we reach any other node
except a starting node in the flooding, we know the edge we
are coming from and as we are following clocking ordering
around any node, there will be exactly one ordering around

4



that node in which we can traverse and map the neighbors
with another graph, so as to be forming a conformal matching.
Figure 2 shows an example.

(a)

v11

2

3

4

(b)

v21

5

6

7

Figure 2: Neighbor ordering around a degree-4 node, v1, and
its matching node, v2. In this example, node 1 in G1 matches
with node 1 in G2, and we know that the we reached the
matched nodes v1 and v2 through the respective nodes, 1,
so now their clockwise ordering is fixed and the mapping of
neighbors will be (4, 7), (3, 6), (2, 5).

For matching any two nodes, v1 ∈ G1 and v2 ∈ G2, that are
not starting nodes, they should satisfy following properties:

• both v1 and v2 should be unmatched.

• degree of v1 should be same as v2.

If any of these two conditions fail, we don’t match v1
and v2 and we terminate that branch of the BFS. If both
the conditions are satisfied, then we mark v1 and v2 as
matched, add them to current matching and the queue for
the BFS. Then we remove them from masterTable, vebTree
and productTable, so that they are not considered again in
the matching process. The pseudocode for this step in our
algorithm is given as Algorithm 2.

Algorithm 2: Algorithm to process nodes in BFS.

function processNodes(u1, u2);
add (u1, u2) to matching;
mark u1 and u2 as matched;
add corresponding neighbors of u1 and u2 to
bfsQueue;

update masterTable, vebTree and productTable to
remove u1 and u2;

When there is no further branch that can be matched, our
BFS search terminates. If this is the best tentative matching
for the given quasi-unique label, L, then we tentatively save
the matching corresponding to this BFS to the total matching.
Then we check if there is still any remaining pair of seed
nodes having this same label. If so, then we perform another
conformal BFS for this next pair of seed vertices. Once we
have completed performing a tentative matching for each
pair of seed nodes having the same quasi-unique label, L,
we commit to the matching for this label that produced the
largest match.

Then we check if vebTree is empty or not. If vebTree
is empty, we terminate the algorithm and return the total
matching. If not, we repeat our search for a quasi-unique
label, L, having the smallest product, n1(L) · n2(L), and
repeat the above conformal BFS for that label.

The pseudocode for this step in our algorithm is given as
Algorithm 3.

Algorithm 3: Our flood-based conformal matching
algorithm.

function matching(masterTable,G1, G2);
create prodTable and vebTree;
totalMatching = [ ];
while vebTree is not empty do

minProd = vebTree.min();
startingLabel = productTable[minProd];
startingPairs = (masterTable(G1) [startingLabel],
masterTable(G2) [startingLabel]);

find all mappings of neighbors around each pair in
startingPairs;

for each of the mappings in a startingPair do
matching = [ ];
(s1, s2) = this instance of

startingPair[0],startingPair[1];
bfsQueue = ();
processNodes(s1,s2);
while bfsQueue is not empty do

v1, v2 = pop(bfsQueue);
if v1 and v2 are both unmatched then

if deg(v1) = deg(v2) then
processNodes(v1,v2);

end

end

end
checkpoint this matching if it’s best for this
startingPair;

end
add the best matching found to totalMatching;

end

Each time we explore subgraphs of G1 and G2 for a
particular starting pair, s1 and s2, that are in the starting
label set of pairs for some quasi-unique label, L, and one
of the deg(s1) possible orientations of edges, we traverse
subgraphs of some size at most, n(L) ≤ n, where n(L) is the
size of the largest match for the label L. Thus, the running
time of this part of our algorithm is at most O(n(L) log logC),
where C is the maximum value of a product, n1(L′) · n2(L′),
for some label, L′. If d is the maximum degree in a road
network (e.g., d ≤ 8), then the total worst-case running time
of our BFS matching algorithm is therefore

O

(
dC
∑
L

n(L) log logC

)
= O(dCn log logC),

since
∑

L n(L) ≤ n, because the maximum amount of nodes
we can ultimately match in a pair of non-degenerate road
networks is n. Combining this with the theoretical analysis
of the other steps in our matching algorithm implies that
the total running time of our entire algorithm is O(dkn +
dCn log logC), where d is the maximum degree of a road
network, k is the distance we choose for producing quasi-
unique labels, and C is the maximum value of a product,
n1(L) · n2(L), for any label, L. Thus, in the practical case
when d, k, and C are constants, our matching algorithm runs
in O(n) time.

5



(a) k = 1 (b) k = 5

Figure 3: Histogram plots for Amador County, CA from 2000 to 2006.

(a) k = 1 (b) k = 7

Figure 4: Histogram plots for Alameda County, CA from 2000 to 2006.

3. EXPERIMENTS
In this section, we provide an empirical evaluation of our

topological flood-based matching. All of our experiments
were ran on data from the U.S. TIGER/Line road network
database [3].

3.1 Preprocessing the Data
The TIGER/Line database provides the road networks in

two different file formats: shapefile and TIGER/Line ASCII
format. The data the shapefile format provides allows a graph
to be created that not only has a node for every intersection of
two roads, but also nodes to indicate the curvature of a road.
That is, the format allows for curved roads to be represented
as a sequence of many two-degree vertices. Therefore, for the
preprocessing of files in the shapefile format, we simply take
the first and the last vertex for each road to avoid introducing
unnecessary two-degree vertices. With this approach to
processing files in the shapefile format and fact that the
TIGER/Line ASCII format lends itself to easy conversion to
the definition of a road network given in the introduction,
our algorithm performs well on both file formats.

3.2 Tuning the Seed-labeling Parameter
Let us consider the choice of the value for k, the parameter

that is input to Algorithm 1 that defines distance to which to
perform a lexicographic BFS so as to improve the uniqueness
of vertex labels. To characterize this uniqueness factor, let
us define the approximation ratio of a labeling as a/b, where
a is the number of pairs of nodes with the same label and b
is the minimum of the number of nodes in the two graphs.
Intuitively, if k is small, there will likely be many pairs
of nodes (u, v) with u in G1 and v in G2 that both have

label L where n1(L) · n2(L) is large. For example, labels
like “44444”, which indicates a four-way intersection that
leads to four other four-way intersections, are likely to be
common, and many other examples like this are likely from
real-world. As many of these products are expected to be
large, we would expect the approximation ratio to be larger
for smaller value for k, because we could be possibly finding
many pairs of vertices with the same label that should not
actually be matched. For instance, we might find two vertices
labeled“44444”even though they are not similar beyond their
immediate neighbors. We expect to run into this situation
only when the product is large since our algorithm matches
the pair of vertices for a given label that maximizes the
number of nodes matched.

As we increase the value of k, we would expect that the
approximation ratio to decrease. That is, if k is large, we
expect there to be more labels L′ such that n1(L′) · n2(L′)
is small or even 1, as the labels should become more distinct
as k increases. Because the labels are expected to be more
distinct in this case, it should be less likely to find pairs of
vertices with those labels, causing the approximation ratio
to decrease.

The histograms in Figures 3 and 4 exemplify the preceding
interpretation of the parameter k. The x-axis indicates the
physical distance between every node and its pair partner(s)
with the same quasi-unique label, L, using the longitude
and latitude values given from the database. The distance
is determined using the haversine formula, which yields
the shortest distance between two points on a sphere [14].
(Although our algorithm doesn’t use geometric information
to determine matching pairs, we used geometric information
in this experiment to empirically validate our approach.)

6



Ideally, all pairs should be at distance 0 from each other.
As we expected, larger k values minimize the physical

distances between pairs of nodes with the same label, which
gives us a more accurate matching; hence, it reduces the
number of false pairs that our algorithm needs to consider. A
histogram that is highly skewed is desirable, as that implies
that the number of incorrect nodes being falsely matched is
small. Note that the Amador County data from 2000 and
2006 in Figure 3 included 6,970 and 6,784 nodes, respectively,
and the Alameda County data from 2000 and 2006 in Figure 4
included 52,566 and 51,054 nodes, respectively.

Figure 5 shows the change of the approximation ratio
with respect to the change in k for Amador County. The
decrease in the approximation ratio with the increase in k
again matched our intuition. The plot with the same x-axis
and y-axis values for Alameda County started at a similar
approximation ratio and decreased at a similar rate, so it
was omitted.

Figure 5: Change in approximation ratio for Amador County,
CA from 2000 to 2006

We also plot the change in the maximum product with
respect to k in Figure 6. As described in Section 2,
the maximum product is the value max{n1(L) · n2(L) :
L is a label generated by Algorithm 1}. As expected, the
maximum product decreases as k increases. Note that only
for San Francisco County does the maximum product reach
1. This is due to the fact that for the other counties, there
are labels that do not change as k increases as the nodes the
labels correspond to are in small connected components e.g.
“121” is the cause of this in San Mateo County.

3.3 Example Output of Our Algorithm
In this subsection, we provide a visualization of the

matching our algorithm created for Del Norte County, CA.
We performed the matching with k = 3 and then took
four snapshots of the matching to enlarge the details. For
Figures 7, 8, 9, and 10, a node is colored blue if it was
matched and red otherwise. Furthermore, a node with a
white box above it from the first image containing number i
matches the node with a white box above it containing the
number i from the second image.

First, consider Figure 7. Solely based off of geographic
location, it is clear that the nodes are being matched to
the correct area. After further inspection, it can be seen
that the graph has remained nearly the same around the
white boxes containing “1”, “3”, “7”, and “8”. Near each of
these white boxes, our matching algorithm has matched the
correct nodes, indicated by all of the blue nodes surrounding

Figure 6: Change in maximum product for Napa, San
Francisco, and San Mateo Counties with road networks from
2000 and 2006

said boxes. Figure 7 also demonstrates the issue of using a
small value for k. The yellow boxes in Figure 7b indicate
nodes that have been matched to other nodes in the graph
from Figure 7a that are not included in the image. This
incorrect matching is due to the fact that when k is small,
as mentioned earlier, it is likely that many nodes will end up
with the same label, yielding a higher likelihood of incorrectly
matching two nodes that should not be matched.

Second, consider Figure 8. The white boxes in these figures
are here to indicate that the matching algorithm is performing
properly in many parts of the graph. As we are just using
topological features, we also get some unexpected matching
as shown in Figure 8. The two yellow boxes in Figure 8a are
matched to the two yellows boxes in Figure 8b. A new vertex
was added in the 2006 graph that caused the matching of the
vertices under the yellow boxes to occur in the wrong place.
Because we are only using topological features, our matching
algorithm cannot distinguish between the new vertex and
the old one that it should be matching to.

Last, consider Figures 9 and 10. Many more white boxes
were included to show the success of our matching algorithm
in these portions of the graph.

3.4 Detailed Analysis
We ran our algorithm on 40 different counties in California

ranging from small counties to big counties. The results
for our experiments are shown in Table 1. Each row gives
analysis about one particular county where G1 is obtained
from TIGER/Line ASCII format from the year 2000 and
G2 is obtained from TIGER/Line ASCII format from the
year 2006. The column titled “seed time” indicates the time
taken to find the seed vertices for the given value of k and
the column titled “match time” indicates the amount of time
taken for the topological flood-based matching algorithm.
We ran the experiments on a machine with 3.1 GHz Intel
Core i7 CPU and 16 GB of RAM and report the timings in
seconds. The last column titled “thresh. ratio” is the ratio of
number of pairs of matched vertices within 5 miles of each
other to the total number of pairs of matched vertices which
gives up the quality of matching. We can see from the table
that thresh. ratio is always greater than 0.9 which tells us
that our algorithm performs well on all kinds of inputs.

7



(a) 2000 (b) 2006

Figure 7: First example of a portion of a matching for Del Norte County, CA where k = 3.

(a) 2000 (b) 2006

Figure 8: Second example of a portion of a matching for Del Norte County, CA where k = 3

(a) 2000 (b) 2006

Figure 9: Third example of a portion of a matching for Del Norte County, CA where k = 3.

(a) 2000 (b) 2006

Figure 10: Fourth example of a portion of a matching for Del Norte County, CA where k = 3.

8



county k nodes of G1 nodes of G2 edges of G1 edges of G2 seed time
(seconds)

match time
(seconds)

approx. ratio thres. ratio

Alameda 9 40752 40242 67226 66644 778.544 7.686 0.9777 0.9997
Alpine 5 1448 1427 1838 1811 0.536 0.311 0.9439 0.9985
Amador 5 6970 6784 9198 8991 3.017 0.764 0.9553 0.9998
Butte 8 19856 21304 27896 29955 66.540 34.509 0.6878 0.9963

Calaveras 8 13770 13043 18141 17690 23.050 1.185 0.0400 0.9196
Colusa 5 5039 5700 7285 8589 4.231 8.106 0.8106 0.9867

Contra Costa 9 37148 36564 55555 54750 323.512 70.794 0.9482 0.9995
Del Norte 5 5383 7034 7386 9785 3.861 39.562 0.4811 0.9258
El Dorado 9 24248 24103 33331 33271 108.336 10.559 0.9766 0.9991
Fresno 9 51006 50614 83081 82640 744.009 346.011 0.9796 0.9992
Imperial 8 18104 18105 28716 28639 92.026 1.481 0.9592 1.0
Kings 8 11842 15328 18775 25521 87.083 7.071 0.3541 0.9978
Lake 8 12437 18500 17486 26176 47.485 391.934 0.1331 0.9553
Lassen 8 16216 19519 24024 28044 57.645 241.791 0.3804 0.9837
Madera 8 16936 16633 25164 24842 77.837 4.864 0.9633 0.9998
Marin 8 13733 13455 19722 19372 44.946 1.231 0.9446 1.0

Mariposa 5 9241 10538 12033 13830 4.558 119.975 0.5746 0.9546
Mendocino 9 22326 26153 30231 36142 107.554 403.188 0.3761 0.9901
Merced 8 16576 19619 25266 29568 78.726 9.331 0.6058 0.9940
Modoc 8 13304 17408 19674 24889 44.782 3.998 0.3229 0.9837
Mono 5 9159 11345 13203 16178 6.440 30.914 0.6179 0.9595

Monterey 9 31887 33831 48204 51313 324.838 350.278 0.7654 0.9978
Napa 5 6932 6827 10054 9867 4.813 19.717 0.9491 0.9933
Nevada 8 15903 15268 21729 20935 30.650 6.726 0.9135 0.9994
Placer 9 25365 25437 35603 35913 116.914 41.591 0.9287 0.9996

San Benito 5 7555 10311 10421 14649 5.801 30.310 0.5597 0.9503
San Francisco 5 9803 11570 20313 24218 20.241 0.977 0.7138 1.0
San Mateo 9 21571 21101 35132 34532 288.204 5.469 0.9666 0.9997
Santa Cruz 8 14374 14063 20545 20142 48.941 19.229 0.9694 0.9997

Shasta 9 25436 33824 35129 47588 163.593 431.638 0.1867 0.9732
Sierra 5 4809 6522 6603 8912 3.273 5.000 0.3559 0.8603

Siskiyou 9 28210 38150 39682 52616 140.771 705.416 0.1442 0.9528
Solano 8 15930 31249 24859 46954 106.300 63.848 0.1398 0.9654

Stanislaus 8 18254 19240 29327 31094 110.927 1.703 0.5786 0.9962
Sutter 5 6311 6164 9670 9494 4.293 0.319 0.9704 1.0
Tehama 8 15399 19177 21756 27353 53.793 13.337 0.3802 0.9844
Trinity 8 12042 11944 15501 15434 15.961 77.516 0.9780 0.9945
Tulare 9 27555 27302 42308 42257 269.419 10.146 0.9632 0.9993

Tuolumne 9 14830 17135 19985 23283 47.406 131.849 0.2621 0.9809
Yuba 5 9354 9267 13529 13407 5.791 4.158 0.9840 0.9995

Table 1: Results for various counties throughout California

9



Figure 11: Running times for our algorithm on the graphs
given in Table 1

Figure 11 plots the experiments in Table 1 with the total
running time (seed time plus match time) as the y-axis and
the size of the smaller graph as the x-axis. The red line
represents the function 0.003n log log n. Therefore, it seems
that the variable C defined in Section 2 is much less than n,
which is good for the running time of our algorithm.

4. CONCLUSION
We have given a purely topological algorithm for deter-

mining the changes that occur between two road networks,
and we have provided both theoretical and experimental
analysis to show that our algorithm is effective and efficient.
We therefore feel that this algorithm provides a good tool
for solving the map evolution problem when geometric or
geographic features are missing from one or both of the road
networks being considered.

Acknowledgments
This article reports on work supported by the Defense Ad-
vanced Research Projects Agency under agreement no. AFRL
FA8750-15-2-0092. The views expressed are those of the
authors and do not reflect the official policy or position of
the Department of Defense or the U.S. Government. This
work was also supported in part by the U.S. National Science
Foundation under grants 1228639 and 1526631. We would
like to thank David Eppstein for several helpful discussions
related to the topics of this paper.

5. REFERENCES
[1] V. Arvind, J. Köbler, S. Kuhnert, and Y. Vasudev.

Approximate graph isomorphism. In B. Rovan,
V. Sassone, and P. Widmayer, editors, 37th Symp. on
Mathematical Foundations of Computer Science
(MFCS), pages 100–111, 2012.

[2] L. Babai. Graph isomorphism in quasipolynomial time.
arXiv preprint arXiv:1512.03547, 2015.

[3] U. S. Census Bureau. Tiger/line shapefiles and
tiger/line files. https://www.census.gov/geo/
maps-data/data/tiger-line.html.

[4] D. Eppstein and M. T. Goodrich. Studying
(non-planar) road networks through an algorithmic lens.
In ACM Conf. on Geographic Information Systems
(GIS), pages 16:1–16:10, 2008.

[5] D. Eppstein, M. T. Goodrich, E. Kim, and R. Tamstorf.
Approximate topological matching of quad meshes. The
Visual Computer, 25(8):771–783, 2009.

[6] M. R. Garey, D. S. Johnson, and R. E. Tarjan. The
planar hamiltonian circuit problem is NP-complete.
SIAM Journal on Computing, 5(4):704–714, 1976.

[7] M. Grohe. Isomorphism testing for embeddable graphs
through definability. In 32nd ACM Symp. on Theory of
Computing (STOC), pages 63–72, 2000.

[8] K. Liu, Y. Li, F. He, J. Xu, and Z. Ding. Effective
map-matching on the most simplified road network. In
ACM Conf. on Geographic Information Systems (GIS),
pages 609–612, 2012.

[9] Y. Lou, C. Zhang, Y. Zheng, X. Xie, W. Wang, and
Y. Huang. Map-matching for low-sampling-rate gps
trajectories. In ACM Conf. on Geographic Information
Systems (GIS), pages 352–361, 2009.

[10] B. D. McKay and A. Piperno. Practical graph
isomorphism, II. Journal of Symbolic Computation,
60:94–112, 2014.

[11] B. Rosen and A. Saalfeld. Match criteria for automatic
alignment. In 7th Symp. on Computer-Assisted
Cartography (Auto-Carto), pages 1–20, 1985.

[12] A. Saalfeld. Conflation automated map compilation.
International Journal of Geographical Information
System, 2(3):217–228, 1988.

[13] L. Savary and K. Zeitouni. Automated linear geometric
conflation for spatial data warehouse integration
process. In 8th AGILE Conference on GIScience, 2005.

[14] B. Shumaker and R. Sinnott. Astronomical computing:
1. computing under the open sky. 2. virtues of the
haversine. Sky and Telescope, 68:158–159, 1984.

[15] S. Stahl. The embeddings of a graph – a survey.
Journal of Graph Theory, 2(4):275–298, 1978.

[16] P. van Emde Boas. Preserving order in a forest in less
than logarithmic time and linear space. Information
Processing Letters, 6(3):80–82, 1977.

[17] P. van Emde Boas, R. Kaas, and E. Zijlstra. Design
and implementation of an efficient priority queue.
Mathematical systems theory, 10(1):99–127, 1976.

[18] A. Ventura, A. Rampini, and R. Schettini. Image
registration by recognition of corresponding structures.
IEEE Trans. on Geoscience and Remote Sensing,
28(3):305–314, 1990.

[19] D. Xiong. A three-stage computational approach to
network matching. Transportation Research Part C:
Emerging Technologies, 8(1):71–89, 2000.

[20] M. Zhang. Methods and implementations of
road-network matching. PhD thesis, Technical
University of Munich, 2009.

[21] Q. Zhang and I. Couloigner. Automatic road change
detection and GIS updating from high spatial
remotely-sensed imagery. Geo-Spatial Information
Science, 7(2):89–95, 2004.

10

https://www.census.gov/geo/maps-data/data/tiger-line.html
https://www.census.gov/geo/maps-data/data/tiger-line.html

	Introduction
	Problem Definition
	Prior Related Work
	Our Results

	Our Algorithm
	Labeling Vertices
	Choosing Pairs of Starting Nodes
	Flood-based Conformal Matching

	Experiments
	Preprocessing the Data
	Tuning the Seed-labeling Parameter
	Example Output of Our Algorithm
	Detailed Analysis

	Conclusion
	References

