PREP-P: A MAPPING PREPROCESSOR
FOR CHiP COMPUTERS

Francine Berman
Department of Electrical Engineering and Computer Sciences
University of California, San Diego
La Jolla, California 92093

Michael Goodrich
Charles Koelbel
W. J. Robison 111
Karen Showell
Department of Computer Science
Purdue Unwversity
Lafayette, Indiana {7907

Abstract

The mapping problem arises when the communication
graph of a parallel algorithm exceeds in size or differs in
structure from the interconnection architecture of the
intended parallel machine. In this paper, we describe the
design and implementation of a preprocessor which "solves"
the mapping problem for CHiP architectures. In particular.
we describe the mapping and multiplexing protocols of this
software, and briefly discuss some preliminary test results.

0. Introduction

A fundamental activity in computer science is the
implementation of algorithms on machines. This is a
straightforward task for the user in the sequential environ-
ment where the algorithm can generally be specified in a
high level language without regard to the size of the
intended machine (available memory and peripheral storage)
or its architecture. In the parallel environment, the user
must specify the algorithm in an architecture-dependent
manner which takes into account the number of processors
in the machine and its communication architecture. More
specifically, the mapping problem in parallel computation
arises when the parallel algorithm to be implemented
requires more processes than the target parallel machine has
available, or requires a different communication structure
than the hardwired interconnection architecture of the
machine, or both.

In 3], a general strategy for mapping large-sized paral-
lel algorithms into fixed-size parallel architectures was pro-
posed. The goal was to find a uniform, non-ad hoc method
which solved the mapping problem for the regular communi-
cation structures and non-shared memory architectures most
frequently used in parallel computation. The basic idea of
the general method was to first contract a large-sized parallel
algorithm G into an intermediate graph G’ which has the
same communication structure but fewer processes, and then
to lay out the intermediate graph (') on the target inter-
connection structure H (Figure 1). The (large-sized) parallel
algorithm is then multiplezed on the interconnection architec-
ture of the target machine.

G contraction ek
multiplexing layout
H

Figure 1
Mapping G into H using the general method.

0190-3918/85/0000/0731$01.00 © 1985 |IEEE

731

Asymptotic analysis showed this method to produce
optimal or near-optimal mappings for a varied group of
benchmark examples. In almost every example. the
automatic mapping produced by the general method distri-
buted the algorithm’s processes and communication paths
roughly equally over the target architecture. with full speed-
up of the contracted parallel system. These results were
very encouraging but asymptotic, and we were interested in
gauging the actual performance of a mapping preprocessor
based on these ideas.

To this end, we designed and implemented Prep-P as a
mapping preprocessor to implement the method in 3. We
chose as our target machine the family of CHiP computers
(18]), a family of non-shared memory architectures which can
be configured to emulate many commonly used paralle! inter-
connection structures. Prep-P runs as a preprocessor to both
Poker 9], a software emulator of a 64 processor (called PEs)
CHIP machine, and to Pringle, the CHiP hardware proto-
type {6)].

0000000 00 0O0O0O0 O
ODODODO o (o]
00 0QC 00 o o o o o 0
odoloo oMo oWo
00 0O0O0OO0OOo o Q0 00 o0
ODODODO' o 2\-0[30
0000 O0O0 O 00 0O0O0OOO O
a) b)
Figure 2

a) A CHiP machine.
b) A CHiP machine configured as a tree machine.
{Bozes represent PEs (processors);
circles represent switches).

1. Design

The goal of Prep-P is to allow a user to input a parallel
algorithm to a CHiP machine regardless of size and struc-
ture. Prep-P then acts as a front-end interface between the
user and the CHiP machine, creating a mapping and per-
forming the multiplexing. The output of Prep-P is 8051
assembly code executable on Poker or Pringle {the CHiP
architecture emulators) which simulates the execution of the
original parallel algorithm.

The design of Prep-P follows the general strateg:
described in '3}, i.e. the program is divided into user inter-
face, contract, layout and multiplexing modules. We briefly
describe the design of each of the modules of Prep-P.

A. User Interface (Input)

Input to Prep-P consists of a parallel algorithm
represented by an undirected communication graph with
integer nodes. Each node is assosciated with a not neces-
sarily distinct process written in XX, the CHiP parallel pro-
gramming language [9]. The communication graph can be
input as an adjacency list. however since many parallel inter-
connection structures are regular and modular, the communi-
cation graph may also be given by a list of arithmetic expres-
sions specifying for each node a set of incident nodes (and
their assosciated processes).

For example, if the communication graph of a broad-
cast algorithm is a complete binary tree, then we might use
processes LEAF, INTERNAL and ROOT to represent the
functions of the leaves, non-root internal nodes and root
node respectively. Assume a straightforward numbering
scheme for the tree, i.e., let the root be 1 and for node i,
number its leftson 2i and its rightson 2i+1 (Figure 3). An
input specification to Prep-P for the max-finding algorithm is
given in Figure 4.

Figure 3
Interconnection structure
for the broadcast algorithm.

tree

nodemin = 1

nodecount = 7

procedure ROOT
nodetype: {i == 1}
port RSON: {2*i}
port LSON: {2*i+1}

procedure INTERNAL
nodetype: {i> 1 && i< 7/2}
port FATHER: {i/2}
port LSON: {2*i}
port RSON: {2*i+1}

procedure LEAF

nodetype: {i> 7/2}
port FATHER: {i/2}

Figure 4
Prep-P specification for
a broadcast algorithm.

The first three lines in the code specification in Figure 4
indicate to Prep-P the graph type and node range. Distinct
adjacencies of a vertex are distinguished by assigning each
incident edge a distinct port label.

Given a paralle] algorithm input in this format, Prep-P
creates internal files which represent the adjacency and pro-
cess information in a more convenient form. If the number
of nodes in the communication graph of the algorithm is
greater than 64, control is next passed to the contraction
module, otherwise control is passed to the layout module.

132

B. The Contraction Module

Currently, the contraction module takes as input an
undirected graph and outputs a smaller-sized (contracted)
intermediate graph of the same graph type. The class C of
acceptable input communication graphs includes cube-
connected cycles, toruses, hex and square meshes, linear
arrays, complete binary trees, loops, shuffle-exchanges (which
contracts to a 4-pin shuffle). butterfly networks, 4-pin
shuffles, finite element graphs, and hypercubes.

The contraction module consists of a set of library rou-
tines which are based on the mappings produced by edge
grammar representations of graph families in C. (Edge
grammars ({1], {2]) are formal systems similar to graph gram-
mars which can be used to define and automatically contract
graph families). During the contraction phase, a number of
internal files are generated including files which list the adja-
cency structure of the contracted graph and give the map-
ping of nodes in the algorithm’s communication graph to
nodes in the contracted intermediate graph. Recall that the
contraction module is only entered if the communication
graph of the input algorithm has more than 64 nodes.

We are now designing an improved contraction pro-
cedure which will enlarge the class of acceptable input
graphs to include any undirected graph. Using this new pro-
cedure, we intend to combine both layout and contraction
modules to one mapping module.

C. The Layout Module

After contraction, or if the input graph has less than 64
nodes, control is passed to the layout module. The layout
module embeds the contracted communication graph into a
64 PE grid and then uses a shortest path algorithm to route
the edges through the switch lattice. The placement algo-
rithm is based on a divide-and-conquer strategy which itera-
tively embeds partitions of the contracted graph into qua-
drants of the the PE lattice. The partitions are chosen so as
to minimize the maximum distance (wirelength) of the nodes
in distinct quadrants. More specifically, the placement algo-
rithm proceeds as follows:

Initially partition the contracted graph into subgraphs
G,, G,, G, and G, and the PE grid into quadrants
12 73 4
Q. Q) Q;and Q.
Reformulate the {G.} so that the number of edges
between vertices in distinct subgraphs is minimal. Call
these reformulated subgraphs Gl’, G, G, and G
(If the contracted graph has a separator” |7], this 1<
straight-forward. For a more general class of graphs.
the problem is NP-complete [4] and a heuristic must be
used. Our algorithm uses a Kernighan & Lin-type
heuristic [5]: Essentially switch pairs of vertices in dis-
tinct partitions (quadrants) until the number of edges
between vertices achieves a local minimum).
Find a mapping of the subgraphs G.’ into the qua-
drants Q. that will minimize the maximum wirelength
between subgraphs. If more than one of the 24 possible
mappings achieves a minimum, then take the one which
also minimizes the total wirelength between subgraphs
For each 1, let Qi’ be the quadrant in which Gi' finalls
resides.
Apply the algorithm iteratively
partition/quadrant pair Gi",Q.’>
When jQi’j =1, use the trivial embedding.

1)

3)

to
until

4) eac’.
Q" !

<

When the nodes of the contracted graph have been
placed on a 64 PE grid using the placement algorit.hm, Fhe
edges are then routed on the switch lattice of the CHiP using
a shortest path algorithm. If the nodes in the contracted
graph have degree greater than 8 (maximum PE degree' for
the CHiP architecture), the layout algorithm can be modified
to couple nodes in the PE lattice.

After layout and contraction, the communication graph
has been embedded in the target architecture. Internal files
have been generated which will communicate the CHiP lay-
out to Poker or Pringle and which will define for each PE
the set of processes in the original graph to be simulated at
that location. It remains to multiplex the process codes
using this mapping.

D. The Multiplexing Module

In CHiP programs, communication is accomplished by
simple reads and writes. During contraction and layout. dis-
tinct processes which communicate are either mapped to the
same PE (intra- processor communication) or to different
PEs (inter- processor communication). To simulate the ori-
ginal communication without conflict. Prep-P substitutes
read or write macros for each simple read or write instruc-
tion. The multiplexing is then performed by concatenating
the codes of the input processes assigned to each PE in the
CHiP lattice, and by executing the concatenated process
codes for each PE in a round-robin fashion (context-
switching at each 1/0 call). Communication of the input
algorithm is simulated by maintaining local mini-operating
systems at each PE which update a set of arrays and buffers
needed for 1/0 management. These protocols are straight-
forward but seem to be robust.

3. Implementation
and Preliminary Results

Prep-P is written in a combination of shellscript. C. XX
and Intel 8051 assembly language. The first version was
brought up on a Vax 780 using a BBN Bitgraph graphics
terminal. To coordinate with the newest distribution version
of Poker, the current version was brought up on a Sun 2.

We are currently testing and improving Prep-P.
Among the preliminary benchmarks, we give timing results
for three parallel algorithms with distinct communication
paradigms and interconnection architectures. They are the
FFT (on a butterfly network), a broadcast algorithm (on a
complete binary tree), and a pipelined algorithm {(on a linear
systolic array). Figure 5 shows a table of preliminary timing
results.

At current status, we are continuing to test and
improve Prep-P with the dual goals of distributing the
software for experimental use, and using this experience to
create efficient mapping protocols to be used with other
types of parallel architectures.

un-multiplexed | multiplexed | multiplexed
Algorithm G(n) G(n~1) G{n+2)
Broadcast 8407 32808 45448
ticks ticks ticks
(63 nodes) {127 nodes) I {255 nodes) |
Pipelined 35301 177177 318857
ticks ticks ticks
(64 nodes) (128 nodes] | (256 nodes)
FFT 5061 31109 *
ticks ticks
(32 nodes) (80 nodes)
Figure 5

Timing results for large-sized algorithms
reduced by Prep-P and ezecuted by Poker.
(1 tick = 1 microsecond on Pringle).

Acknowledgements

We are grateful to many people for their help on this
project. We would like to thank Mark Anderson. Dennis
Gannon, Steve Holmes, Kevin Smallwood, Larry Snyder. Joel
Strickland. John Rice and Ko-Yang Wang for their support
and encouragement.

Bibliography
1]

(2]

F. Berman, "Edge Grammars and Parallel Computa-
tion," Proceedings of the 1983 Allerton Conference.

F. Berman and G. Shannon, "Edge Grammars: Decida-
bility Results and Formal Language lssues,”" Proceed-
ings of the 1984 Allerton Conference.

F. Berman and L. Snyder, "On Mapping Parallel Algo-
rithms into Parallel Architectures," (extended abstract)
Proceedings of the 1984 International Conference on
Parallel Processing.

M. Garey and D. Johnson, Computers and Intractabil-
ity: A Guide to NP-Completenes, W.H. Freeman and
Co., 1979.

B. Kernighan and S. Lin, "An Effective Heuristic Pro-
cedure for Partitioning Graphs," Bell Systems Technical
Journal, 49(2). February, 1970.

A. Kapuan, K.Y. Yang. D. Gannon, J. Cuny and L.
Snyder, "The Pringle: An Experimental System for
Parallel Algorithm and Software Testing," Proceedings
of the 1984 International Conference on Parallel Pro-
cessing.

R. Lipton and R. Tarjan, "A Separator Theorem for

Planar Graphs," SIAM Journal of Applied Mathematics.
vol. 36, #2, April, 1979.

L. Snyder, "Introduction to the Configurable, Highiy
Parallel Computer,”" Computer, January, 1982.

L. Snyder, "Introduction to the Poker Parallel Program-
ming Environment." Proceedings of the 1983 Interna-
tional Conference on Parallel Processing.

* To multiplex an FFT of size 192 (G(n+2)) on the CHiP, a different contraction must be given

than the one currently in the contract module’s library routines.

could be extended to simulate 16 processes at one PE.

733

Alternatively, the buffer arrays

