
PREP-P: A MAPPING PREPROCESSOR
FOR CHiP COMPUTERS

Francine Berman
Department ol Electrical Engineering and Computer Sciences

L'niuersity of California, San Diego
La Jolla, Calilornia gP09S

Michael Goodr ich
Charles Koelbel

W. J. Robison l l l
Karen Showel l

Department of Computcr Science
Pvrdue University

Lafayette, Indiana lZ90I

Abstract

The mapping problem ar ises when the communical , ion
graph of a paral le l a lgor i thm exceeds in s ize or di f fers in
structure f rom the interconnect ion archi tecture of the
intended paral le l machine. In th is paper, we descr ibe rhe
design and implementat ion of a preprocessor which ,kolvesl

the mapping problem for CHiP archi tectures. In part icular.
we descr ibe the mapping and mult ip lexing protocols of th is
software, and briefly discuss some preliminary test results.

0. Introduct ion

A fundamental act iv i ly in computer science is the
implementat ion of a lgor i thms on machines. This is a
straighrforward task for the user in the sequent ia l environ-
ment where the algor i thm can general ly be speci f ied in a
high level language without regard to the s ize of the
intended machine (avai lable memory and per ipheral storage)
or i ts archi tecture. ln the parai le l environment, the user
must speci fy the algor i thm in an archi tecture-dependent
manner which takes into account the number of processors
in the machine and i ts communicat ion archi tecture, More
specifically, the mapping problem in parallel computation
arises when the parallel algorithm to be implemented
requires more processes than the target parallel machine has
available, or requires a different communication srructure
than the hardwired interconnect ion archi tecture of the
machine. or both.

In]3], a general strategy for mapping large-sized paral-
le l a lgor i thms into f ixed-size paral le l archi tec(ures w:rs pro-
posed. The goal was to f ind a uni form. non-ad hoc method
which solved the mapping problem for the regular communi-
cat ion structures and non-shared memory archi tectures most
frequent ly used in paral)el c()mputat ion. The basic idea of
the general method was to first tontract a large-sized parallel
a lgor i thm G into arr inrermediar,e graph G' which has the
same communicat, ion struclure but fe*er processes, and then
Lo lag ot t the intermediate graph ((i ') on the target inter-
connect ion structure H (Figure t) . The (large-sized) paral le l
algorithm is then multiplered on the interconnection architec-
ture of the target machin€.

^
contract lon

^,U-tr

\ l
mult in lexin\

l lavout\il
Figure I

Mapping G into H using the general method.

Asvmptot ic analysis showed this nret hod t o prod uce
opt imal or near-opt imal mappings for a var ied group of
benchmark examples. In almost everv exarnple. t l re
automat ic mapping produced by the generzLl merhod distr i_
buted the algor i thm's processes and conrnrunicar iorr pal l rs
roughly equal l l 'over the target archi teoure. u i th iu l i speed_
up of the contract ,ed paral le l system. These resul ts * .ere
very encouraging but asymptot ic. and ue *.ere i r r rerrst t .d i r r
gauging the actual perf<rrmance of a mapping preprocess{)r
based on these ideas.

To this end, we designed and implemented prep- l t as a
mapping preprocessor to implement the method in 3 . \ \ e
chose as our target machine the fami ly of CHip cornpurers
(18]) , a fami ly of non-shared memory archi tectures u.hich carr
be conf igured to emulate many commonly used paial le l inter-
connect ion structures. Prep-P runs as a preprocessor to both

1ol9r {01, a softu'are emular.or of a 64 processor (ctilled I)Es)
CHiP machine, and to Pr ingle. the CHiP hardware Dror<,
type f6l.

O O O O OO O O O O O O o O

ononolo oA-o(o-|o
oooooO o o0oohoo

"nonon" olotro ' !o
o o o o o o o o Q qO o o o
onoIo!ot o lo lotro
o o o o oo o o o o o o o o

a) b)
Figure 2

a) A CHiP machine.
b) A CHiP mochine conf igued as a t ree machine.

(Bores represent PEs (proeessors) ;
c i r c le s r epr esent s t i tc he s j .

l . Design

The goal of Prep-P is to al lou, a user to inpur a paral lc l
a lgor i thm to a CHiP machine regardless of s ize and srruc-
ture. Prep-P then acts as a f ront-end interface belween r l te
user and the CHiP machine, creat ing a mapping :rnd per-
forrning the mult ip lexing. The output of Prep-P is 8051
assembly code executable on Poker or Pr ingle (t t re CHiP
archi tecture emulators) which s imulates the execut ion of the
or ig inal paral le l a lgor i t hm.

The design of Prep-P fol lows the generai strateg.\
descr ibed in l3 l , i .e. the program is div ided \nlo user tnter-

face, contracl, lagod and multipledng modules. !\'e briefly
descr ibe the design of each of the modules of PrepP.

0190-391 8/85/0000/0731 $01.00 0 1985 tEEE
'731

A. User Interface (Input)

Input t ,o Prep-P consists of a paral le l a lgor i thm
represented bl an undirected communicat ion graph with
integer nodes. Each node is assosciated with a not neces-
sar i ly d ist inct process wri t ten in X-X, the CII iP paral le l pro-
gramming language [9]. The communication graph can be
input as an adjacency l is t . however s ince many paral le l inter-
connect ion structures are regular and modular, the communi-
cation graph may also be given by a list of arithmetic expres-
sions specifying for each node a set of incident nodes (and
their assosciated processes).

For example, i f the communicat ion graph of a broad-
cast algor i thm is a complete binary t ree, then we might use
processes LEAF, INTERNAL and ROOT Lo represent the
functions of the leaves. non-root internal nodes and root
node respectively. Assurne a straightforward numbering
scheme for the tree, i.e.. let the root be I and for node i,
number i ts lef tson 2i and i ts r ightson 2i+l (Figure 3). .4.n
input speci f icat ion to Prep-P for the max-f inding algor i thm is
given in Figure 4.

Figure 3
I nt e r c onnec tio it s tr u c tur e

lor the boodcast algorithm.

tree

nodemin = I

nodecount = 7
procedure .ROO ?'

nodetype: { i == l }

port r?Solf; {2*i}
port ISON; {2* i+l i

procedure INTERNAL

nodetype: { i> I && i< 7/2}
port FATHER: {il2l
port I,SON; {2*i}
port f iSOjV: {2r i+l}

procedure .LE;{.F

nodetvpe: li> 7 l2]
porL FATHER: lil2\

Figure 4
PreVP specifcation lor

a broad,cast alqorithm.

The first three lines in the code specification in Figure 4
indicate to PrepP the graph type and node range. Distinct
adjacencies of a vertex are distinguished by assigning each
incident edge a dist inct port label .

Given a paral le l a lgor i thm input in th is format, PrepP
creates internal files which represent the adjacency and pro-
cess information in a more convenient form. If the number
of nodes in the communication graph of the algorithm is
greater than 64, control is next passed to the contraction
module, otherwise control is passed to the layout module.

B. The Contract ion Module

Current ly, the contract ion module takes as inpur an
undirected graph and outputs a smal ler-s ized (contracted)
intermediate graph of the same graph type. The class C of
acceptable input communicat ion graphs includes cube-
connected cycles, toruses, hex and square meshes, l inear
arrays, complete binary t rees, loops. shuff ie-exchanges (which
contracts to a 4-pin shuff ie) . but ter f ly networks,4-pin
shuff ies, f in i te element graphs. and hypercubes.

The contract ion module c()nsists of a set of l ibrary rou-
t ines which are based on the mappings produced by edge
Brammar represenl .at ions of graph fami l ies in C. (Edge
grammars (i l] , [2]) are formal sysrems simi lar to graph gram-
mars which can be used to def ine and automat ical ly contract
graph fami l ies). Dur ing the contract ion phase, a number of
internal f i les are generat ,ed including f i les which l is t the adja-
cency structure of the contracted graph and give the map
ping of nodes in the algor i thm's communicat ion graph to
nodes in the contracted intermediate graph. Recall that the
contract ion module is only entered i f the communicat ion
graph of the input algor i thm has more than 64 nodes.

We are now designing an improved contract ion pro-
cedure which wi l l enlarge the class of acceptable input
Braphs to include any undirected graph. Using this new pro
cedure, we intend to combine both layout and contract ion
modules to one mapping module.

C. The Layout Module

After contract ion. or i f the input graph has less t ,han 64
nodes, control is passed to the layout module. The layout
module embeds the contracted communicat ion graph into a
64 PE gr id and then uses a shortest path algor i thm to route
the edges through the switch lat t ice. The placemenl algr>
r i thm is based on a div ide-and-conquer strategy which i tera-
t ively embeds part i t ions of the contracted graph into qua-
drants of the the PE lat t ice. The part i t ions are chosen so as
to minimize the maximum distance (wirelength) of the nodes
in distinct quadrants. More specifically, the placement algo-
rithm proceeds as follows:

l) In i t ia l ly part i t ion the contracted graph into subgraphs
Gl, Gr. G" and GO and the PE gr id into quadrants

ai. a2: Qe"and qo.'
2) Reformulate the {G,) so that the number of edges

between vert ices in dist inct subgraphs is minimal. Cal l
these reformulaled subgraphs C, ' . Go' , G" 'and (i , ' .
(l f the contracted graph has a 'sepafator" '7. th i r l .
s t ra ight- forward. For a more general c lass of graphs.
the problem is NP-complete [4] and a heur ist ic must bt .
used. Our algor i thm uses a Kernighan & Lin-t1pe
heur ist ic f5 l : Essent ia l lv switch pairs of vert ices in dis-
t inct part i t ' ions (quadrants) unt i l the number of edges
between vert ices achieves a local minimum).

3) Find a mapping of the subgraphs G. ' into the qua-
drants Q. that wi l l minimize the maximum wirelength
between dubgraphs- I f more than one of the 24 possible
mappings achieves a minimum, then take the one which
also minimizes the tot,al wirelength between subgraph:
For each i , let Q. 'be the quadrant in which G; ' f inal l '
resides.

4) Apply the algor i thm i terat ively to eac' .
part i t ionTquadrant pai l

.
. : Ci . .Qi '_ l unt i l lQi ' l

When 1Q, '1 1. use the rr iv ia l embedding.

132

Wherr the nodes of the conl , racted graph have been

placed on a 64 PE gr id using the placement algor i thm' the

"dg.. " . "
then routed on the switch lat t ice of the CHiP using

a shortest path alBor i thm. l f the nodes in the contracted

graph have degree greater than 8 (maximum PE degree for

ih" CHip archi tecture), the layout algor i thm can be modif ied

!o couple nodes in the PE lat t ice

After layout and contract ion, the communicat ion graph

has been embedded in the target archi tecture. Internal f i les

have been generated which wi l l communicate the CHiP lay-

out to Poker or Pr ingle and which wi l l def ine for each PE

the set of processes in the original graph to be simulated at

that locat ion. I t remains to mult ip lex the process codes

using this mapping.

D. The Mult ip lexing Module

In CHiP protrams, communicat ion is accompl ished by
simple reads and wri tes. Dur ing contract ion and layout. d is-
t inct processes which communicate are ei ther mapped to the
same PE (intra- processor communicat ion) or to di f ferent
PEs (inter- processor communicat ion). To simulate t ,he or i -
g inal communicat ion wi thout conf l ic t . Prep-P subst i tutes
lead or wr i te macros for each simple read or wr i te instruc-
t ion. The mult ip lexing is then pei formed by concatenat ing
the codes of the input processes assigned to each PE in the
CHiP lat t ice. and by execut ing the concatenated process
codes for each PE in a round-robin fashion (context-
su' i tching at each l . tO cal l) . Comrnunicar ion of the input
algor i thm is s imulated bl maintaining local mini-operat ing
syst,ems at each PE which update a set of arrays and buffers
needed for l7 lO management. These protocols are straight-
foru,ard but seem to be roousr.

3. Implementation
and Prelirninary Results

Prep-P is u ' r i t ten in a combinat ion of shel lscr ipt . C. XX
and Intel 8051 assembly language. The f i rst version was
brought up on a Vax 780 using a BBN Bitgraph graphics
terminal . To coordinate wi th the newest distr ibut ion version
of Poker, the current version u 'as brought up on a Sun 2.

We are current lv test ing and improving Prep-P.
Among the prel iminary benchmarks, we give t iming resul ts
for three paral le l a lgor i thms with dist inct communicat ion
paradigms and in lerconnect ion archi tectures. They are the
FFT (on a butterf ly network), a broadcast algor i thm (on a
comp)ete binary t ree), and a pipel ined algor i thm (on a l inear
systol ic array). Figure 5 shows a table of prel iminary r iming
resu I ts.

At current status. we are cont inuing to test and
improve Prep-P ui th the dual goals of d istr ibut ing the
software for experimental use, and using this experience to
create efficient mapping protocols to be used with other
types of paral le l archi tectures.

Figure 5
Timing results for large-sized algorithms
reduced by PrepP and. ezccuted. b9 Poker

(1 t ;ck = 1 microsecond on Pr ingle).

Acknowledgements

We are grateful to many people for their help on this
project . We would l ike to thank Mark Anderson. Dennis
Gannon. Steve Holmes, Kevin Smal lwood, Larry Snvder. Joel
Str ickland. John Rice and Ko-Yang Wang for their support
and encouragement.

l r l

l r l
L- l

i2 l
iu l

I4 l

{51

l6l

Bibliography

F. Berman, 'Edge Grammars and Paral le l Computa-
t ion.rr Proceedings of t he 1983 Al ler l ,on Conference.

F. Berman and G. Shannon, tEdge Grammars: Decida-
bility Results and Formal Language lssues,tt Proceed-
ings of the 1984 Al ler ton Conference.

F. Berman and L. Snyder. tOn Mapping Parallel Algo-
r i thms into Paral le l Archi tectures," (extended abstract)
Proceedings of the 1984 lnternat ional Conference on
Paral le l Processing.

M. Garey and D. Johnson, Computers and Intractabi l -
i ty : A Guide to NP-Complelcnes, W.H. Freeman and
Co.. 1979.

B. Kernighan and S. Lin, I tAn Effect ive Heur ist ic Pro-
cedure for Part i t ioning Graphs,r ' Bel l Systems Technical
Jorrnal , 49(2). February. I 9?0.

A. Kapuan, K.Y. \ 'ang. D. Gannon, J. Cuny and L.
Snyder. "The Pr ingle: An Exper imental System for
Paral le l Algor i thm and Software Test ing,r t Proceedings
of the 1984 lnternational Conference on Parallel Pro-
cessing.

R. Lipton and R. Tarjan, I'A Separator Theorem for
Planar Graphs," SIAM Journal of Applied Mathematics,
vol. 36, ll2, April, 1979.

L. Snyder,r lntroduct ion to the Conf igurable, Highlr
Paraf le l Computer. ' r Computer, January, 1982.

L. Snyder, I t lntroduct ion to the Poker Paral le l Program-
ming Environment. t r Proceedings of the lg83 Interna-
cional Conference on Parallel Processing.

i7 l

i8 l

lo l
t " l

- Tr
-rlttpl"*

FFT of size r92 (G(n+2)) on the CIIiP, a dif lerent contrdtion must be given

than the one cumently in the contract module's l ibrary routines. Alternatively, the buffer arrays

could be extended l,o simulate l6 processes at one PE.

Algor i thm

un-mult ip lexed

c (n)
mult ip lexed

G(n
-

l)

mult ip lexed

G(nr 2)

Broadcast 8407
t icks

32E08
t icks

45418
t icks

Pipel ined 35301
t icks

(64 nodes)

177 r77
ticks

I tR h^ra

318857
tr lCks

FI'T 506r
t icks

(32 nodes)

31109
t icks

(80 nodes)

