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ABSTRACT
We use multi-level parallelism and a new type of data structures,

known as 2-3 cuckoo filters, to answer set intersection queries

faster than previous methods, with applications to improved sparse

Boolean matrix multiplication.
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1 INTRODUCTION
Assume we have a collection, S1, S2, . . ., of sets, of variable sizes,
which can be preprocessed and represented in some canonical data

structures stored in main memory. In a set-intersection query,
we are then given the names of two sets, Si and Sj , and are asked

to produce a listing of the members in the common intersection,

Si ∩ Sj . As discussed by Amossen and Pagh [2], such queries have

applications in sparse Boolean matrix multiplication.

In this paper, we provide asymptotic improvements to such set-

intersection queries, for pairs of sets of different sizes, by taking

advantage of bit-level parallelism, i.e., an ability to compute AC
0

functions on pairs of binary words in constant time, including

such operations as AND, OR, XOR, and MSB (most-significant set

bit). This computational model is known as the practical RAM
model [11], and we refer to a parallel shared-memory extension of

this model as the practical PRAM model.

RelatedWork. In 1996, Miltersen [11] introduced the practical
RAM model, which has inspired futher research for algorithms in

this model (e.g., see [3, 12]). Bille et al. [4] present a data structure
that can compute the intersection of t sets of total size n in expected

timeO (n(log2w )/w + kt + logw ). Kopelowitz et al. [9] introduce a
data structure for computing set intersections for pairs of sets of

roughly the same size and use it to list the triangles in a graph G
in O (m⌈(α (G ) log2w )/w + logw⌉ + k ) expected time, where α (G )
denotes the arboricity of G. Eppstein et al. [6] improve this bound

toO (m⌈(α (G ) logw )/w⌉ + k ) expected time, using a data structure

they call “2-3 cuckoo hash-filters,” but their construction is likewise

limited to pairwise intersections of sets of roughly the same size.
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Lingas [10] shows how to multiply two n × n Boolean matrices

in time O (n2s0.188), where s is the number of non-zero entries in

the output matrix. Amossen and Pagh [1, 2] also study the sparse

Boolean matrix multiplication problem, and approach it, as we do,

as an application of set-intersection data structures. They show how

to perform Boolean matrix multiplication in time O (m0.86s0.41 +

(ms )2/3), wherem is the number of non-zero entries in the input

matrices [1].

Our Results. We show how to use 2-3 cuckoo hash tables and

filters to quickly compute the common intersection of pairs of

sets of varying sizes, with applications to sparse Boolean matrix

multiplication. We show that these two simple ideas allow us to

compute set-intersection queries for pairs of sets of total size n
in expected time O (n(logw )/w + k ). This, in turn, leads to new

algorithms for sparse Boolean matrix multiplication running in

expected time O (n2 + nm(logw )/w ). Finally, we show how to

implement our solutions to compute set-intersection queries in

O (logn) time in the practical PRAM model.

2 2-3 CUCKOO HASH-FILTERS
We begin by reviewing the 2-3 cuckoo hash-filter data structure of

Eppstein et al. [6], Suppose, then, we wish to maintain a set, S , of
n elements taken from a universe such that each element can be

stored in a single memory word, wherew ≥ logn. We maintain S
using the following three components, T , C , and F :
• A hash table T of size O (n), using three pseudo-random hash

functions h1, h2, and h3, which map elements of S to triples of

distinct integers in the range [0,n − 1]. Each element x in S is

stored, if possible, in two of the three possible locations for x based

on these hash functions.

•We also store a stash cache [8],C , of size λ, where λ is bounded

by a constant. C stores elements for which it was not possible to

store properly in two distinct locations in T .
• A table, F , havingO (n) cells, that parallelsT , so that F [j] stores

a non-zero fingerprint digest, f (x ), for an element x , if and only

if T [j] stores a copy of x . The digest f (x ) is a non-zero random

hash function comprising δ bits, where δ = Θ(logw ). The table F
is called a 2-3 cuckoo filter , and it is stored in a packed format, so

that we store O (w/ logw ) cells of F per memory word. In addition

to the vector F , we store a bit-mask,M , that is the same size as F
and has all 1 bits in the corresponding cell of F that is occupied.

We assume we can read and write individual cells of F and M
in O (1) time. These cells amount to subfields of words of O (logw )
size, which can be read from or written to using standard bit-level

operations, such as AND, OR, XOR, etc.
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Parallel Construction Algorithm. Since the method for con-

structing a 2-3 cuckoo filter, F , is the same as that for a 2-3 hash table,

T , that is parallel to it, without loss of generality, let us describe

how to construct T . We assume we have n elements that need to

be added to T and that T has size that is at least 6(1 + ϵ )n, for a
constant ϵ > 0. We also assume that we have a stash cache, C , of
constant size, λ. Eppstein et al. [6] describe a sequential algorithm
for constructing a 2-3 cuckoo hash-filter.

We describe here a parallel algorithm, which can easily be

simulated sequentially if one desires a sequential algorithm (which

would only use bit-level parallelism). Different than Eppstein et al.,
we proceed in a sequence of rounds. In each round, we have some

set, S , of elements that have yet to be added to T . Initially, S is the

entire set ofn elements, where we create two copies of each element,

where each copy functions somewhat independently. In a given

round, each element in S has 3 locations inT where it can be placed,

with at most one of these places being a location where it was

previously displaced (initially there are no such previous locations).

For each such element, x , we read each of the 2 (or initially 3)

locations, T [hi (x )], where it was not previously displaced, and

consider the following possible cases: (1) If one of these locations,

T [hi (x )] is empty, then we choose one of these empty locations

at random and try to inject x at that location. (2) Otherwise, we

choose a location, T [hi (x )], at random, that does not already hold

x and we try to inject x into that location.

Since we are implementing this computation in parallel in the

practical PRAM model, we need to deal with the likely possibility

that the injection step performed for multiple elements simultane-

ously might involve concurrent writes; hence, we assume we are

operating in the practical CRCWPRAMmodel where write conflicts

are resolved arbitrarily. After we perform this injection step inO (1)
time, we collect all the elements that failed to be injected, and let

this set be the set S for the next round. This collection step can

easily be done in O (logn) time using O (n) work (e.g., see [7]). We

repeat this process for D logn rounds, where D is a constant. If the

size of the set S at the end of this process is at most λ, then we set

the stash cache equal to S (which could even be empty) and we

consider the construction of T a success. Otherwise, we consider

the construction of T to be a failure.

If the construction of T succeeds, then we create a parallel (i.e.,

mirrored) copy of T as a hash filter, F , by replacing each element

with its fingerprint of size O (logw ) and compressing every block

of size O (w/ logw ) words in T into a single work for F . If the
construction of T fails, however, then we instead sort the elements

of the original set, S , of n elements and just use this sorted copy of

S to represent S . Following the analysis of Eppstein et al. [6], we
can show:

Theorem 2.1. For any constant integer s ≥ 1, the (constant)
size, s , S of the stash in a 2-3 cuckoo hash table after all items
have been inserted satisfies Pr(S ≥ s ) = Õ (n−s ), where Õ ignores
polylogarithmic factors.

3 LISTS OF 2-3 CUCKOO HASH-FILTERS
We construct our data structure for S as follows.

1. Sort the elements of S according to a global total order for

all sets, and divide this sorted listing of S into intervals, I1, I2, . . . ,,

such that each interval Ij contains a subset, Sj , of S of O (w/ logw )
elements.

2. For each subset Sj in parallel, use the algorithm given above

to construct a 2-3 cuckoo hash-filter for Sj with a stash of constant

size, λ. If the construction for some Sj fails, then simply fallback to

representing this subset as a sorted listing of its elements.

3. For each subset, Sj , that had a failed cuckoo construction,

subdivide Sj into smaller intervals, Ij,1, Ij,2, . . ., such that each

interval contains exactly one element of Sj , and construct a single-

element 2-3 cuckoo hash-filter for each.

4. For each subset, Sj , that had a successful cuckoo construction,

subdivide Sj into O (λ) smaller intervals, Ij,1, Ij,2, . . ., so that each

interval contains at most one stash element. Then copy the 2-3

cuckoo filter for Sj into O (λ) copies, one for each Ij,k interval,

removing the elements of Sj that do not belong to Ij,k , so that no

2-3 cuckoo filter in this group has a non-empty stash.

Given our construction methods, and known results for parallel

sorting (e.g., see [7]), it is straightforward to show that we can

construct the above representation for each set in a collection of

total size n in O (logn) time using expected work O (n logn) in the

practical (CRCW) PRAM model.

Intersecting 2-3 Cuckoo Hash-Filters. Let us review the

method of Eppstein et al. [6] for intersecting a pair of 2-3 cuckoo
hash-filters that are the same size. Suppose then that we have two

subsets, Si , and Sj , for which we wish to compute a representation

of the intersection of these two sets. We begin our set-intersection

algorithm by computing a vector of O (1) words that identifies

the matching non-empty cells in Fi and Fj . For example, we

could compute the vector defined by the following bit-wise vector

expression:

A = (Mi AND NOT (Fi XOR Fj )). (1)

We view A as being a parallel vector to Fi and Fj . Note that a cell,
A[r ], consists of δ bits and this cell is all 1s if and only if Fi [r ]
stores a fingerprint digest for some element and Fi [r ] = Fj [r ], since
fingerprint digests are non-zero. Thus, we can create the list, L, of
members of the common intersection of Si and Sj , by visiting each

word of A and storing to L the element in Ti [r ] corresponding to
each cell, A[r ], that is all 1s, but doing so only after confirming that

Ti [r ] = Tj [r ]. Doing the listing can be done in time O (1 + k + t ),
where k is the number of elements in the intersection and t is
the number of false positives, by using bit-level operations in the

practical RAM model (e.g., see [5]).

Answering Set-Intersection Queries. Let us next describe our

algorithm for answering a query asking for the intersection of two

sets, S1 and S2, of possibly different sizes. Let n1 (n2)denote the size
of S1 (S2), and let n = n1 + n2.

Let us assume that S1 and S2 are each represented using the

lists of 2-3 cuckoo hash-filters. Furthermore, as explained above,

there are no stashes and every subset has a hash-filter. The goal

of our algorithm is to compute a cuckoo hash-filter representation

that contains all the elements in S1 ∩ S2, plus possibly some false

positives that our algorithm identifies as high-probability elements

belonging to this common intersection. After we have performed

the core part of algorithm, then, we can simply go through the list

of cuckoo-filters and confirm which elements actually belong to

the common intersection.
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Because of the way our algorithm works, it produces a cuckoo-

filter representation for the common intersection, where S1 ∩ S2
is represented as a sorted list of intervals (no two consecutive

of which are empty), such that for each interval, I , we have a

cuckoo filter, FI , and a backing 2-3 cuckoo table, TI , where, for
each non-zero fingerprint, FI [j], there is a corresponding element,

x = TI [j], with x being a confirmed element in S1. The cuckoo

filter, FI , might not be a 2-3 cuckoo filter, however. Nevertheless,

after our core algorithm completes, our representation allows us

to examine each non-zero cuckoo filter fingerprint in a filter FI ,
lookup its corresponding element, x , in a backing 2-3 cuckoo table,

TI , and then perform a search for x in the global hash table, H2 for

S2. Thus, after one additional lookup for each such element, x , we
can confirm or discard x depending on whether it is or isn’t in the

common intersection.

Our algorithm for constructing this representation of S1 ∩ S2,
and then culling out false positives, is as follows.

1. Merge the list of interval boundaries for S1 and S2 according
to the global total order for sets. This step can be done in parallel

in O (logn) time and O (n(logw )/w ) work.
2. For each overlapping interval, I1, j and I2,k , where I1, j is from

S1 and I
2,k is from S2, intersect these two subsets using the bit-

parallel intersection algorithm for 2-3 cuckoo filters derived using

Equation 1 above (but skipping the lookups in the corresponding

2-3 cuckoo table and any lookups for elements in stashes). Let

Fj,k denote the resulting (now partial) 2-3 cuckoo filter. This step

can be implemented in parallel in O (1) time and O (n(logw )/w )
work, since the total number of overlapping pairs of intervals is

O (n(logw )/w ).
3. For each interval, I1, j , collect all the partial 2-3 cuckoo hash-

filters, Fj,k , computed in the previous step for I1, j . Compute the

bit-wise OR of these filters. Let Fj denote the resulting partial 2-3
cuckoo filter for I1, j , and let F denote the collection of all such filters
(note that there is potentially a non-empty partial cuckoo filter, Fj ,
for each interval in S1). This step can be implemented in parallel

in O (1) time and O (n(logw )/w ) work, since the total number of

overlapping pairs of intervals is O (n(logw )/w ).
4. For each interval I1, j , and each element, x , in the 2-3 cuckoo

hash table for I1, j that has a corresponding fingerprint belonging to
Fj in F, do a lookup in each of the global hash tables H1 and H2 to

determine if x is indeed a common element in the sets S1 and S2. Let
Z denote the set of all such elements so determined to belong to this

common intersection. This step can be implemented in O (logn)
time and O (n(logw )/w + k + p) work, where k is the size of the

output and p is the number of false positives, that is, elements that

have a non-zero fingerprint in some Fj but nevertheless are not in
the common intersection, S1 ∩ S2.

Theorem 3.1. Given two sets, S1 and S2, represented using ultra-
compact 2-3 cuckoo hash-filters, one can compute a listing of the
k elements in S1 ∩ S2 in O (logn) time using O (n(logw )/w + k )
expected work in the practical CRCW PRAM model (or sequentially
in this expected time).

Sparse BooleanMatrixMultiplication. Supposewe are given
two Booleann×nmatrices,A andB, and asked to computeC = A×B,
where the scalar plus (+) operation is Boolean OR and the scalar

times operation is Boolean AND. Our method for producing C

involves using the above data structure to represent the indices

of the non-zero elements in each row of A and each column of B.
Producing these representations using ultra-compact 2-3 cuckoo

hash-filters can be done in O (logn) time and O (n) expected work

in the practical CRCW PRAMmodel, for each such row and column,

because we don’t need to perform a separate sorting step. The set of

indices for each row of A and each column of B are already sorted.

Furthermore, note that the number of non-zero entries in any row

or column of A or B can vary dramatically, which is why we need

a set representation that can vary as well, while still providing an

efficient way to answer set-intersection queries.

To compute the Boolean product, we use perform a set-intersection

query for each row i of A and each column j of B, cutting the

computation short as soon as we have determined if the intersection

is empty or not. Then C[i, j] = 1 if and only if this intersection

is non-empty. By the results given above, the performance of this

algorithm can be characterized as in the following theorem.

Theorem 3.2. The product of two n × n Boolean matrices can
be computed in O (logn) time and expected O (n2 + nm(logw )/w )
work in the practical CRCW PRAM model, or sequentially in O (n2 +
nm(logw )/w ) expected time in the practical RAM model, wherem is
the number of non-zero entries in the input matrices.
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