
Answering Spatial Multiple-Set IntersectionQueries Using 2-3
Cuckoo Hash-Filters

Michael T. Goodrich

Department of Computer Science, Univ. of California, Irvine

goodrich@uci.edu

ABSTRACT
We show how to answer spatial multiple-set intersection queries

in O (n(logw )/w + kt ) expected time, where n is the total size of

the t ≤ wc
sets involved in the query,w is the number of bits in a

memory word, k is the output size, and c ≥ 1 is any fixed constant.

CCS CONCEPTS
• Theory of computation→ Parallel computing models;

KEYWORDS
set intersection, 2-3 cuckoo filters, range searching, GIS

1 INTRODUCTION
In this paper, we are interested in asymptotic improvements to spa-

tial multiple-set intersection queries by taking advantage of bit-level

parallelism, in a computational model known as the practical RAM
model [11] or word-RAM model [8]. By “bit-level parallelism,” we

are referring to an ability to compute bit-parallel operations on pairs

of binary words of w bits in constant time, e.g., using operations

built into modern CPUs and GPUs. There are actually different

versions of the word-RAM model (e.g., see [8, 9]). For example, we

can consider a restricted word-RAM model [8], where bit-parallel

operations are limited to addition, subtraction, and the bit-parallel

operations AND, OR, NOT, XOR, shift, and MSB (most-significant

set bit). In this paper, we provide results for the restricted word-

RAM model and also for a permutation word-RAM model (e.g.,

see [1]), which can perform a fixed permutation ofw/m subwords,

each of sizem, in constant time. Formally, we assume we have a

computational setting that consists of the following items:

• A collection of data sets, D1,D2, . . ., that store items, such
that each item is associated with a point along a one-dimensional

curve, C, which is the same for all the data sets. In the simplest

case, the curve, C, is just a straight line, but we also allow C to be

a space-filling curve, such as a Hilbert curve or z-order curve.

• A spatial multple-set intersection query consists of an

interval range, R ⊆ C, and a set of indices, I = {i1, i2, . . . , it }. Each
i j identifies a specific data set, Di j , e.g., based on some keyword

of interest. The response to this query should be every item that

has a point in the interval range, R, and belongs to the common

intersection, Di1 ∩ Di2 ∩ · · · ∩ Dit .

Permission to make digital or hard copies of part or all of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for third-party components of this work must be honored.

For all other uses, contact the owner/author(s).

SIGSPATIAL’17, November 7–10, 2017, Los Angeles Area, CA, USA
© 2017 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-5490-5/17/11.

https://doi.org/10.1145/3139958.3140021

Related Work. In addition to work by Miltersen [11] introduc-

ing the practical RAM model and work by Hagerup [8] introducing

the word-RAM model, researchers have explored various algo-

rithms for versions of the practical RAM and word-RAM models,

e.g., see [12]. There is, for instance, considerable previous work on

algorithms for answering set-intersection queries in the word-RAM

model. Ding and König [3] show how to compute the common

intersection of t sets of total size n in expected time O (n/
√
w + kt ),

where w is the word size in bits and k is the size of the output in

words. Bille et al. [2] present a data structure that can compute the

intersection of t sets of total size n inO (n(log2w )/w +kt ) expected
time in the permutation word-RAM model. In addition, Kopelowitz

et al. [10] introduce a data structure for computing set intersections

for two sets of roughly the same size,n, inO (n(log2w )/w+logw+k )
expected time in this model. Eppstein et al. [6] improve this bound

to O (n(logw )/w + k ) expected time for the restricted word-RAM

model, using a data structure they call “2-3 cuckoo hash-filters,”

which consist of a combination of 2-3 cuckoo hash tables and 2-3

cuckoo filters. Eppstein and Goodrich [5] extend this contruction

for pairs of sets of different sizes. Unfortunately, all of these previous

uses of 2-3 cuckoo hash-filters are limited to pairwise intersections

of sets and they do not extend to intersections of three or more sets

or spatial queries. Thus, the best previous algorithm for answering

(standard) multiple-set intersection queries in the word-RAMmodel

is due to Bille et al., as mentioned above. We are not familiar with

any previous work in the word-RAM model for answering spatial

multiple-set intersection queries.

Our Results. We show how to answer spatial multiple-set

intersection queries in O (n(logw )/w + kt ) expected time in the

permutation word-RAM model, or O (n(log2w )/w + kt ) expected
time in the restricted word-RAM model, where n is the total size

of the t ≤ wc
location-constrained subsets involved in the query,

where c ≥ 1 is a fixed constant and k is the output size.

Our data structures and algorithms take advantage of a simple

approach that exploits bit-level parallelism by packing information

into memory subwords, which allows us to represent small sets of

size O (w/ logw ) with 2-3 cuckoo filters occupying O (1) memory

words, and intersect pairs of sets represented this way in expected

time O (1 + k ), where k is the output size. The main computational

difficulty of using this approach is that the result of such an

operation is itself not a 2-3 cuckoo filter. Nevertheless, unlike

previous results that exploited 2-3 cuckoo filters for intersection

queries [5, 6], we show in this paper how to restore the result of a

pairwise intersection query back to being a 2-3 cuckoo filter. We

then show that such restoration operations allow us to achieve our

results for spatial multiple-set intersection queries. For full details

and proofs, please see the full version of this paper [7].

https://doi.org/10.1145/3139958.3140021


SIGSPATIAL’17, November 7–10, 2017, Los Angeles Area, CA, USA Michael T. Goodrich

2 A REVIEW OF 2-3 CUCKOO HASH-FILTERS
Let us review the 2-3 cuckoo hash-filter data structure of Eppstein et
al. [6]. Suppose we wish to represent a set, S , of n items taken from

a universe such that each item can be stored in a single memory

word. We use the following components, T ,M , C , and F .

• A hash tableT of sizeO (n), using three pseudo-random hash

functions h1, h2, and h3, which map items of S to triples of

distinct integers in the range [0,n − 1]. Each item, x in S , is
stored, if possible, in two of the three possible locations for

x based on these hash functions. We refer to each T as a 2-3

cuckoo hash table.
• We also store a stash cache, C , of size λ, where λ is bounded

by a constant. C stores items for which it was not possible

to store properly in two distinct locations in T . We maintain

each C as an array of size O (λ).
• A table, F , having O (n) cells, that parallels T , so that F [j]
stores a non-zero fingerprint digest, f (x ), for an item, x ,
if and only if T [j] stores a copy of x . The digest f (x ) is a
non-zero random hash function comprising δ bits, where

δ = c logw is a parameter chosen to achieve a small false

positive rate. The table F is called a 2-3 cuckoo filter , and
it is stored in a packed format, so that we store O (w/ logw )
cells of F per memory word. In addition to the vector F , we
store a bit-mask,M , that is the same size as F and has all 1

bits in the corresponding cell of each occupied cell of F .

One can show that one can build a 2-3 cuckoo hash-table of

size, n, with a stash of size s , in expected O (n) time and that the

probability that this construction fails is at most Õ (n−s ), where the
Õ (·) notation ignores polylogarithmic factors [6].

3 DATA STRUCTURES
As a starting point for our data structure construction, we subdivide

each data set, Di , into a sequence of interval regions along the

curve, C, such that each region stores Θ(w/ logw ) points. Our data
structure construction, then, is as follows. For each interval region,

R, in one of our structures, Di , use the algorithm given above to

construct a 2-3 cuckoo hash-filter for the Θ(w/ logw ) points in R
with a stash of constant size, λ. If the construction for R fails, then

simply fallback to representing this subset as a sorted listing of its

items (according to some canonical ordering). The resulting set of

interval regions and the 2-3 cuckoo hash-filter or sorted list for

each region comprises our representation for this structure. In spite

of this failure possibility (which amounts to our using a standard

list-based subset representation as a fallback), our construction has

the following property.

Lemma 3.1. Let S andT be sets of consecutive interval regions from
two data sets, Di and D j , and let n denote the number of points in
all the regions of S and T . Let α denote the number of interval region
pairs, (Ri ,Rj ), such that Ri and Rj overlap and our 2-3 cuckoo hash-

filter construction failed for either Ri or Rj . Then E[α] ≤ 2n logw
ws+1 ,

where s ≥ 2 is a chosen constant.

That is, the total expected number of points summed across all

pairs of overlapping regions where one of the regions has a failed

2-3 cuckoo hash-filter is O (n/ws ).

4 INTERSECTION ALGORITHMS
In this section, we describe our algorithm for performing spatial

multiple-set intersection queries.

Intersecting Two 2-3 Cuckoo Hash-Filters. Let us begin by

reviewing the method of Eppstein et al. [6] for intersecting a pair of
2-3 cuckoo hash-filters, which in our casewill always be represented

using O (1) memory words for the filter component, since interval

regions in our structures hold Θ(w/ logw ) items.

Suppose then that we have two subsets, Si , and Sj , of size
O (w/ logw ) each for which we wish to compute a representation

of the intersection Si ∩ Sj . Suppose further that Si and Sj are each
represented with 2-3 cuckoo hash-filters of the same size and using

the same three hash functions and fingerprint function. We begin

our set-intersection algorithm for this pair of 2-3 cuckoo hash-filters

by computing a vector of O (1) words that identifies the matching

non-empty cells in Fi and Fj . For example, we could compute the

vector defined by the following bit-wise vector expression:

A = (Mi AND NOT (Fi XOR Fj )). (1)

We view A as being a parallel vector to Fi and Fj . Note that a cell,
A[r ], consists of δ bits and this cell is all 1s if and only if Fi [r ]
stores a fingerprint digest for some item and Fi [r ] = Fj [r ], since
fingerprint digests are non-zero. Thus, with standard operations in

the word-RAM we can compute a compact representation of O (1)
words that stores each subword for each fingerprint that matches

in Fi and Fj , with the matching locations identified by all 1’s in a

mask, M ′i . The crucial insight is that since each item is stored in

two-out-of-three locations in a 2-3 cuckoo hash-filter, if the same

item is stored in two different cuckoo hash-filters, then it will be

stored in one of its three locations in both hash-filters. It is this

common location that then stores the filter for this item after we

perform the bit-parallel operations to compute this intersection.

Thus, if we are interested in just this pairwise intersection, we

can create a list, L, of members of the common intersection of Si
and Sj , by visiting each word of A and storing to L the item in

Ti [r ] corresponding to each cell, A[r ], that is all 1s, but doing so

only after confirming that Ti [r ] = Tj [r ]. In addition, since we are

assuming that stashes are of constant size, we can do a lookup in

the other hash table for each item in a stash for Si or Sj , which
takes an additional time that is O (1). Therefore, the listing of the
members in Si ∩ Sj can be done in time O (1 + k + p), where k is

the number of items in the intersection and p is the number of

false positives (i.e., places where fingerprints match but the item is

not actually in the common intersection), by using standard and

bit-parallel operations in the word-RAM model (e.g., see also [4]).

Note that the additional step of weeding out false positives can

be done at the end, which involves a constant-time operation per

item in the list, that itself involves a lookup in the two cuckoo hash

tables, to remove items that map to the same locations and have the

same fingerprint digests but are nevertheless different items. Note

that by requiring δ = c logw , we can guarantee that the probability

of such false positives is at most 1/wc
.

The running time of our entire algorithm for computing the

intersection of Si and Sj , therefore, is O (1 + k + p), where k is the

size of the output and p is the number of false positives. In addition,

by choosing δ = c logw , we can bound the probability that two



Answering Spatial Multiple-Set IntersectionQueries SIGSPATIAL’17, November 7–10, 2017, Los Angeles Area, CA, USA

different items have the same fingerprint value as being at most

1/wc
. Thus, E[p] ≤ n/w , since each item is stored in at most two

places in a 2-3 cuckoo hash table.

Answering Pairwise Spatial Set-Intersection Queries. Let
us next describe our algorithm for answering a spatial two-set

intersection query, asking for the intersection of two sets, S1 and
S2, of possibly different sizes. Let us assume that S1 and S2 are each
represented using the structures as described above, that is, S1 and
S2 are subdivided into interval regions, such that, for each interval

region, we have done our construction of a 2-3 cuckoo hash-filter

(or, if that failed, then we have a sorted list of the items in that

interval). In addition, we assume that we also are representing each

entire set, Si , for i = 1, 2, using a standard hash table, Hi , such as

a cuckoo hash table. This hash table, Hi , will allow us to cull false

positives as a post-processing step.

Given a query interval range, R ⊆ C, we first cull from S1 and S2
all the intervals that do not intersect R . To allow for easier analysis

of our method for computing the intersection of S1 and S2, let n1
denote the number of items remaining in S1 and let n2 denote the
number of items remaining in S2, and let n = n1 + n2. Note that,
since the number if items in each remaining interval region in

either S1 or S2 is O (w/ logw ), the number of intervals in each Si
is O (ni (logw )/w ), for i = 1, 2. In addition, we assume that we are

representing these interval regions so that have an easy way of

identifying when two regions overlap.

The goal of our algorithm is to compute a cuckoo hash-filter

representation that contains all the items in S1 ∩ S2, plus possibly
some false positives that our algorithm identifies as high-probability

items belonging to this common intersection.

Because of the way our algorithm works, it produces a cuckoo-

filter representation for the common intersection, where S1 ∩ S2 is
represented in terms of the intervals in S2 (or, alternatively, we

can swap the two sets and our output will be in terms of the

intervals of S1). Namely, for each such interval, I , we will have

a cuckoo filter, FI , and a backing 2-3 cuckoo table, TI , where, for
each non-zero fingerprint, FI [j], there is a corresponding item,

x = TI [j], with x being a confirmed item in S2. The cuckoo filter,

FI , may not be a 2-3 cuckoo filter, however, because each item

might be stored in just one location in Fi , not two. (We explain

later how we can repair this situation to quickly build a 2-3 cuckoo

filter representing the pairwise intersection, albeit possibly with

a small number of false positives that can be removed in a post-

processing step.) Nevertheless, after our core algorithm completes,

our representation allows us to examine each non-zero cuckoo

filter fingerprint in a filter FI , lookup its corresponding item, x , in
a backing 2-3 cuckoo table, TI , and then perform a search for x in

the hash table for the other set (e.g., S1) to verify that it belongs to

the common intersection or is a false positive. That is, after one

additional lookup for each such candidate intersection item, x , we
can confirm or discard x depending on whether it is or isn’t in the

common intersection and with one more comparison.

There is also a possibility that our construction of a 2-3 cuckoo

hash-filter fails for some interval, in which case we fallback to a

standard intersection algorithm, such as merging two sorted lists,

or looking up each item in one set in a hash table for the other. Since

such failures occur with probability at most 1/ws
, for some constant

s , the time spent on such fallback computations is dominated by

the time for our other steps; hence, let us ignore the time spent on

such fallback computations.

Our algorithm for constructing the representation of S1 ∩ S2,
using 2-3 cuckoo hash-filters, and then optionally culling out false

positives, is as follows.

(1) Merge the interval regions of S1 and S2, to identify each pair

of overlapping interval regions. This step can be done in

O (n(logw )/w ) time, by Lemma 3.1.

(2) For each overlapping interval, I1, j and I
2,k , where I1, j is

from S1 and I
2,k is from S2, intersect these two subsets

using the bit-parallel intersection algorithm for 2-3 cuckoo

filters derived using Equation 1 above (but skipping the

lookups in the corresponding 2-3 cuckoo table) Also perform

lookups for any items in stashes (which are confirmed as

intersections; hence, we are done with our computations for

them). Let Fj,k denote the resulting (now partial) 2-3 cuckoo

filter. This step can be implemented in O (n(logw )/w ) time,

since the total number of overlapping pairs of intervals is

O (n(logw )/w ).
(3) For each interval, I1, j , collect all the partial 2-3 cuckoo hash-

filters, Fj,k , computed in the previous step for I1, j . Compute

the bit-wise OR of these filters. Let Fj denote the resulting
partial 2-3 cuckoo filter for I1, j , and let F denote the collection
of all such filters (note that there is potentially a non-empty

partial cuckoo filter, Fj , for each interval in S1). Also note that
there are no collisions in the bit-wise OR of all these cuckoo

filters, since each is computed as an intersection of a disjoint

set of other items with the items in this interval. This step

can be implemented in O (n(logw )/w ) time, since the total

number of overlapping pairs of intervals is O (n(logw )/w ).
(4) For each interval I1, j , and each item, x , in the 2-3 cuckoo hash

table for I1, j that has a corresponding fingerprint belonging

to Fj in F, do a lookup in each of corresponding backing

hash tables (we assume we have global lookup tables for

S1 and S2) to determine if x is indeed a common item in

the sets S1 and S2. Let Z denote the set of all such items so

determined to belong to this common intersection. This step

can be implemented inO (n(logw )/w + k +p) time, where k
is the size of the output and p is the number of false positives,

that is, items that have a non-zero fingerprint in some Fj but
nevertheless are not in the common intersection, S1 ∩ S2.

(5) Output the members of the set, Z , as the answer.

Let us analyze the running time of this algorithm. We have

already accounted for the time bounds for each step above. Further-

more, note that the parameter p is O (n/w ), since the probability of

two fingerprints of size 2 logw collide is at most 1/w . Therefore,

the total expected time for our algorithm is O (n(logw )/w + k ).

Answering Spatial Multiple-Set Intersection Queries. The
main bottleneck for extending ourmethod from the previous section

to spatial multiple-set intersection queries is that the partial result

of performing the bit-parallel intersection of a pair of 2-3 cuckoo

filters is itself not a 2-3 cuckoo filter, because after the intersection

computation is performed some fingerprints might be stored in just

one location, not two. We can assume, however, that every subword



SIGSPATIAL’17, November 7–10, 2017, Los Angeles Area, CA, USA Michael T. Goodrich

in a fingerprint vector, F , is either all 0’s or it holds a complete

fingerprint of O (logw ) bits.
We can to augment our 2-3 cuckoo filter representations so that

we can restore them to be proper 2-3 cuckoo filters even after a

pairwise intersection computation, as follows:

(1) For each fingerprint vector, F , create and store cuckoo-
restore information, which encodes a permutation, πF ,
which routes every subword fingerprint, f , in F to the

location of its other location, which we call f ’s twin. That
is, if the fingerprint f for some item x is stored at subword

locations i and j in F , then πF moves the copy of f at i to
position j and the copy of f at j to position i . This step can

be done in O (1) time in the permutation word-RAM model.

(2) After an intersection operation occurs, so that each item

in the intersection of a pair of 2-3 cuckoo filters (including

some possible false positives) may be is stored in a fingerprint

vector, F , in just one location instead of two, apply πF to

create a copy, F ′ of F such that each fingerprint subword in

F is routed to its twin location.

(3) Restore F to be a 2-3 cuckoo filter by computing the bit-wise

OR of F and F ′. Note that there can be no collisions occurring
as a result of this bit-wise OR, because every fingerprint

(even the false positives) is the same as its twin and all

empty locations are all 0’s. Thus, this bit-wise OR will copy

each surviving fingerprint to its twin location and then OR

this fingerprint with itself (causing no change) or with a

subword of all 0’s (restoring the fingerprint to its original

two locations).

Thus, to answer a spatial multiple-set intersection query, for

sets, S1, S2, . . . , St , we perform the above pairwise intersection

operations iteratively, first with S1 and S2, and then with the result

of this intersection with S3, and so on, postponing until the very

end our culling of false positives by doing a lookup in global hash

tables for S1, S2, . . . , St , which we assume we have available, to

check for each item x in the final 2-3 cuckoo hash-table whether

x is indeed a member of every set. Each intersection step, for an

iteration i , takes O (1) time per cuckoo-filter, in the permutation

word-RAM model, for which we can charge this cost in iteration i
to the size of the subset in a region of the set Si .

We can force the expected total number of false positives to

be at most n/wc+1
, for a fixed constant c ≥ 1, by defining the

fingerprints to have size at least (c + 1) logw . Thus, testing each

surving candidate at the end to see if it really belongs to the common

intersection, by looking up each such element x in the t hash tables

for each set, takes time O (kt ) plus a term that is dominated by

O (n/w ).
Note that in order to implement our algorithm in the restricted

word-RAM model, the only part of this computation left as of yet

unspecified is how to create a representation of the permutation,

πF , and perform the routing of subwords defined by πF . For this
part, we follow the approach of Yang et al. [13], who define subword
permutation micro-code instructions and show how to implement

them using a double butterfly network, which is also known as a

Benes network.

It is known that a Benes network can route any permutation

and that it is fairly straightforward to set the switches in a Benes

network for this purpose for any given permutation. So let N be

such a network, which in the case of routingO (w/ logw ) subwords
of size O (logw ) will have depth O (logw ). Depending on how the

switches are set, we note that each stage ofN involves keeping some

subword in place and moving others by shifting them all the same

distance. Thus, each stage of a Benes network can be implemented

in O (1) steps in the word-RAM model by simple applications of

AND, OR, and shift operations (plus either the use of mask vectors

to encode the switch settings or using other built-in word-RAM

operations based on an encoding of πF . Thus, we can store an

encoding of a Benes network implementing πF for each fingerprint

vector, F , as our cuckoo-restore information, and this will allow

us to restore any cuckoo filter to be a 2-3 cuckoo filter in O (logw )
time in the word-RAM model. This gives us the following result.

Theorem 4.1. Suppose t ≤ wc sets are from interval regions
identified through a spatial multiple-set intersection query for a range
R ⊆ C, in structures constructed as described above. We can compute
the result of such a query in O (n(logw )/w + kt ) expected time in
the permutation word-RAM model, or O (n(log2w )/w + kt ) expected
time in the restricted word-RAM model, where n is the total size of all
the sets involved, k is the size of the output, and c ≥ 1 is a constant.

Acknowledgments. This article reports on work supported

by the DARPA under agreement no. AFRL FA8750-15-2-0092. The

views expressed are those of the authors and do not reflect the

official policy or position of the Department of Defense or the

U.S. Government. This work was also supported in part from NSF

grants 1228639, 1526631, 1217322, 1618301, and 1616248. We thank

David Eppstein for several helpful discussions.

REFERENCES
[1] Susanne Albers and Torben Hagerup. 1997. Improved Parallel Integer Sorting

without Concurrent Writing. Inf. & Comput. 136, 1 (1997), 25–51.
[2] Philip Bille, Anna Pagh, and Rasmus Pagh. 2007. Fast evaluation of union-

intersection expressions. In Int. Symp. Algorithms and Computation (LNCS),
Vol. 4835. Springer, 739–750.

[3] Bolin Ding and Arnd Christian König. 2011. Fast Set Intersection in Memory.

Proc. VLDB Endow. 4, 4 (Jan. 2011), 255–266.
[4] David Eppstein. 2016. Cuckoo Filter: Simplification and Analysis. In 15th Scand.

Workshop on Algorithm Theory (LIPIcs), Vol. 53. 8:1–8:12.
[5] David Eppstein andMichael T. Goodrich. 2017. Brief Announcement: UsingMulti-

Level Parallelism and 2-3 Cuckoo Filters for Set Intersection Queries and Sparse

Boolean Matrix Multiplication. In 29th ACM Symp. on Parallelism in Algorithms
and Architectures (SPAA).

[6] David Eppstein, Michael T. Goodrich, Michael Mitzenmacher, and Manuel R.

Torres. 2017. 2-3 Cuckoo Filters for Faster Triangle Listing and Set Intersection.

In 36th ACM Symp. on Principles of Database Systems. 247–260.
[7] Michael T. Goodrich. 2017. Answering Spatial Multiple-Set Intersection Queries

Using 2-3 Cuckoo Hash-Filters. ArXiv ePrint 1708.09059 (2017). arxiv.org/abs/
1708.09059

[8] Torben Hagerup. 1998. Sorting and searching on the word RAM. In 15th Symp.
on Theor. Aspects of Comp. Sci. 366–398.

[9] Torben Hagerup. 2000. Improved Shortest Paths on the Word RAM. In 27th Int.
Colloqium on Automata, Languages and Programming. Springer, 61–72.

[10] Tsvi Kopelowitz, Seth Pettie, and Ely Porat. 2015. Dynamic Set Intersection. In

14th Symp. on Algorithms and Data Structures (SODA). 470–481.
[11] Peter Bro Miltersen. 1996. Lower bounds for static dictionaries on RAMs with

bit operations but no multiplication. In 23rd Int. Colloq. on Automata, Languages
and Programming (ICALP) (LNCS), Vol. 1099. Springer, 442–453.

[12] Dan E. Willard. 2000. Examining Computational Geometry, Van Emde Boas

Trees, and Hashing from the Perspective of the Fusion Tree. SIAM J. Comput. 29,
3 (2000), 1030–1049.

[13] Xiao Yang, Manish Vachharajani, and Ruby B. Lee. 1999. Fast subword permuta-

tion instructions based on butterfly network. In Proc. SPIE, Vol. 3970. 80–86.

arxiv.org/abs/1708.09059
arxiv.org/abs/1708.09059

	Abstract
	1 Introduction
	2 A Review of 2-3 Cuckoo Hash-Filters
	3 Data Structures
	4 Intersection Algorithms
	References

