
Defining Equitable Geographic Districts in Road Networks via
Stable Matching

David Eppstein

University of California, Irvine

eppstein@uci.edu

Michael T. Goodrich

University of California, Irvine

goodrich@uci.edu

Doruk Korkmaz

University of California, Irvine

dkorkmaz@uci.edu

Nil Mamano

University of California, Irvine

nmamano@uci.edu

ABSTRACT
We introduce a novel method for defining geographic districts in

road networks using stable matching. In this approach, each geo-

graphic district is defined in terms of a center, which identifies a

location of interest, such as a post office or polling place, and all

other network vertices must be labeled with the center to which

they are associated. We focus on defining geographic districts that

are equitable, in that every district has the same number of vertices

and the assignment is stable in terms of geographic distance. That

is, there is no unassigned vertex-center pair such that both would

prefer each other over their current assignments. We solve this

problem using a version of the classic stable matching problem,

called symmetric stable matching, in which the preferences of the

elements in both sets obey a certain symmetry. We show that, for a

planar graph or road network with n nodes and k centers, the prob-

lem can be solved in O(n
√
n logn) time, which improves upon the

O(nk) runtime of using the classic Gale–Shapley stable matching

algorithm when k is large. Finally, we provide experimental results

on road networks for these algorithms and a heuristic algorithm

that performs better than the Gale–Shapley algorithm for any range

of values of k .

CCS CONCEPTS
• Information systems→ Network data models; • Theory of
computation → Shortest paths;

KEYWORDS
road networks, stable matching, geographic districting

1 INTRODUCTION
Location analysis is a classical branch of optimization in geographic

information systems. It includes problems such as political district-
ing, in which a territory must be divided into regions under certain

requirements for fairness (avoiding unfair gerrymandered districts),

Permission to make digital or hard copies of part or all of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for third-party components of this work must be honored.

For all other uses, contact the owner/author(s).

SIGSPATIAL’17, November 7–10, 2017, Los Angeles Area, CA, USA
© 2017 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-5490-5/17/11. . . $15.00

https://doi.org/10.1145/3139958.3140015

geographic compactness, and equal representivity with respect to

the broader population (e.g., see [15–17].)

In this work, we consider an assignment problem in which we

are given a set of facility locations and must distribute the rest of

the territory to those facilities. Wemodel the geographic space of in-

terest as a weighted, undirected graph representing a road network,

the population to be assigned to facilities as the set of all vertices of

the graph, and the facility locations as a subset of k chosen center
nodes of the graph. Each center has a quota indicating how many

nodes it should match. The desired output is an assignment of every

node to a center, such that the set of assigned nodes for each center

equals its quota. The use of quotas in this way allows each of the

facilities to have different operational capacities in terms of how

much of the population they can serve.

Figure 1: The solution to the stable graphmatching problem
for the 2010 road networks of Texas (2037K nodes and 2550K
edges) from the DIMACS database [3]. There are k = 6 ran-
dom centers with equal quota n/k .

We impose the conditions that each node has a preference for

centers ordered by shortest-path distance from the node, and each

center has a preference for nodes ordered by their distances from

the center. Our goal is to match each center to its quota number of

nodes and for the matching to be stable, meaning that no node and

https://doi.org/10.1145/3139958.3140015

SIGSPATIAL’17, November 7–10, 2017, Los Angeles Area, CA, USA D. Eppstein et al.

center that are not assigned to each other prefer each other to their

specified matches.

Equitable geographic districts should be “compact” to avoid the

types of highly non-compact districts that have been the subject of

recent legal cases involving gerrymandering. Using shortest-path

distance as preferences for the stable matching results in generally

compact districts, but it does not, however, imply that the districts

are necessarily convex or even connected. Indeed, depending on

the placement of centers and how quotas are defined, it may be

necessary for some districts to be disconnected (see Figure 1, and

the full version of the paper for additional examples [4]). Formally,

we define the stable graph matching problem as follows:

Definition 1.1 (Stable graph matching problem). Given an undi-

rected, weighted graph and a subset of k nodes denoted centers,

find an assignment from each node to a centers such that (i) the
same number of nodes is assigned to each center, up to round-off

errors, and (ii) the matching is stable with respect to shortest-path

distances; that is, there is no node u and center c such that u is not

assigned to c , u is closer to c than to its assigned center, and c is
closer to u than to one (any) of the nodes assigned to c .

1.1 New Results
In the standard stable matching problem, preferences are arbitrary.

Each individual may choose as his or her preferences any permu-

tation of the opposite-set individuals, independently of all other

choices. Preferences resulting from shortest-path distances in an

undirected graph are not arbitrary, however. Instead, they obey a

certain symmetry property coming from the undirected nature of

the graph and shortest paths within the graph. To capitalize on this

idea, we define an abstract problem intermediate between stable

graph matching and stable matching, which we call the symmetric
stable matching problem.

Moreover, we develop a novel nearest-neighbor chain algorithm
for any symmetric stable matching problem, using ideas borrowed

from a very different application of nearest-neighbor chains, in

hierarchical clustering problems [2, 12]. In the case of stable graph

matching, this algorithm runs in timeO(n
√
n logn), which improves

upon the O(nk) time of the classic Gale–Shapley stable matching

algorithm when k is large.

Finally, we provide a heuristic circle-growing improvement to

the Gale–Shapley algorithm for the case of stable graph matching.

1.2 Prior Related Work
Our notion of equitability introduces an interesting new (and more

realistic) twist to Knuth’s classic post office problem [13]. In the

classic post office problem, one is given a collection of sites called

“post offices” and one is interested in assigning nodes to their near-

est post office with no consideration for quotas characterizing the

capacity of each post office to handle mail. Thus, the classic post

office problem is equivalent to our geographic districting problem

with unbounded quotas. Knuth’s discussion of the classic post office

problem has given rise to a long line of research on spatial parti-

tioning, including the important Voronoi diagrams (e.g., see [1]),

which have also been extended to the graph setting [7].

The stable matching problem or stable marriage problem was

introduced by Gale and Shapley [8]. This problem was originally

described in terms of matching n men and n women based on each

person having an ordered preference list for the members of the

opposite sex in this group. In that context, stability means that

no man–woman pair prefer each other to their assigned choices.

Stability, defined in this way, is a necessary condition (and more

important than, e.g., total utility) in order to prevent extramarital

affairs. When generalized to the one-to-many case, this problem is

also called the college admission problem [18], because it models a

setting where n students are stably matched to k < n colleges, each

with a certain quota of admissions.

The Gale–Shapley algorithm [8]. finds a stable matching in time

O(nk) in the one-to-many (college admission) case, and this is opti-

mal for arbitrary preferences. Existing research about stable match-

ing studies several variations (e.g., [11, 14]), but the assumption that

preferences are arbitrary has rarely been challenged. A first step in

this direction was taken by Hoffman et al. [10], who considered the

mathematical properties of a stable matching in a geometric setting,

where “colleges” are points in R2 and “students” are all the points

in R2, and both use distances as preferences. Eppstein et al. [5]
extended their approach to images, where “students” and “colleges”

are pixels, but their work does not extend to general graphs and

road networks.

2 SYMMETRIC STABLE MATCHING
We present the symmetric stable matching problem in the one-to-

many context of schools and students, and therefore all the results

in this section also apply to the one-to-one case of men and women.

In order to formulate the symmetric stable matching problem,

consider this alternative but equivalent definition of the stable

matching problem. Each agent (school or student) gives a unique

score to each agent from the other set, and ranks them in increasing

order of these scores. Therefore, a set of scores such as (a ← 7,b ←
2, c ← 10) corresponds to the list of preferences (b,a, c).

We call the preferences symmetric if the score of x for y equals

the score of y for x . Moreover, in this case, we call these scores

distances.

Definition 2.1. A stable matching problem is symmetric if the
preferences are symmetric.

2.1 Mutual closest pair algorithm
Before introducing our nearest-neighbor chain algorithm for sym-

metric stable matching, we describe a simplified version of it, the

mutual closest pair algorithm, which is based on the following

definition and lemma:

Definition 2.2. In a stable matching problem, a mutual closest
pair is a school and a student who have each other as first choice.

Lemma 2.3. If preferences are symmetric, a mutual closest pair
always exists.

Due to space constraints, we defer all the proofs to the full version

of the paper [4]. Note that although the pair realizing the global

minimum distance are always a mutual closest pair, the reverse is

not true: there can be other mutual closest pairs whose distance

is not a global minimum. Moreover, Lemma 2.3 requires that the

distances on which we are basing preferences be symmetric. If they

Defining Districts via Stable Matching SIGSPATIAL’17, November 7–10, 2017, Los Angeles Area, CA, USA

are not symmetric, as may be the case for shortest path distances in

a directed graph, then there might not be any mutual closest pairs.

Algorithm 1. Mutual closest pair algorithm

Input: n students andm schools with symmetric preferences,

and school quotas adding up to n.
Output: a stable matching between the students and schools.

(1) Initialize the matching empty.

(2) Repeat while there is an unmatched student:

(a) Find a mutual closest pair s,x .
(b) Match s and x , remove the student from the pool of

unmatched students, reduce the quota of the school

by one and remove it from the pool of unmatched

schools if its the quota reached zero.

Due to Lemma 2.3, the algorithm will never fail to find a closest

mutual pair. In the full paper we prove that the any symmetric

stable matching problem has a unique solution, which will be found

by any instance of Algorithm 1.

Any strategy that finds mutual closest pairs can be used in Al-

gorithm 1. In the next section, we present one strategy for quickly

finding mutual closest pairs by making use of a dynamic nearest-

neighbor data structure. This data structure should be able to main-

tain a set of agents of the same type (students or schools) and

answer queries asking for the closest one to a query agent of the

opposite set. Moreover, it should support deletions, that is, allow to

remove elements from the set.

2.2 Nearest-neighbor chain algorithm
The following algorithm, which we call the Nearest-neighbor chain

algorithm, is based on the theory of hierarchical clustering [2, 12],

and was first used in the context of stable matching (for grid-based

geometric data only) in [5].

Algorithm 2. Nearest-neighbor chain algorithm

Input: n students andm schools with symmetric preferences,

and school quotas adding up to n.
Output: a stable matching between the students and schools.

(1) Initialize the matching empty.

(2) Initialize a dynamic nearest-neighbor structure containing

the students, and one containing the schools.

(3) Initialize an empty stack S .
(4) Repeat while there is an unmatched student:

(a) If S is empty, add any unmatched student (or school)

to it.

(b) Let p be the agent at the top of the stack, and use

the nearest-neighbor structures to find its nearest-

neighbor q of the opposite set.

(c) If q is not already in S , add it.

(d) Otherwise, q must be the second-from-top element

in S (as justified below), and p and q are a mutual

closest pair. In this case, match p and q, and update

the data structures accordingly: remove the student

from the nearest-neighbor structure of students, re-

duce the quota of the school by one and remove it

from the nearest-neighbor structure of schools if its

quota reached zero, and removep andq from the stack.

Note that if the school was below the student in the

stack and it still had positive quota, it would be added

to the stack again in the next iteration, as it would still

be the nearest-neighbor of the previous student in the

stack. Hence, in this case, we can keep the school in

the stack.

Note that the distance between consecutive elements in S only

decreases. That’s why, in Step (4d), q must be the second-from-top;

if q was anywhere else, p would be closer to its predecessor in S
than to q. Here we are using the fact that the preferences of each
element are distinct. In the graph setting, we may use a tie-breaking

rule to ensure that distances are unique.

Each step that adds a new element to S can be charged against a

later pop operation and its associated match. Therefore, the num-

ber of repetitions is O(n). This algorithm gives us the following

theorem.

Theorem 2.4. The symmetric stable matching problem can be
solved in O(n) query and update operations of a dynamic nearest-
neighbor data structure.

By making use of the dynamic nearest-neighbor data structure

from [6] for planar graphs and road networks, the stable-graph-

matching can be solved in O(n
√
n logn).

2.3 Circle-growing algorithm
As we mentioned in the introduction, the Gale–Shapley algorithm

requires O(kn) time to find a stable matching between n nodes and

k centers. However, in the graph setting first we need to compute

the preferences, that is, the shortest-path distances between every

center and node. This step can be solved in O(kn) time in planar

graphs using the linear-time single-source shortest-path algorithm

from Henzinger et al. from every center [9], or more generally in

O(kn logn) time for sparse graphs using Dijkstra’s algorithm.

However, with the following alternative algorithm, it is not nec-

essary to compute the distances between all centers and nodes,

and we can do without a separate Gale–Shapley phase of the algo-

rithm altogether. Instead, we can use an algorithm similar to the

circle-growing method, described by Hoffman et al. [10]. It can be

visualized as a process in which we grow circles from each center,

all at the same speed, and match each node to the first circle that

grows across it.

We start k instances of Dijkstra’s algorithm at the same time, one

from each center. We explore, at each step, the next closest node

to any of the centers, advancing one of the instances of Dijkstra’s

algorithm by a single step. We match each node to the center whose

instance of Dijkstra’s algorithm reaches it first. Note that when an

instance of Dijkstra’s algorithm, starting from center c , reaches a
node x that has not already been matched, then c and x must be

the global closest pair (omitting already matched pairs). We halt

each instance of Dijkstra’s algorithm as soon as its center reaches

its quota. This stopping condition prevents wasted work in which

an instance of Dijkstra’s algorithm explores nodes farther than its

farthest matched node.

SIGSPATIAL’17, November 7–10, 2017, Los Angeles Area, CA, USA D. Eppstein et al.

GS
CG
NNC

s

0

5

10

15

20

25

k

2 4 8 16 32 64 12
8
25
6
51
2
10
24
20
48
40
96
81
92

16
38
4

Figure 2: Runtime of the Gale-Shapley (GS), circle-growing
(CG), and nearest-neighbor chain (NNC) algorithms in the
Delaware (n = 48812,m = 60027) road network [3] for a range
of number of centers k (in a logarithmic scale). Missing data
points indicate that the computer ran out of memory.

3 EXPERIMENTS
In this section we present an empirical comparison of the algo-

rithms. Figure 2 illustrates the main findings (see more on the full

version of the paper [4]). The algorithms were implemented in

Java 8 and executed on an Intel Core CPU i7-3537U 2.00GHz with

4GB of RAM, under Windows 10.

Figure 2 shows a clear picture of the respective algorithms’

strengths and weaknesses:

TheGale–Shapley algorithm,with a runtime ofO(kn logn), scales
linearly with k . Moreover, because of the memory requirement of

Θ(nk), we could not run it with large numbers of centers.

Our circle-growing algorithmwas the fastest of our implemented

algorithms in practice, over the range of values of k for which we

could run it. For instance, on the Texas road network, which has

over 2 million nodes, the algorithm finishes in 3 seconds when given

6 random centers. Additionally, the runtime of circle-growing did

not appear to be strongly affected by the value of k . The reason
for this is that, even though the algorithm runs k instances of Dijk-

stra’s algorithm, the expected number of nodes that each instance

explores decreases as k increases. However, this phenomenon may

only be valid in expectation with randomly located centers.

The performance of the nearest-neighbor chain algorithm de-

pends on the underlying nearest-neighbor data structure. However,

in any case, the runtime and memory requirements are independent

of k . That’s why it is the only algorithm with a mostly flat curve

in the plots, and is the only algorithm that was able to complete a

solution for the entire range of values of k on all inputs that were

small enough for it to run at all.

4 CONCLUSIONS
We have defined the symmetric stable matching problem, a sub-

family of stable matching problems which arise naturally when

preferences are determined by distances. We studied its basic prop-

erties and provided the mutual closest pair algorithm, which has

the potential to be faster than the Gale–Shapley algorithm. Future

researchers should consider the algorithms in this paper if they

identify that a matching problem has symmetric preferences. As a

special case of symmetric stable matching, we defined the stable

graph matching problem. For this problem, we compared (a) the

Gale–Shapley algorithm, (b) the mutual closest pair algorithm, and

(c) the circle-growing algorithm, a heuristic improvement over the

Gale–Shapley algorithm.

This work leaves open several questions for future research, that

we list in the full version of the paper [4].

ACKNOWLEDGMENTS
This article reports on work supported by the DARPA under agree-

ment no. AFRL FA8750-15-2-0092. The views expressed are those

of the authors and do not reflect the official policy or position of

the Department of Defense or the U.S. Government. This work was

also supported in part from NSF grants 1228639, 1526631, 1217322,

1618301, and 1616248.

REFERENCES
[1] Franz Aurenhammer. 1991. Voronoi diagrams—A survey of a fundamental

geometric data structure. Comput. Surveys 23, 3 (1991), 345–405. https:

//doi.org/10.1145/116873.116880

[2] Jean-Paul Benzécri. 1982. Construction d’une classification ascendante hiérar-

chique par la recherche en chaîne des voisins réciproques. Les Cahiers de l’Analyse
des Données 7, 2 (1982), 209–218. http://www.numdam.org/item?id=CAD_1982_

_7_2_209_0

[3] Camil Demetrescu, AndrewV. Goldberg, andDavid S. Johnson. 2006. 9thDIMACS

Implementation Challenge: Shortest Paths. (2006). http://www.dis.uniroma1.it/

~challenge9/

[4] David Eppstein, Michael T. Goodrich, Doruk Korkmaz, and Nil Mamano. 2017.

Defining equitable geographic districts in road networks via stable matching.

Electronic preprint arXiv:1706.09593. (2017).

[5] David Eppstein, Michael T. Goodrich, and Nil Mamano. 2017. Algorithms for

stable matching and clustering in a grid. In Proc. 18th International Workshop
on Combinatorial Image Analysis (IWCIA 2017), Plovdiv, Bulgaria, 2017 (Lecture
Notes in Computer Science), Vol. 10256. Springer, Berlin, 117–131. https://doi.org/
10.1007/978-3-319-59108-7_10

[6] David Eppstein, Michael T. Goodrich, and Nil Mamano. 2017. Reactive nearest-

neighbor data structures for graphs. (2017). Unpublished.

[7] Martin Erwig. 2000. The graph Voronoi diagramwith applications. Networks 36, 3
(2000), 156–163. https://doi.org/10.1002/1097-0037(200010)36:3<156::AID-NET2>

3.0.CO;2-L

[8] David Gale and Lloyd S. Shapley. 1962. College admissions and the stability

of marriage. The American Mathematical Monthly 69, 1 (1962), 9–15. https:

//doi.org/10.2307/2312726

[9] Monika R. Henzinger, Philip Klein, Satish Rao, and Sairam Subramanian. 1997.

Faster shortest-path algorithms for planar graphs. J. Comput. System Sci. 55, 1
(1997), 3–23. https://doi.org/10.1006/jcss.1997.1493

[10] Christopher Hoffman, Alexander E. Holroyd, and Yuval Peres. 2006. A stable

marriage of Poisson and Lebesgue. Annals of Probability 34, 4 (2006), 1241–1272.

https://doi.org/10.1214/009117906000000098

[11] Robert W. Irving. 1994. Stable marriage and indifference. Discrete Applied
Mathematics 48, 3 (1994), 261–272. https://doi.org/10.1016/0166-218X(92)00179-P

[12] J. Juan. 1982. Programme de classification hiérarchique par l’algorithme de la

recherche en chaîne des voisins réciproques. Les Cahiers de l’Analyse des Données
7, 2 (1982), 219–225. http://www.numdam.org/item?id=CAD_1982__7_2_219_0

[13] Donald E. Knuth. 1998. The Art of Computer Programming, Vol. 3: Sorting and
Searching (2nd ed.). Addison-Wesley, Reading, MA.

[14] Fuhito Kojima, Parag A. Pathak, and Alvin E. Roth. 2010. Matching with couples:
Stability and incentives in large markets. Working Paper 16028. National Bureau

of Economic Research. https://doi.org/10.3386/w16028

[15] Richard G. Niemi and John Deegan. 1978. A Theory of Political Districting.

American Political Science Review 72, 4 (1978), 1304ÔÇô–1323. https://doi.org/10.

2307/1954541

[16] Charles S. ReVelle and H. A. Eiselt. 2005. Location analysis: A synthesis and

survey. European Journal of Operational Research 165, 1 (2005), 1–19. https:

//doi.org/10.1016/j.ejor.2003.11.032

[17] Federica Ricca, Andrea Scozzari, and Bruno Simeone. 2008. Weighted Voronoi

region algorithms for political districting. Mathematical and Computer Modelling
48, 9-10 (2008), 1468–1477. https://doi.org/10.1016/j.mcm.2008.05.041

[18] Alvin E. Roth and Marilda Sotomayor. 1989. The college admissions problem

revisited. Econometrica 57, 3 (1989), 559–570. https://doi.org/10.2307/1911052

https://doi.org/10.1145/116873.116880
https://doi.org/10.1145/116873.116880
http://www.numdam.org/item?id=CAD_1982__7_2_209_0
http://www.numdam.org/item?id=CAD_1982__7_2_209_0
http://www.dis.uniroma1.it/~challenge9/
http://www.dis.uniroma1.it/~challenge9/
https://doi.org/10.1007/978-3-319-59108-7_10
https://doi.org/10.1007/978-3-319-59108-7_10
https://doi.org/10.1002/1097-0037(200010)36:3<156::AID-NET2>3.0.CO;2-L
https://doi.org/10.1002/1097-0037(200010)36:3<156::AID-NET2>3.0.CO;2-L
https://doi.org/10.2307/2312726
https://doi.org/10.2307/2312726
https://doi.org/10.1006/jcss.1997.1493
https://doi.org/10.1214/009117906000000098
https://doi.org/10.1016/0166-218X(92)00179-P
http://www.numdam.org/item?id=CAD_1982__7_2_219_0
https://doi.org/10.3386/w16028
https://doi.org/10.2307/1954541
https://doi.org/10.2307/1954541
https://doi.org/10.1016/j.ejor.2003.11.032
https://doi.org/10.1016/j.ejor.2003.11.032
https://doi.org/10.1016/j.mcm.2008.05.041
https://doi.org/10.2307/1911052

	Abstract
	1 Introduction
	1.1 New Results
	1.2 Prior Related Work

	2 Symmetric stable matching
	2.1 Mutual closest pair algorithm
	2.2 Nearest-neighbor chain algorithm
	2.3 Circle-growing algorithm

	3 Experiments
	4 Conclusions
	Acknowledgments
	References

