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Abstract. We consider data structures for graphs where we maintain
a subset of the nodes called sites, and allow proximity queries, such as
asking for the closest site to a query node, and update operations that
enable or disable nodes as sites. We refer to a data structure that can
efficiently react to such updates as reactive. We present novel reactive
proximity data structures for graphs of polynomial expansion, i.e., the
class of graphs with small separators, such as planar graphs and road
networks. Our data structures can be used directly in several logisti-
cal problems and geographic information systems dealing with real-time
data, such as emergency dispatching. We experimentally compare our
data structure to Dijkstra’s algorithm in a system emulating random
queries in a real road network.

1 Introduction

Proximity data structures are well-known in computational geometry [10], where
sites are points in the plane and distance is measured, e.g., by the Euclidean
metric. In this paper, we are interested in proximity data structures for graphs,
where sites are defined by a distinguished subset of the vertices and distance is
measured by shortest-path distance in the graph. That is, we assume a graph,
G, is given and fixed (like a road network for a geographic region) and that
distance is measured by shortest paths in this graph. With respect to updates,
a non-distinguished vertex in G can be enabled to become a site or an existing
site can be disabled to no longer be a site, and we want our data structure to
react to such updates so as to be able to quickly answer proximity queries, such
as nearest-neighbor or closest-pair queries for sites.

Definition 1 (Reactive proximity). Given a set, U , known as the universe,
and a distance function, d(∗), for elements in U , maintain a subset, P ⊆ U , of
sites, allowing the following operations:

– Proximity Queries. nearest-neighbor: given a query element q ∈ U ,
return a site p in P minimizing d(q, p); closest-pair: return a pair, p, q ∈ P ,
minimizing d(p, q); bichromatic-closest-pair: suppose we have P = R ∪ B,
where R ∩ B = ∅. Then, return a pair, p, q ∈ P , minimizing d(p, q), such that
p ∈ R and q ∈ B.
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– Updates. enable: add an element from U to P ; disable: remove an element
from P .

We refer to data structures that can support such queries and updates as
reactive data structures,1 in that we have a fixed universe of objects which can
be enabled or disabled, and we need to quickly react to such events as updates.
In this paper, we study the case where the set U is the set of nodes of a graph,
and d is the shortest-path distance.

1.1 Applications

There are a number of interesting applications for reactive proximity data struc-
tures for graphs, including several logistical problems in geographic information
systems dealing with real-time data. Consider, for instance, an application to
connect drivers and clients in a private-car service, such as Uber or Lyft, or
even a future driverless car service. The data structure could maintain the set of
cars waiting at various locations in a city to be put into service. When a client
requires a driver, she queries the data structure to find the car nearest to her.
This car is then disabled (i.e., it is no longer available) until it completes the trip
for this client, at which point the car is then enabled (i.e., it is available) at this
new location. Alternatively, we could consider a similar application in the con-
text of police or emergency dispatching, where the data structure maintains the
locations of a set of available first responder vehicles. In Sect. 3, we experiment
with this type of system emulating random queries in a real road network.

As another example dealing with geo-spatial data, which the authors explore
in a companion paper [22], suppose we are given a set of sites representing
the locations of certain facilities, such as post offices or voting locations. We
wish to partition the vertices of the graph into geographic regions, one for each
facility, such that each region has a specified size (in number of nodes) and the
shapes of the regions satisfy certain compactness criteria. As we show in the
companion paper, a greedy matching algorithm can exploit an efficient reactive
data structure to quickly build such a partitioning of the graph.

Reactive proximity data structures can also be useful in other domains,
such as content distribution networks, like the one maintained by Akamai. For
instance, the data structure could maintain the set of nodes that contain a cer-
tain file of interest, like a movie. When another node in the network needs this
information, the data structure could be used to find the closest node that can
transfer it. Updates allow us to model how copies of such a file migrate in the
network, e.g., for load balancing, so that we enable a node when it gets a copy
of the file and disable a node when it passes it to another server.

1 We also call such data structures reactive to distinguish the kinds of updates we
allow (changes to the subset of distinguished vertices) from dynamic data structures
in which the structure of the graph itself can change, e.g., by vertex or edge insertions
or deletions.
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Moreover, having a reactive proximity data structure for graphs could allow
us to design interesting algorithms that rely on the existence of such data struc-
tures. For instance, we discuss how to use them to solve the geometric stable
roommates problem [2] in Sect. 2.

1.2 Our Results

In this paper we present a family of reactive data structures for answering prox-
imity problems in graphs. The data structures we present all use a technique
based on graph separator hierarchies and they apply to any graphs for which
such hierarchies can be built. A separator in a given n-vertex graph is a subset
of nodes such that removing it partitions the remaining graph into two disjoint
subgraphs, each of size at most 2n/3. The size of a separator is the number of
nodes in this subset. A separator hierarchy is the result of recursively subdi-
viding a graph by using separators. It has been shown recently that classes of
graphs with separators of size O(nc), for any c < 1, coincide with the classes of
graphs of polynomial expansion [15]. Thus, any graph in this family is suitable
for our data structures.

Graphs of polynomial expansion are sparse, but some sparse graphs (such
as bounded degree expanders) do not have polynomial expansion. Nonethe-
less, many important sparse graph families have polynomial expansion. One
of the first classes that was shown to have sublinear separators is the class of
planar graphs, which have O(n0.5)-size separators [36]. Separators of the same
asymptotic size have also been proven to exist in k-planar graphs [14], bounded-
genus graphs [29], minor-closed graph families [34], graphs with sparse crossing
graphs [25], and the graphs of certain four-dimensional polyhedra [20].

While road networks are not quite planar because of bridges and underpasses,
experimental results show that they can be modeled by graphs with sparse cross-
ing graphs. These graphs, like planar graphs, have O(n0.5)-size separators [25].
This is fortunate, because it allows our data structures to be used in geographic
information systems, e.g., for real-world road networks, as we explore experi-
mentally in this paper.

Not surprisingly, the main technical challenge faced in designing efficient
reactive proximity data structures for graphs lies in their reactive nature. In a
variant where the sites (i.e., the nodes in P ) are fixed, there is a well known
solution: the graph-based Voronoi diagram, which maintains the closest site to
each node in the graph [26]. With this information, queries can be answered in
constant time. However, the Voronoi diagram is not easy to update, requiring
O(n log n) time in sparse graphs with n nodes, which is the same time as for
creating the diagram from scratch. If we optimize for update time instead, we
could avoid maintaining any information and answer queries directly using a
shortest-path algorithm from the query node. Updates would take constant time;
queries could be answered using Dijkstra’s algorithm [9], which runs in O(n log n)
time in sparse graphs and in O(n) time for graphs with a known separator
hierarchy [32]. However, this is clearly not a good solution either if we want fast
query times.
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Our solutions amount to finding a “sweet spot” between these two extremes.
Our novel data structure for the reactive nearest-neighbor problem supports
queries in O(n0.5) time and updates in O(n0.5 log log n) time when the underlying
graph is a planar graph or a road network. More generally, if the graph belongs
to a family with separators of size S(n) = O(nc), for some 0 < c < 1, queries
and updates run in O(S(n)) and O(S(n) log log n) time, respectively. Moreover,
since forests have separators of size one, the data structure can be shown to
have O(log n) query time and O(log n log log n) update time when the underlying
graph is a forest or, more generally, when it has bounded treewidth.

1.3 Prior Related Work

Knuth’s discussion of the classic post office problem has given rise to a long line
of research on structures for spatial partitioning for answering nearest-neighbor
queries, including an entire literature on the topic of Voronoi diagrams [3,8].
Given a collection of sites, these diagrams partition a space into regions such that
the points in each region have a particular site as their nearest. Furthermore,
Erwig [26] shows that Voronoi diagrams can be extended to graphs and that
such structures can be constructed using Dijkstra’s shortest-path algorithm (e.g.,
see [9,31]). These Voronoi diagram structures are efficient for instances when
the set of sites is fixed, but they tend to perform poorly for cases in which
sites can be inserted or removed. Such dynamic nearest neighbor problems have
been addressed in geometric settings. For exact two-dimensional dynamic nearest
neighbors, a data structure with O(nε) update and query time was given by
Agarwal et al. [1], and improved to O(log6 n) by Chan [6], and to O(log5 n) by
Kaplan et al. [33]. Because of the high complexities of these methods, researchers
have also looked at finding approximate nearest neighbors in dynamic point sets.
For example, dynamic versions of quadtrees and k-d trees are known [38], and the
skip-quadtree data structure can answer approximate nearest neighbor queries
and updates in logarithmic time [23].

The graph-based variant of the dynamic nearest neighbor problem that we
study falls into the area of dynamic graph algorithms, the subject of extensive
study [21]. There has been much research on shortest paths in dynamic graphs,
e.g., see [4,5,12,13,35,37]. However, previous work has primarily focused on edge
insertion and deletion updates rather than the vertex enable/disable updates
that we study. Exceptions are the work of Eppstein on maintaining a dynamic
subset of vertices in a sparse graph and keeping track of whether it is a dominat-
ing set [19], and the work of Italiano and Frigioni on dynamic connectivity for
subsets of vertices in a planar graph [28], but these are very different problems
from the proximity problems that we study here. To the best of our knowledge,
no one has considered maintaining nearest-neighbor data structures for graphs
subject to enabling and disabling of sites.

Separator hierarchies, the main technique used in this paper, have proven
useful for solving many graph problems [27,30]. Of these, the most related to
our problem is the O(n)-time single-source shortest path problem for planar
graphs when edge weights are non-negative [32]. The same algorithm applies
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more generally to graphs that have O(n0.5)-size separators and for which the
separator hierarchy can be built in O(n) time.

2 Reactive Nearest-Neighbor Data Structure for Graphs

We consider undirected graphs with nonnegative edge weights. We begin by
describing the concept of a separator hierarchy.

Recall that a separator in a given n-vertex graph is a subset S of nodes such
that the removal of S (and its incident edges) partitions the remaining graph
into two disjoint subgraphs (with no edges from one to the other), each of size at
most 2n/3. It is allowed for these subgraphs to be disconnected; that is, removing
S can partition the remaining graph into more than two connected components,
as long as those components can be grouped into two subgraphs that are each of
size at most 2n/3. A separator hierarchy is the result of recursively subdividing
a graph by using separators. Note that since children have size at most 2/3 the
size of the parent, the separator hierarchy is a binary tree of O(log n) height.

Small separators are necessary for the efficiency of our data structure. As we
mentioned, the analysis will depend on the size of the separators for a particular
graph family, which we denote by S(n), and which we assume to be of the form
nc with 0 < c < 1 (because, e.g., forests have separators of size one, and that
changes the analysis).

The reactive nearest-neighbor data structure that we describe in this section
yields the following theorem.

Theorem 1. Given an n-node graph from a graph family with separators of size
S(n) = nc, with 0 < c < 1, which can be constructed in O(n) time, it is possible
to initialize a reactive data structure that uses O(nS(n)) space, in O(nS(n))
time, that answers nearest-neighbor queries in O(S(n)) time and updates in
O(S(n) log n) time. Alternatively, the data structure could have O(nS(n) log n)
initialization time, O(S(n)) query time, and O(S(n) log log n) update time.

2.1 Preprocessing

Initially, we are given the graph G = (V,E) and the subset P ⊆ V of sites. The
creation of our data structure consists of two phases. The first phase does not
depend on the choice of the subset P of sites, while the second phase incorporates
our knowledge of P into the data structure. Note that there are two kinds of
nodes of interest: separator nodes and sites. The two sets may intersect, but
should not be confused.

Site-independent phase. First, we build a separator hierarchy of the graph.
This hierarchy can be constructed in O(n) time and space in planar
graphs [30] and road networks [25].
Second, we compute, for each graph in the hierarchy, the distance from each
separator node to every other node. This computation can be represented as a
collection of single-source shortest-path problems, one for each separator node.
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As we already mentioned, each single-source shortest path problem can be
solved in O(n) time in graphs with O(n0.5)-size separators and for which we
can build a separator hierarchy in linear time [32]. Therefore, in such graphs
the time to compute shortest-path distances at the top level of the hierarchy
is O(nS(n)). We can analyze the time to compute these distances at all levels
of the hierarchy by the recurrence

T (n) = T (x) + T (y) + O(nS(n)),

where x and y are the sizes of two subgraphs, chosen so that x + y ≤ n,
max(x, y) ≤ 2n/3, and (among x and y obeying these constraints) so that
T (x) + T (y) is maximum. The recurrence is dominated by its top-level
O(nS(n)) term, and has a solution that is also O(nS(n)).

Site-dependent phase. For each graph H in the separator hierarchy, and each
separator node s in H, we initialize a priority queue Qs. The elements stored
in Qs are the sites that belong to H, and their priorities are their distances
from s. If we implement the priority queue as a binary heap, constructing each
queue Qs takes linear time. Thus, the time at the top level of the hierarchy is
linear per separator node, and the total time analysis of this phase is O(nS(n))
as before.

Adding the space and time for the two phases together gives O(nS(n)) for
planar graphs, or for other graphs on which we can use the linear-time separator-
hierarchy-based shortest path algorithm. If we instead use the simpler Dijkstra’s
algorithm to compute shortest paths, the running time becomes the slightly
slower bound of O(nS(n) log n), plus the time to build the separator hierarchy.

2.2 Queries

Given a node q, we find two sites: the closest site to q with (a) paths restricted
to the same side of the partition as q, and with (b) paths containing at least one
separator node. The paths considered in both cases cover all possible paths, so
one of the two found sites will be the overall closest site to q.

– To find the site satisfying condition (a), we can relay the query to the subgraph of
the separator hierarchy containing q. This satisfies the invariant that the query
node is a node of the graph. This case does not arise if q is a separator node.

– To find the site satisfying condition (b), we need the shortest path from q
to any site, but only among paths containing separator nodes. Note that if a
shortest path goes through a separator s, it should end at the site closest to
s. Therefore, the length of the shortest path starting at q, going through s,
and ending at any site, is d(q, s) + d(s,min(Qs)), where min(Qs) denotes the
element with the smallest key in Qs. We can find the site satisfying condition
(b) by considering all the separator nodes and retaining the one minimizing
this sum.
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The time to find paths of type (b) is O(S(n)), since there are O(S(n)) sep-
arator nodes to check and each takes constant time, as we precomputed all the
needed distances. Therefore, the time to find all paths of types (a) and (b) can
be analyzed by the recurrence

T (n) ≤ T (2n/3) + O(S(n)),

where the T (2n/3) bound dominates the actual time for recursing in a single
subgraph of the separator hierarchy. The solution to this recurrence is O(S(n)),
when S(n) is polynomial, and therefore the time per query is O(S(n)) in this
case. If S(n) is constant or polylogarithmic, then the query time is O(S(n) log n).

We can also implement a heuristic optimization for queries so that we do
not need to check every separator node to find a node satisfying condition (b).
At each graph of the separator hierarchy, we can sort, for each node, all the
separators by distance. This increases the space used by the data structure by a
constant factor. Then, after obtaining the recursive candidate satisfying condi-
tion (a), to find the second candidate, we consider the separator nodes in order
by distance to the query node q. Suppose p is the closest site we have found so
far. As soon as we reach a separator node s such that d(q, s) ≥ d(q, p), we can
stop and ignore the rest of separator nodes, since any site reached through them
would be further from q than p. In our experiments (Sect. 3), this optimization
reduced the average query runtime by a factor between 1.5 and 9.5, depending
on the number of sites. It is more effective when there are many sites, as then
the closest site will tend to be closer than many separators at the upper levels
of the hierarchy.

2.3 Updates

Suppose that we wish to enable or disable a node p from the set of sites P . Note
that, when we perform such an update, the structures computed during the site-
independent preprocessing phase (the separator hierarchy and the computation
of distances) do not change, as they do not depend on the choice of P . However,
we will need to update Qs for every separator node s in the top-level separator
S, by adding or removing p (according to whether we are adding or removing it
from P ).

Moreover, if p is not a separator node, it will belong to one of the two recursive
subgraphs in the separator hierarchy. In this case, we also need to update the
data structure for the subgraph containing p recursively, since p will appear in
the priority queues of the separator nodes in that subgraph.

The time to add or remove p in all top-level priority queues is O(log n) per
priority queue, for a total time of O(S(n) log n) at the top level. Again, if we
formulate and solve a recurrence for the running time at all levels of the separator
hierarchy, this time will be dominated by the top level time, giving a total time
of O(S(n) log n) per update.

We can also obtain an asymptotically faster update time of O(S(n) log log n)
by, for each separator vertex s, replacing the distances from s to all other nodes
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by the ranks of these distances in the sorted list of distances. That is, if the set
of distances in sorted order from s to the other nodes are

d1, d2, d3, . . .

with d1 < d2 < d3 < · · · , we could replace these numbers by the numbers

1, 2, 3, . . .

without changing the comparison between any two distances. This replacement
would allow us to use a faster integer priority queue, such as a van Emde Boas
tree [16], in place of the binary heap representation of each priority queue Q.
However, in order to use this optimization, we need to add the time to sort the
distances in the preprocessing time, which increases to O(nS(n) log n) (assuming
a comparison sort is used).

2.4 Additional Applications

We remark that our dynamic nearest neighbor data structure can be extended
to directed graphs. The only required change is to compute distances from and
to every separator node. To obtain the latter, we can use Dijkstra’s algorithm
in the reverse graph.

In addition, the conga line data structure of Eppstein [18] solves the dynamic
closest-pair problem with O(log n) query time, O(T (n) log n) insertion time, and
O(T (n) log2 n) deletion time, where T (n) is the time per operation (query or
update) of a dynamic nearest-neighbor data structure. Therefore, by combining
the data structure in this paper with the conga line data structure, we obtain
a data structure for the reactive closest pair problem in graphs with separators
of size S(n) = O(nc), with 0 < c < 1, that achieves O(log n) query time,
O(S(n) log n log log n) enable time, and O(S(n) log2 n log log n) disable time.

Furthermore, by combining the data structure in this paperwith the data struc-
ture from [17], we obtain the same running times for the reactive bichromatic
closest-pair problem as for the reactive closest-pair problem. Not using our data
structure would result in linear or super-linear times for either queries or updates.

The nearest-neighbor data structure can also be used for the metric stable
roommates problem, extending the work of Arkin et al. [2] to graphs. In the orig-
inal problem, we wish to match a set of points in a geometric space so that there
is no unmatched pair, (p, q), such that p and q are both closer to each other than
the points they are matched to. For points in general position, they show that a
simple greedy algorithm, which repeatedly matches and removes a closest-pair of
points, will produce a solution to the geometric stable roommates problem. An
efficient algorithm for this problem is the nearest-neighbor chain algorithm, which
solves it in O(|P |) queries and updates of a reactive nearest-neighbor data struc-
ture [22]. Hence, combined with our data structure, we can solve the greedy match-
ing problem (for metric stable roommates in graphs) in O(nS(n) + |P |S(n) log n)
time. Without our data structure, using a shortest-path algorithm in the nearest-
neighbor chain algorithm increases this time to Ω(|P |n).
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Finally, note that forests and graphswith bounded treewidth have separators of
sizeO(1), e.g., see [7]. If we reformulate and solve the recurrence equations account-
ing for the fact that there is constant number of separator nodes, we obtain an
O(n log n) preprocessing time, O(log n) query time, and O(log2 n) update time (or
O(log n log log n) using an integer priority queue as discussed above).

3 Experiments

In this section, we evaluate our data structure empirically on real-world road
network data, the Delaware road network from the DIMACS dataset [11]. We
consider the biggest connected component of the network, which has 48812 nodes
and 60027 edges. This dataset has been planarized: overpasses and underpasses
have been replaced by artificial intersection nodes. Each trial in our experiment
begins with a number of uniformly distributed random sites, and then performs
1000 operations. We consider the cases of only queries, only updates, and a
mixture of both (see Fig. 1). The updates alternate between enables and disables,
whereas the operations in the mixed case alternate between queries and updates.
We compare the performance of our data structure against a basic data structure
that simply uses Dijkstra’s algorithm for the queries.

3.1 Implementation Details

We implemented the algorithms in Java 8.2 We then executed them and timed
them as run on an Intel Core CPU i7-3537U 2.00 GHz with 4 GB of RAM, under
Windows 10.

We implemented the optimization for queries described in Sect. 2.2, and com-
pared it with the unoptimized version in order to evaluate if its worth the extra
space. For updates, we used a normal binary heap, as these tend to perform
better in practice than more sophisticated data structures.

A factor that affects the efficiency of the data structure is the size and balance
of the separators. Our hierarchy for the Delaware road network had a total of
504639 nodes across 8960 graphs up to 13 levels deep. Among these graphs, the
biggest separator had 81 nodes. Rather than implementing a full planar separa-
tor algorithm to find the separators (recall that the data had been planarized),
we choose the smallest of two simply-determined separators: the vertical and
horizontal lines partitioning the nodes into two equal subsets. While these are
not guaranteed to have size O(

√
n), past experiments on the transversal com-

plexity in road networks [24] indicate that straight-line traversals of road net-
works should provide separators with low complexity, making it unnecessary to
incorporate the extra complexity of a full planar graph separator algorithm.

When a separator partitions a graph in more than two connected components,
we made one child per component. Thus, our hierarchy is not necessarily a binary
tree, and may be shallower. We set the base case size to 20. At the base case,
we perform Dijkstra’s algorithm. Experiments with different base-case sizes did
not affect the performance significantly.
2 The source code is available at github.com/nmamano/NearestNeighborInGraphs.

https://github.com/nmamano/NearestNeighborInGraphs
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Fig. 1. Time needed by the data structures to complete 1000 operations in the Delaware
road network [11] for a range of number of sites (in a logarithmic scale). Each data
point is the average of 5 runs with different sets of random sites (the same sets for all
the algorithms).

3.2 Results

Figure 1 depicts the results. Table 1 shows the corresponding data for the case
of mixed operations, which is the case of interest in a reactive model.

– The runtime of Dijkstra’s algorithm is roughly proportional to the number of
sites, because with more sites it requires less exploration to find the closest
one. Moreover, initialization and updates require virtually no time. Thus, this
choice is superior for large numbers of sites, while being orders of magnitude
slower when the number of sites is low (see Table 1).

– The data structure based on a separator hierarchy is not affected as much by
the number of sites. The update runtime only increases slightly with more
sites because of the operations with bigger heaps. This is consistent with
its asymptotic runtime, which is O(S(n) log n) for any number of sites. The
optimization, which reduces the number of separators needed to be checked,
can be seen to have a significant effect on queries, especially as the number of
sites increases: it is up to 9.5 times faster on average with 2048 sites. However,
since it has no effect in updates, in the mixed model with the same number
of updates and queries the improvement is less significant.

– The data structure requires a significant amount of time to construct the
hierarchy. Our code constructed the hierarchy for the Delaware road network
in around 15 s. Fortunately, this hierarchy only needs to be built once per
road network. The limiting factor is the space requirement of O(n

√
n), which

caused us to run out of memory for other road networks from the DIMACS
dataset with over 105 nodes.
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Table 1. Time in milliseconds needed by the data structures to complete 1000 opera-
tions (mixed queries and updates) in the Delaware road network for a range of number
of sites (in a logarithmic scale). Each data point is the average, minimum, and maxi-
mum, of 5 runs with different sets of random sites (the same sets for all the algorithms).

# sites Dijkstra Separator Separator (with opt.)

2 3797 (3672 – 3906) 63 (47 – 94) 53 (31 – 94)

4 2303 (2203 – 2359) 66 (63 – 78) 53 (47 – 63)

8 1272 (1250 – 1297) 66 (47 – 78) 50 (47 – 63)

16 694 (641 – 781) 56 (47 – 63) 44 (31 – 47)

32 384 (359 – 406) 75 (63 – 94) 50 (47 – 63)

64 200 (172 – 219) 81 (63 – 94) 56 (47 – 63)

128 94 (94 – 94) 97 (94 – 109) 50 (47 – 63)

256 47 (47 – 47) 88 (78 – 94) 84 (78 – 109)

512 16 (16 – 16) 94 (94 – 94) 75 (63 – 78)

1024 13 (0 – 16) 94 (94 – 94) 75 (63 – 78)

2048 3 (0 – 16) 113 (94 – 125) 88 (78 – 94)

4096 3 (0 – 16) 125 (109 – 156) 88 (78 – 94)

8192 3 (0 – 16) 163 (125 – 188) 125 (94 – 156)

16384 0 (0 – 0) 116 (109 – 125) 113 (94 – 156)

4 Conclusion

We have studied reactive proximity problems in graphs, giving a family of data
structures for such problems. While we have focused on applications in geo-
graphic systems dealing with real-time data, the problem is primitive enough
that it seems likely that it will arise in other domains of graph theory, such as
network protocols. We would like to explore other applications in the future.

As we discussed in Sect. 3.1, a big factor in the runtime of any data structure
based on separator hierarchies is the choice of separators. It may be of interest
to compare the benefits of a simpler but lower-quality separator construction
algorithm versus a slower and more complicated but higher-quality separator
construction algorithm in future experiments.
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