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ABSTRACT
We study oblivious random access machine (ORAM) simulation,

in cloud computing environments where a thin client outsources
her data to a server using O (1)-sized messages.
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1 INTRODUCTION
In the cloud storage paradigm, a client, Alice, outsources her data

to a server, Bob, who stores Alice’s data and provides her with an

interface to access it from anywhere in the network.We assume that

Bob is “honest-but-curious,” in that Bob is trusted to keep Alice’s

data safe and available, but he wants to learn as much as possible

about Alice’s data. The challenge, then, is for Alice to obfuscate not

just the values of her data through encryption but also obfuscate her

data access pattern. Fortunately, in support of this obfuscation goal,

there is a large and growing literature on methods for simulating a

RAM algorithm to achieve obliviousness. Such oblivious algorithm

simulation methods provide ways for Alice to privately outsource

her data to Bob by replacing each single access in an algorithm, A,

that Alice is executing into a set of accesses. Formally, we assume

Alice outsources a storage of size n, with indices in [0,n − 1], and
that A uses the following operations:

• write(i,v ): Write v into memory cell i .
• read(i ): Read v from memory cell i .

A related concept is oblivious storage (OS), e.g., see [13, 16–18],
where Alice wishes to store a dictionary at the server, Bob, of size

at most n, and her algorithm, A, accesses this dictionary using the

following operations:

• put(k,v ): Add the pair (item), (k,v ). This causes an error if

there is already an item with key k .
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• get(k ): Return and remove the item, (k,v ), associated with

the key,k . If there is no such item, then this operation returns

NOT-FOUND.

We assume Alice’s algorithm, A, will issue an access sequence

of some given length, N , where N is at most polynomial in n. The
challenge is for Alice to make sure that Bob learns nothing about

her access sequence beyond the values of n and N , that is, that she

achieves statistical secrecy for her data access pattern.

Let σ denote a sequence of N read/write operations (or get/put
operations). AnORAM (or OS) scheme transformsσ into a sequence,

σ ′, of operations. We assume that each item is stored using a

semantically-secure encryption scheme, so that independent of

whether Alice wants to keep a key-value item unchanged, for each

access, the sequence σ ′ involves always replacing anything Alice
accesses with a new encrypted value so that Bob is unable to tell if

the underlying plaintext value has changed.

The security for an ORAM (or OS) simulation is defined in terms

of a computational game. Let σ1 and σ2 be two different access

sequences, of length N , for a key/index set of size n, that are chosen
by Bob and given to Alice. Alice chooses uniformly at random one of

these sequences and transforms it into access sequenceσ ′ according
to her ORAM (OS) scheme, which she then executes according to

this scheme. Alice’s ORAM (OS) scheme is statistically secure at
hiding her access pattern if Bob can determine which sequence, σ1
or σ2, Alice chose with probability at most 1/2.

The I/O overhead for such an OS or ORAM scheme is a function,

T (n), such that the total number of messages sent between Alice

and Bob during the simulation of all N of her accesses from σ is

O (N ·T (n)) with high probability.

In this paper, we provide methods for improving the asymptotic

I/O overhead for such ORAM simulations. The approach we take

to achieve this goal is to first transform the original RAM access

sequence, σ , into an intermediate OS sequence, σ̂ , which has a

restricted structure that we refer to as it being isogrammic 1
, and

we then efficiently transform the isogrammic sequence, σ̂ , into the

final access sequence, σ ′, by taking advantage of this structure. We

define a sequence, σ = (σ1,σ2, . . . ,σN ), of put and get operations
to be isogrammic if the following conditions are satisfied [11]:

(1) For every get(k ) operation, there is a previous put(k,v )
operation.

(2) For any put(k,v ) operation, there is not already an item in

the set with key k .
(3) For each put(k,v ) operation, the key k includes a compo-

nent that is chosen uniformly and independently at random

from a sufficiently large key space (which depends, e.g., on

configuration parameters).

1
An isogram is a word, like “uncopyrightable,” without a repeated letter. E.g., see

wikipedia.org/wiki/Isogram.
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Thus, isogrammic access sequences do not result in error condi-

tions, never get NOT-FOUND responses, and use keys that are

substantially random. The following parameters are also relevant:

• w : The word size in bits for indices and keys. As is standard

(e.g., see [9]), we assumew ≥ logn, so an index or key can

be stored in O (1) memory words.

• M : The number of words in Alice’s private memory.

• B: The maximum number of words in a message block sent

from/to Alice in one I/O operation.

In this paper, we are interested in scenarios whereM is o(logn)
andB isO (1), so as to design efficient statistically-secureORAM sim-

ulation schemes for thin clients, that is, clients that have asymptot-

ically sublogarithmic-sized local private memory and use constant-

sizedmessages to communicatewith the server.Moreover, we desire

schemes whose I/O overhead bounds hold with high probability.

Besides being of interest in its own right, and returning to the

original thin-client models for ORAM simulation [6, 9], designing

improved ORAM simulation methods for thin clients also can

improve other cryptographic primitives and protocols, which use

ORAM simulations as black-box or white-box constructions, such as

dynamic searchable encryption and secure two-party computation.

Previous Related Results. ORAM simulation methods origi-

nate from the seminal work of Goldreich and Ostrofsky [9], who

achieve an I/O overhead of O (log3 n) for thin clients, withM and

B being O (1), with a scheme that fails with polynomial probability

and requires the use of a random oracle (hence, is not statistically

secure). Subsequently, Goodrich and Mitzenmacher [12] present

an ORAM simulation with an O (logn) I/O overhead and constant-

sized messages, and their method is also not statistically secure. In

addition, it requires thatM be Ω(nϵ ), for some fixed constant ϵ > 0,

i.e., their result is not for thin clients. Kushilevitz et al. [14] improve

the I/O overhead for thin clients (with a constant-size client-side

memory) to be O (log2 n/ log logn), but their method assumes the

existence of random oracles.

Addressing the more challenging goal of designing an ORAM

simulation method that achieves statistical security, Damgård et
al. [6] introduce an ORAM scheme that is statistically secure and

achieves an I/O overhead of O (log3 n). Moreover, their method

works for thin clients, withM andB beingO (1); in fact, theirmethod

remained until the present paper the best previous statistically

secure ORAMmethod for thin clients. Stefanov et al. [19] introduce
the Path ORAM method, which is statistically secure but not suited

for thin clients, in that it uses B-sized messages and assumes B
is ω (logn) and M is ω (B logn), to achieve an I/O overhead of

O (log2 n/ logB). Chung et al. [3] provide an alternative “supermar-

ket ORAM” implementation for the case when B is O (1) andM is

polylogarithmic, which has an I/O overhead of O (log2 n log logn),
but their method is nevertheless not a solution for thin clients.

Still, applying an observation of Chung and Pass for their “Simple-

ORAM” scheme [4], the supermarket ORAM method can be made

to work on a thin client, but then the overhead becomes worse that

the overhead for the scheme of Damgård et al. [6]. These schemes

for non-thin clients use a simple tree-based approach (which our

scheme also uses), but, in order to achieve efficient I/O overheads,

they require an additional complication of carefully-implemented

recursive applications of their approaches, which take away from

their simplicity. Ohrimenko et al. [16] present an oblivious storage

(OS) scheme that achieves an I/O overhead of O (1), but it requires
thatM and B be Ω(nϵ ), for a fixed constant ϵ > 0, and it assumes

the existence of random oracles. Addressing a more restricted

problem than ORAM or OS simulation, Wang et al. [21] introduce
an interesting “oblivious data structure” framework, which applies

to algorithms that use a small number of bounded-degree data

structures, such as stacks, queues, or search trees, to achieve an

O (logn) I/O overhead for data-structure access sequences. Their

work can be seen a precursor to isogrammic access sequences. Un-

fortunately, their algorithms are based on the (non-recursive) Path

ORAM of Stefanov et al. [19], however, which requires thatM and B
beω (logn); hence, their results for oblivious data structures are not
for thin clients, but instead require superlogarithmic-sized client-

side memory and superlogarithmic-sized messages to be exchanged

between the client and the server. The Circuit ORAM [20], improves

the circuit complexity for such tree-based ORAM simulations, but

still requires blocks to be of size at least Ω(log2 n); hence, it is also
not designed for thin clients.

At a high level, our work is similar to the recent BIOS ORAM

scheme of Goodrich [11], which is a tree-based ORAM scheme that

uses B-trees instead of binary trees to improve the I/O overhead for

ORAM simulation for non-thin clients. Like our scheme, his scheme

avoids recursion by a reduction to isogrammic access sequences,

but his scheme is not for thin clients.

Our Results. We provide statistically secure ORAM simulation

methods for thin clients that asymptotically improve the I/O over-

heads of previous statistically secure ORAM simulation methods

for thin clients. We summarize our results in Table 1. given in

an appendix. Our isogrammic-fusion ORAM scheme is the first

statistically secure ORAM to achieve an I/O overheads ofO (log2 n)
or O (log2 n log logn) for thin clients, whereas the previous best

result for this cloud-computing scenario, by Damgård et al. [6], has
an I/O overhead of O (log3 n).

We refer to our approach to ORAM simulation as isogrammic-
fusion ORAM, due to its combination of two concepts for ORAM

simulations. The first concept is the exploitation of isogrammic
access sequences [11]. This framework extends the oblivious data

structure framework ofWang et al. [21], which is only for fat clients.
The second concept we use is the main technical device we utilize

to achieve our results, which is a bit-level parallel data structure

known as the fusion tree [2, 8]. By “bit-level parallelism” we

are referring to storing information in words of sizew = Θ(logn)
bits and accessing this information using bit-level operations, such

as AND, OR, XOR, shift, etc. Note that the standard ORAM and

OS client-server models are completely agnostic regarding bit-

level parallelism at the client; hence, our use of this technique

fits squarely in the standard, classic ORAM model [9]. We provide

a review of fusion trees and a “warm up” isogrammic simulation of

stacks and queues in appendices, as well as omitted proofs.

2 REDUCING ORAM TO ISOGRAMMIC OS
In this section, we describe how to reduce ORAM simulation to

an isogrammic OS problem, where every key used for get and put
operations includes Θ(logn) random bits. So, suppose Alice has a
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RAM algorithm, A, with memory size n, which she would like to

simulate, such that the data for A is stored at a server, Bob.

Given the n indices in the range [0,n − 1] for the cells of A’s

data storage, rather than have Alice index cells using the indices

as addresses for cells in an array, we have Alice access the cells of

her outsourced storage stored by Bob searching down a complete

binary tree, R, having the cells of her storage associated with R’s
leaves. This tree-based approach is actually quite common in ORAM

simulations, e.g., see [7, 19]. That is, our first reduction replaces

each read(i ) or write(i,v ) operation with a sequence of O (logn)
put(k,v ) and get(v ) operations.

Without loss of generality, let us assume that n is a power of 2, so

that every root-to-leaf path in R has the same length, namely, logn.
For each access for an item with index, i , we simply do a search

for i in R using the standard binary-tree searching algorithm. This

requires that we access exactly logn nodes, which, admittedly does

not yet give rise to an isogrammic access sequence.

The modification we perform, then, is that instead of doing such

accesses in a non-isogrammic fashion, let us instead convert our

access sequence to be isogrammic, so that we can then make our

accesses oblivious using our isogrammic OS scheme. In particular,

let us apply a simple scheme inspired by an observation of Wang

et al. [21], where we reference each node in R using a random key

comprising Θ(logn) bits. That is, for each node, u, in R, we store a
random nonce, ru , comprising Θ(logn) bits, which is replaced with

a new random nonce each time we access u. Initially, each node u
in R is given an initital random nonce, ru , which is stored at u and

is chosen uniformly and independently in the range from 0 to nc ,
for some constant, c ≥ 3. Furthermore, for each node w in R that

is an internal node, we store at u the random nonces for u’s two
children, as well as the indexing information to support our doing

binary searches in R to search for a given index, i , from the root to

the leaf cell for index i .
Initially, we create the nodes in R according to a standard bottom-

up binary tree construction algorithm, so that when we create a

node, u, we assign it to have a freshly-chosen random nonce, ru . In
addition, since we are constructing R using a bottom-up algorithm,

at the time we create u, we know the random nonces for u’s two
children, x and y; hence, we can store these values at u. In terms

of our associated isogrammic sequence, then, when we create an

internal node, u, we issue a put(k,v ) operation, where k = (ru ,u)
and v = (I , rx ,x , ry ,y), and I is the indexing information that

allows us to do binary searches (e.g., the smallest index for u’s right
child, y). If u is a leaf, then we issue a put(k,v ) operation, where
k = (ru ,u) and v = (i,V ), and V is the data value that is stored

at the memory cell, i , for this leaf. Note that none of these put
operation can cause an error due to there already being an item

present with the given key, k , since each key, (ru ,u), is unique.
Moreover, each such key also comprises O (logn) random bits. We

also create and maintain a global variable that stores the random

nonce for the root.

Suppose, then, that we are to process a read(i ) or write(i,v )
operation in Alice’s access sequence, converting it to a sequence

of (isogrammic) put(k,v ) and get(k ) operations. We perform a

binary search in R, for the index, i , beginning by reading the

global variable storing the random nonce, ru , for the root, u, of
R and issuing an operation, get((ru ,u)). This get operation returns

the contents of the memory record for the root, which has the

form v = (I , rx ,x , ry ,y), where I is the index that allows us to

determine, based on i , if we should continue searching at x or

at y. Suppose, without loss of generality, that we should next

search at x . Before we continue our search at x , we push the

record, (I ,u, rx ,x , ry ,y), onto a stack stored at the server, using

our isogrammic stack implementation, to keep track of our search

path in R. Next, we issue an operation, get((rx ,x )), and we repeat

the above search steps until we reach a leaf node in R. Once we
have the data for the leaf node at index i , Alice performs whatever

steps of her algorithm, A, required for i .
Next, we rebuild the path that we just searched in R, giving

each node in this path a new random nonce, issuing a sequence

of O (logn) get(k ) and put(k,v ) operations. Specifically, we first
give the leaf node, u, in R, at index i , a new new random nonce,

ru . Also, let V be the data value for this cell as determined by

this step in Alice’s algorithm, A. Then we issue an operation

put(k,v ), where k = (ru ,u) and v = (i,V ). Next, we pop the

top record, (I ,u, rx ,x , ry ,y), from the stack stored at the server,

using our isogrammic stack implementation. Suppose, without loss

of generality, that we had next gone to the node x when we first

encountered this node u. Then we create a new random nonce, ru ,
for the node u. Also, we can know at this point the random nonce,

rx , for the new child node, x , we just created for u, and from the

record we just popped off the stack, we can recall the random nonce,

ry , for the other child, y, of u. At this point, therefore, we issue a
put(k,v ) operation, where k = (ru ,u) and v = (I , rx ,x , ry ,y). Note
that this put operation cannot cause an error due to there already

being an item with key k . Furthermore, note that this pattern of put
and get operations reveals no information about Alice’s data values

or memory indices, since these operations form a data-oblivious

pattern that consists of a sequence of get operations (to search down
the tree R) followed by a sequence of put operations (to rebuild this
search path in R using new random nonces), and each sequence

contains exactly logn operations. We repeat the above computation

in this way until the stack is empty, at which point we store in

our global variable the information for the root. Also, note that

by using this global stack at the server, we can implement each

step of this algorithm using O (1) client-side memory, as well as

O (1)-sized messages. Our ORAM simulation continues in this way,

so that each step in Alice’s algorithm, A, involves a root-to-leaf

traveral in R followed by a leaf-to-root replacement of the nodes

and nonces we just “used up.” This pattern of functionality reveals

no information about Alice’s data values or memory addresses

and each key includes a random nonce chosen uniformly and

independently at random from a key space of polynomial size,

since the key used for each put operation includes a random nonce

comprisingΘ(logn) bits. Furthermore, note that each get operation
is indexed using a key that we know was issued by a previous put
operation. Thus, the resulting sequence is isogrammic.

Theorem 1. Given a RAM algorithm, A, with memory size, n,
where n is a power of 2, we can simulate the memory accesses of A
using an isogrammic access sequence that initially creates O (n) put
operations and then O (logn) get and put operations for each step
of A. Moreover, each key used in a get or put operation comprises a
random nonce of Θ(logn) bits.
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3 FUSION-TREE OS FOR SMALL SETS
The main “inner-loop” component of our algorithms is an adap-

tation of the binary-tree ORAM method of Damgård et al. [6] to
fusion trees and to the OS setting. Our construction applies only

for small sets, however, because fusion-tree nodes need to address

other fusion-tree nodes using just O (w1/2) bits.
Initially, we start with a fusion tree, F , with an address space of

potential total size O (n), which stores any initial set of elements,

such that the nodes of F are stored in an array of size n whose

elements are randomly shuffled, using a data-oblivious shuffling

algorithm (e.g., see [1, 6, 10, 12]). In addition, we store in the

same array as the nodes of F a singly linked list of Dn′ “dummy”

nodes, which have the same size as fusion-tree nodes and are

randomly shuffled with the nodes of the fusion tree, F , where
D = 2⌈logn/ logw⌉ is the depth of F and n′ is the number of

initial items. We store a global header pointer for F that points to

the next unused dummy node in this linked list. This initialization

can occur, for example, as a part of a global initialization of multiple

such fusion trees.

We have a hierarchy of arrays, C1, C2, . . ., Cℓ , which serve as

caches, where ℓ is O (logn), such that each cache, Ci , contains
⌈n/2i ⌉ (D + 1) real and dummy nodes stored in a shuffled order.

The last cache, Cℓ , contains O (log2 n/ logw ) nodes. Initially, these
caches are empty, but as the simulation progresses, these caches

will be constructed and shuffled.

Each cache, Ci , contains two types of nodes:

• A fusion tree node, v , which is a node belonging to our fusion

tree, F , and is in the cache Ci due to v being accessed in a previous

simulation step. If v is an external node, then it contains an item

from our set, S . Otherwise, if v is an internal node, then it contains

the O (w1/2) compressed keys to identify its children, as well as

O (w1/2) pointers to the fusion tree nodes for these children. We

maintain the invariant that each of these children nodes are stored

either in F or in a cache,Cj , such that j ≤ i . Because lower-indexed
caches are always “older” than higher-indexed caches, we can

maintain this invariant every time we build and shuffle a cache.

There are at most n/2i fusion tree nodes in any cache, Ci .
• A dummy node, v . The other type of node in a cache, Ci , is a
dummy node. Each dummy node has the same size as a fusion-tree

node and these dummy nodes are linked to form a single simply

linked list of dummy nodes in Ci , which are stored in random

locations in the array for Ci , due to Ci having been randomly

shuffled. We store a header pointer for each Ci (at a fixed location

forCi at the server) and any time we need to access a dummy node

in such a Ci for the sake of obliviousness, we follow this header to

the next available dummy node. Once we read this dummy node, we

then update this header to point to the next unused dummy node

in the linked list (using the pointer stored in the node we would

have just accessed). Likewise, for the sake of obliviousness, even

if we are accessing Ci to lookup a fusion node, we first access this

global header for dummy nodes, then we lookup the fusion node,

and then we do a write back to this header node (to write back its

unchanged value in way that the server cannot tell is different to

our writing back a changed value as if we just accessed a dummy

node). The number of dummy nodes in Ci is set to make the total

size of Ci be ⌈n/2
i ⌉ (D + 1).

To perform a put(k,v ) or get(k ) operation, we traverse a path
in F from the root to the leaf that is either holding k (in the case

of a get(k ) operation) or is the location where we would need to

add a new item (in the case of a put(k,v ) operation). In addition, to

maintain the balance of F , we may need to access other nodes, but

the number will always be O (logn/ logw ), and we can pad this set

with dummy nodes so that it is always the same number, D (for the

sake of obliviousness). Let π denote the set of D = O (logn/ logw )
nodes that are traversed. After performing the search for the set,

π , of D nodes in F (possibly padded with dummy nodes), we store

all the nodes in π in Cℓ , and we obliviously shuffle Cℓ . In a general

step of the algorithm, we are interested in performing an search

for some key, k , in F , following a search set, π , of nodes in F (plus

dummy nodes as needed to make the number exactly D). At the
time of this search, each node for the search set, π , is stored in one

of the caches C1, . . . ,Cℓ , or in the bottom level in F . The root of F ,
which forms the first node in π , is stored in a global location in Cℓ

(e.g., Cℓ[0]). So we begin by reading the root, r , of F from Cℓ .

For each node, u, that we discover in π (starting with u = r ), we
do a comparison with our key k to determine which child of u we

should read next (for our search). This node is either in one of the

caches or the bottom level in F , and at this point we now know

the exact location for this child, x , of u. Nevertheless, for the sake
of obliviousness, we perform a read in each of Cℓ to C1 and also

the bottom level for F . If such a lookup is for a cache (or F ) that
does not contain x , then we do a lookup for the next dummy node

in this cache (or F ), and if this cache (or F ) contains x , we do the

lookup for x . We repeat his sequence of lookups for each node in

the search/update set, π , and for each one we add it a queue, Q ,
stored at the server. Once we have reached the leaf in F for k , Alice
performs whatever internal computation for k (e.g., for her RAM

algorithm), and we then repeat this entire lookup procedure for the

next access that Alice makes. Thus, this approach fully obfuscates

each get or put operation. Also, Alice performs O (log2 n/ logw )
I/Os between herself and Bob for each such access.

Each time Alice has performed (n/2i )D lookups in a cache Ci
(that is, she has done n/2i accesses in her OS sequence since Ci
was constructed), then she does a rebuild action. If the rebuilding

is forC1, then she re-initializes the entire structure. If it is for some

Ci , for i > 1, then she obliviously shuffles Ci with Ci−1, leaving
Ci empty and merging all its fusion nodes into Ci−1, obliviously
adding a sufficient number of dummy nodes to bring the total size

ofCi−1 to be ni−1 = (n/2i−1) (D + 1). The details for this procedure
are based on using oblivious-sorting, but the important thing to

observe is that it runs with an overhead of O (logni ), ifM is O (1)
(e.g., see [1, 6, 10]), and an overhead ofO (1) ifM isO (nϵi ), for some

constant 0 < ϵ ≤ 1/2 (e.g., see [12]). Moreover, these bounds hold

with probability 1 − 1/2O (w )
, since we can do such shuffling steps

by sorting n random numbers of O (w ) bits each.

Theorem 2. Suppose we have a set, S , of n ≤ 2

√
w items. Then we

can perform anOS for S that has an I/O overhead that isO (log3 n/ logw ),
with O (1)-sized client private-memory, or O (log2 n/ logw ), with
O (nϵ )-sized client private-memory, for a constant 0 < ϵ ≤ 1/2.
In either case, messages are of constant size. This simulation is statis-
tically secure, even for non-isogrammic access sequences, and the I/O
overhead bounds hold with probability 1 − 1/2O (w ) .
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4 OUR ISOGRAMMIC OS ALGORITHM
In this section, we describe our isogrammic OS algorithm, which

has an I/O overhead of O (logn log logn) or O (logn), depending
on whether M = O (1) or M = O (logϵ n), for some constant

0 < ϵ ≤ 1/2. So suppose we wish to support a data set of size

O (n) subject to put(k,v ) and get(k ) operations that come from an

isogrammic access sequence. Recall that the keys used in such an

access sequence have O (logn) random bits, that is, O (w ) random
bits, sincew = Θ(logn). We use the random part of each key as the

primary index for each key.

Our primary data structure for implementing an oblivious stor-

age for isogrammic access sequences is a static complete fusion tree,

H , for S , stored at the server, Bob, which has O (n/ logc n) leaves,
numbered from 0 toO (n/ logc n), where c ≥ 3 is a chosen constant.

Each node, u, of H has an associated “bucket,” bu , of capacity 4L,
where L = Θ(logc n), which is maintained using the fusion-tree OS

scheme described above in Section 3. Note that we can apply this

method for each such bucket, because the number of items ever

stored in any such bucket isO (logc n). LetW = ⌈w1/2⌉ be the arity

of our fusion tree, H , so each internal node of H hasW children.

Let us further assume we have constructed H so that each root-

to-leaf path has the same length, which isO (logn/ logw ). Note that
each leaf can be viewed as having an address of O (log(n/ logc n))
bits in a standard numbering of the leaves, so that each root-to-leaf

path can be determined by the bits from this address, where going

from any node to the appropriate child is performed by “reading

off” the next O (logw ) bits from this address, which determine the

appropriate next node in the fusion tree, and then reading that

next node. This allows us to perform a root-to-leaf search in H by

visiting the O (logn/ logw ) nodes in such a root-to-leaf path, each

of which is represented using O (1) words. That is, we can perform

such a search using a thin client. Moreover, the tree, H , is static, so

we don’t need to add or remove nodes from H .

We use H as our primary “outer loop” data structure, then, for

our simulation of an isogrammic access sequence. For any item,

(k,v ), belonging to our current set of items, the key, k , is mapped

to a specific root-to-leaf path in H , which is determined by the

first O (log(n/ logc n)) bits in the random part of k . During our OS

simulation, we maintain the invariant that each key-value pair,

(k,v ), is stored in the bucket, bu , for exactly one node, u, on the

root-to-leaf path inH for the random part ofk . With this in mind, let

us describe our algorithms for processing get and put operations,
then, using H . We describe the functioning of these operations

from the perspective of the client, Alice. From the perspective of

the server, Bob, the functioning of these operations will look the

same. Thus, Bob cannot even distinguish whether an operation is a

put or a get.
Each put(k,v ) operation begins by inserting the item, (k,v ), in

the bucket, br , for the root, r , ofH , using the fusion-tree OS method

described in Section 3. Note that this satisfies our invariant for

storing items in H ; we will describe later what we do when the

root bucket becomes full so as to continue satisfying our invariant.

Then, for the sake of obliviousness (so Bob cannot tell whether this

operation is a get or put), we uniformly and independently choose

a random key, k ′, and traverse the root-to-leaf path in H for k ′,
performing a search for k ′ in the bucket, bu , for each node u on this

path, using the fusion-tree OS method described in Section 3. Alice

just “throws away” the results of these searches, but, of course, Bob

doesn’t know this.

For any given get(k ) operation, we begin, for the sake of oblivi-
ousness, by inserting a dummy item, (k ′, e ), in the bucket,br , for the
root, r , of H , where e is a special “empty” value and k ′ is a random
key, using the fusion-tree OS method described in Section 3. So

as to distinguish this type of dummy item from others, we refer

to each such dummy item as an original dummy item. We then

traverse the root-to-leaf path, π , for (the random part of) k in H ,

and, for each node, u, in π , we search in the bucket, bu , for u to see

if the key-vaue pair for k is in this bucket, using the fusion-tree OS

scheme described above in Section 3. By our invariant, the item,

(k,v ), must be stored in the bucket for one of the nodes in the path

π . Note that we search in the bucket for every node in π , even after

we have found and removed the key-value pair, (k,v ). Because we
are simulating an isogrammic access sequence, there will be one

bucket with this item, but we search all the buckets for the sake of

obliviousness.

An important consequence of the above methods and the fact

that we are simulating an isogrammic access sequence is that each

traversal of a path in H is determined by a random index that

is chosen uniformly at random and is independent of every other

index used to do a search inH . Thus, the server, Bob, learns nothing

about Alice’s access pattern from these searches. In addition, as

we will see shortly, the server cannot determine where any item,

(k,v ), is actually stored, because the random part of the key k is

only revealed when we do a get(k ) operation and put operations
never reveal the locations of their keys. Moreover, we maintain the

fact that the server doesn’t know the actual location of any item,

along with our invariant, even as bucket for a node, u, becomes full

and needs to have its items distributed to its children.

Periodically, so as to avoid overflowing buckets, we move items

from a bucket,bu , stored at a nodeu inH tou’s children, in a process
we call a flush operation. In particular, we flush the root node, r ,
every L put or get operations. We flush each internal node,u, afteru
has receivedW flushes from its parent, which each involve inserting

exactly 4L/W real and dummy items (including new dummy items)

into the bucket for u. Because of this functionality, and the fact that
we are moving items based on random keys, the number of real

and original dummy items in the bucket, bu , at a time when we are

flusing a node u at depth i is expected to be L, and it is at most 4L
with high probability. Also, note that we will periodically perform

flush operations across all the nodes on a given level of H at any

given time when flush operations occur, which is the main reason

why our I/O overhead bounds are amortized. We don’t flush the leaf

nodes in H , however. Instead, after every leaf, u, in H has received

W flushes, we perform an oblivious compression to compress out

a sufficient number of dummy items so that the number of real

and dummy items in u’s bucket is 4L. Thus, the bucket for a leaf
never grows to have more than 8L real and dummy items. If, at

the time we are compressing the contents of a leaf bucket, we

determine that there are more than 4L real items being stored in

such a bucket, which, as we show, is an event that occurs with

low probability, then we restart the entire OS simulation. Such an

event doesn’t compromise privacy, since it depends only on random

keys, not Alice’s data or access sequence. Thus, doing a restart just
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impacts performance, but because restarts are so improbable, our

I/O bounds still hold with high probability. Our method for doing a

flush operation at a node, u, in H is as follows:

(1) We obliviously shuffle the real and original dummy items of

bu into an array, A, of size 4L, stored at the server. This step

will never overflow A (because of how we perform the rest

of the steps in a flush operation). This step can be done using

known oblivious shuffling methods (e.g., see [1, 6, 10, 12]).

(2) For each child, xi , i = 1, 2, . . . ,W , of u, we create an array,

Ai , of size 4L/W .

(3) We obliviously sort the real and original dummy items from

A into the arrays, A1, . . . ,Aℓ , according the keys for these

items, so that the item, (k,v ), goes to the array Ai if the
nextO (logw ) bits of the key k would direct a search for k to

the child xi . We perform this oblivious sorting step so that

if there are fewer than 4L/W items destined for any array,

Ai , we pad the array with (new) dummy items to bring the

number of items destined to each array, Ai , to be exactly

4L/W . However, if we determine from this oblivious sorting

step that there are more than 4L/W real and original dummy

items destined for any array, Ai , which (as we show) is an

event that occurs with low probability, then we restart the

entire OS simulation. Because this step is done obliviously

and keys are random (hence, they never depend on Alice’s

data values or access pattern), even if we restart, Bob learns

nothing about Alice’s access sequence during this step. So,

let us assume that we don’t restart. This step can be done

using known oblivious sorting, padding, and partitioning

methods (e.g., see [1, 6, 10, 12]).

(4) For each real and dummy item (including both original and

new dummy items), (k,v ), in each Ai , we insert (k,v ) into
the bucket bxi using the fusion-tree OS method of Section 3.

The first important thing to note about a flush operation is that

it is guaranteed to preserve our invariant that each item, (k,v ),
is stored in the bucket of a node in H on the root-to-leaf path

determined by the random part of k . Moreover, because we move

real and original dummy items to children nodes obliviously, in

spite of our invariant, the server never knows where an item,

(k,v ), is stored; hence, the server can never differentiate two access

sequences more than random.

Since we flush the root every L steps, and we flush every other

node, u, at depth i , after it has receivedW flushes, and both real

and original dummy items are mapped to u only if the first i logW
bits of each of their random keys matches u’s address, the expected
number of real and original dummy items stored in the bucket

for u is at most L at the time we flush u. In fact, this is a rather

conservative estimate, since it assumes that none of these items

were removed as a result of get operations.

Lemma 3. The number, f , of real and original dummy items
flushed from a node, u, to one of its children, xi , is never more than
4L/W , with high probability. Likewise, a leaf in H will never receive
more than 4L real items, with high probability.

Theorem 4. We can obliviously simulate an isogrammic sequence
of a polynomial number of put(k,v ) and get(k ) operations, for a data
set of size n, with an I/O overhead of O (logn log logn), for constant-
sized client-sized memory, or O (logn) with client-side memory of

size O (logϵ n), for a fixed constant 0 < ϵ ≤ 1/2. This simulation
achieves statistical security and has the claimed I/O overhead bounds
with high probability.

Putting the above pieces together, then, gives us the following:

Theorem 5. Given a RAM algorithm, A, with memory size, n,
where n is a power of 2, we can simulate the memory accesses of A
in an oblivious fashion that achieves statistical security, such that,
with high probability, the I/O overhead is O (log2 n log logn) for a
constant-size client-side private memory and isO (log2 n) for a client-
side private memory of size O (logϵ n), for a constant 0 < ϵ ≤ 1/2. In
either case, messages are of size O (1).
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Method Thin Client? Statistically Secure? B M I/O Overhead

Goldreich-Ostrofky [9] Yes No Θ(1) Θ(1) O (log3 n)

Damgård et al. [6] Yes Yes Θ(1) Θ(1) O (log3 n)

Goodrich-Mitzenmacher [12] No No Θ(1) Θ(nϵ ) O (logn)

Kushilevitz et al. [14] Yes No Θ(1) Θ(1) O (log2 n/ log logn)

Melbourne shuffle [16] No No Θ(nϵ ) Θ(nϵ ) O (1)

Path ORAM [19] No Yes ω (logn) ω (B logn) O (log2 n/ log B )

Supermarket ORAM [3] No Yes O (1) Θ(polylog n) O (log2 n log logn)

BIOS ORAM [11] No Yes Ω(logn) Ω(logn) O (log2 n/ log2 B )

Isogrammic-fusion ORAM 1 Yes Yes Θ(1) Θ(1) O (log2 n log logn)

Isogrammic-fusion ORAM 2 Yes Yes Θ(1) Θ(logϵ n) O (log2 n)

Table 1: Our isogrammic-fusion ORAM bounds (in boldface), compared to some of the asymptotically best previous ORAM
methods. The parameter 0 < ϵ ≤ 1/2 is a fixed constant.

A WARM UP: STACKS AND QUEUES
Wang et al. [21] show how to implement simple data structures, like

stacks and queues in an oblivious way. We show in this section how

to implement such data structures in our isogrammic framework.

Stacks. Recall that a stack maintains a set of objects organized

according to a last-in, first-out protocol, where a push(x ) operation
adds the element x to the set and a pop() operation returns and

removes the most recently pushed element. Suppose we are given

a sequence of push and pop operations. We can convert this into

an isogrammic access sequence as follows.

We assume that in her private storage, Alice keeps track of the

size, n, and a random nonce, r , associated with the top element

of the stack. Thus, we can assume that Alice will never issue a

pop() operation on an empty stack. Let us also assume that our

random nonce generator provides sufficiently random nonces so

that it never repeats any nonces (e.g., we can enforce this by adding

a counter to nonces). We initialize such a stack, Z , by issuing a

put((Z , r ), null) operation, where r is an initial random nonce, and

Z is the name of our stack, and we have Alice store r in her private

memory as well. This put() serves to create out empty stack, Z .
To process a push(x ) operation, we generate a new random

nonce, r ′, and issue a put(k, (x , r )) operation, where k = (Z , r ′)
and r is the current top-level random nonce that Alice is storing

in her private memory. That is, we use the old top-level random

nonce, r , along with x , as the “value” for our put() operation and

we use the new random nonce as a part of the key, k . Alice then
stores r ′ as the new top-level nonce in her private memory.

To process a pop operation, we issue a get(k ) operation, where
k = (Z , r ) and r is the top-level nonce that Alice stores in her private
memory. This get(k ) returns as its value a pair, (x , r ′), where x was

the most recently added element and r ′ was the top-level nonce
when x was pushed. Thus, we return x to Alice as the actual result

of her pop() operation and we have Alice store the nonce, r ′, as the
updated top-level nonce for the stack, Z .

The access sequence of put(k,v ) and get(k ) operations this

transformation creates is isogrammic, because (1) each get(k ) has

a previous put(k,v ) operation, (2) we never have two put(k,v )
operations with the same key, k , and (3) each key, k , includes a
unique random nonce. Moreover, it adds O (1) put(k,v ) and/or
get(k ) operations for each push(x ) or pop operation.

Queues. Recall that a queue is a data structure that maintains a

set accounding a first-in, first-out protocol, where enqueue(x ) adds
an element x to the set and dequeue() removes the oldest element

in the set.

We assume that in her private storage, Alice keeps track of

the size, n, of the queue, and two random nonces, h and t , that
are associated respectively with the head and tail of her queue, Q .
Initially, we choose t at random and seth = null. Also, because Alice

stores n, we can assume that Alice will never issue a dequeue()
operation on an empty queue.

To process an enqueue(x ) operation, we generate a new random

tail nonce, t ′, and issue a put(k, (x , t ′)) operation, where k = (Q, t )
and t is the current random tail nonce that Alice is storing in her

private memory. Alice then stores t ′ as the new tail nonce in her

private memory. If the queue,Q , was previously empty, Alice stores

the old tail nonce, t , as the new head nonce, h.
To process a dequeue operation, we issue a get(k ) operation,

where k = (Q,h) and h is the current head nonce that Alice stores

in her private memory. This get(k ) returns as its value a pair, (x , t ′),
where x is the oldest element and t ′ is the nonce used in the key for

the next element in the queue (unless there is none). We return x to

Alice as the actual result of her dequeue() operation. If the queue,
Q , becomes empty, then we generate a new tail nonce, t , and set

h = null. Otherwise, if the queue Q is not empty, we have Alice

store the nonce, t ′, as the updated head nonce, h, for the queue, Q .

The access sequence of put(k,v ) and get(k ) operations this

transformation creates is isogrammic, because (1) each get(k ) has
a previous put(k,v ) operation, (2) we never have two put(k,v )
operations with the same key, k , and (3) each key, k , includes a
unique random nonce. Moreover, it adds O (1) put(k,v ) and/or
get(k ) operations for each enqueue(x ) or dequeue operation.
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B A BRIEF REVIEW OF FUSION TREES
A fusion tree data structure [2, 8] is a B-tree (e.g., see [5]) that has a
branching factor ofO (w1/2) and utilizes compressed internal nodes

that can each be represented usingO (w ) bits. That is, each internal

node in a fusion tree can be represented with a single memory word

of size w while nevertheless achieving a branching factor that is

O (w1/2); hence, the depth of a fusion tree is O (logn/ logw ). Fur-
thermore, we can use fusion trees in our client-servermodel, for thin

clients, because a message block stores O (1) words in this model

when B = O (1), which is a part of our definition of a thin client.

Moreover, all the standard search and insert/delete operations can

be performed on a fusion trees inO (logw n) = O (logn/ logw ) I/Os
using bit-level parallel instructions on the word-size nodes that

make up the internal and external nodes in the tree. Since such

bit-level parallel operations would be performed by the client, Alice,

in her private memory during any ORAM simulation or oblivious

storage scenario, let us not concern ourselves here with their details

other than to observe that from the perspective of the server, Bob,

the I/Os for searching a fusion tree would look like Alice requesting

O (logn/ logw ) memory cells (and we can define the tree so that

each leaf node has the same depth, so the number of nodes accessed

is always the same for each access or update operation).

C OMITTED PROOFS
Proof. (Theorem 1.) We already established the claims for

performance and the result being isogrammic. For the security

claim, consider a simulation of the security game mentioned in the

introduction, assuming the statistical security for isogrammic OS.

That is, assume Bob creates two access sequences, σ1 and σ2, and
gives them to Alice, who then chooses one at random and simulates

it. For each access to a memory index, i , in the RAM simulation

for her chosen σj , the memory cell for i is read and written to by

doing a search in R. The important observation is that this access

consists of O (logn) accesses a root-to-leaf sequence of nodes of R,
indexed by newly-generated independent random numbers each

time. Thus, nothing is revealed to Bob about the index, i . That is,
the number of accesses in Alice’s simulation is the same for σ1 and
σ2, and the sequence of keys used is completely independent of

the choice of σ1 or σ2. Thus, Bob is not able to determine which of

these sequences she chose with probability better than 1/2. □

Proof. (Theorem 2.) For the I/O overhead bounds, note that

each search or update in F requires O (log2 n/ logw ) I/Os plus

the amortized I/O overhead for rebuilding steps. Moreover, each

access causes us to add D = O (logn/ logw ) nodes to the top-

level cache, Cℓ , for the nodes in the search set, π . To account for

rebuilding steps, note that the rebuilding of Ci occurs each n/2i

steps. Thus, in the case of constant-size client-side private memory,

the total I/O overhead for n searches or updates (which then cause

a reinitialization), is proportional toO (n log2 n/ logw ) plus at most

ℓ∑
i=0

2
i n

2
i (D + 1) logn ≤ n(D + 1) log2 n

= O (n log3 n/ logw ).

In the case of client-side private memory that is of size O (nϵ ),
the total I/O overhead for n accesses (which then cause a reinitial-

ization), is proportional to O (n log2 n/ logw ) plus at most

ℓ∑
i=0

2
i n

2
i (D + 1) ≤ n(D + 1) logn

= O (n log2 n/ logw ).

The security claim follows from the fact that we always access the

same number of nodes with each access, for a given capacity, n,
for the fusion tree, and that we never access any node a second

time without caching it. Thus, in the security game, Bob is not

able to distinguish between two access sequences chosen by Alice.

The probability claim follows from the fact that oblivious shuffling

is based on obliviously sorting items with random keys of O (w )
bits. □

Proof. (Lemma 3.) The expected value of f , which can be

expressed as a sum of independent indicator random variables,

is at most L/W = d logc−1/2 n, for constants c,d ≥ 3. Thus, by a

Chernoff bound (e.g., see [15]),

Pr( f ≥ 4L/W ) ≤ e−L/W ≤ e−d log
c−1/2 n ≤ n−3 log

3/2 n .

The probability bound argument for a leaf in H is similar. The

lemma follows, then, by a union bound across all nodes of H and

the polynomial length of access sequences. □

Proof. (Theorem4.) The height of the tree,H , isO (logn/ logw ).
Thus, by Theorem 2, the I/O overhead in the case whenM = O (1)
and B = O (1) is proportional to

logn

logw
·
log

3 L

logw
,

which, since L = O (logc n) and w = Θ(logn), is O (logn log logn).
In the case whenM = O (1) and B = O (logϵ n), by Theorem 2, the

I/O overhead is proportional to (logn/logw ) · (log2 L/logw ), which
is O (logn).

For the security claim, consider an instance of the simulation

game, where Bob chooses two isogrammic access sequences, σ1 and
σ2, of length N for a key set of size n, and gives them to Alice, who

then chooses one uniformly at random and simulates it according

to the isogrammic OS scheme. Each access that she does involves

accessing a sequence of nodes of H determined by random keys

and for each node doing a lookup in an OS scheme that is itself

statistically secure, by Theorem 2. In addition, put operations add
items at the top bucket and are obfuscated with data-oblivious flush

operations. Therefore, Bob is not able to distinguish between σ1
and σ2 any better than at random. □

Proof. (Theorem 5.) By Theorem 1, each access in A gets

expanded into O (logn) operations in an isogrammic access se-

quence, and, with high probability, each such operation has over-

head O (logn log logn), if M = O (1) and B = O (1), or O (logn), if
M = O (logϵ n) and B = O (1), by Theorem 4. The security claim

follows from the security claims of Theorems 1 and 4. □
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