
Subexponential-Time and FPT Algorithms for
Embedded Flat Clustered Planarity

Giordano Da Lozzo1, David Eppstein2, Michael T. Goodrich2, and Siddharth Gupta2

1 Department of Computer Science, Roma Tre University, Rome, IT dalozzo@dia.uniroma3.it
2 Department of Computer Science, University of California, Irvine, USA

{eppstein,goodrich,guptasid}@uci.edu

Abstract. The C-Planarity problem asks for a drawing of a clustered graph, i.e., a graph whose vertices
belong to properly nested clusters, in which each cluster is represented by a simple closed region with no edge-
edge crossings, no region-region crossings, and no unnecessary edge-region crossings. We study C-Planarity
for embedded flat clustered graphs, graphs with a fixed combinatorial embedding whose clusters partition the
vertex set. Our main result is a subexponential-time algorithm to test C-Planarity for these graphs when
their face size is bounded. Furthermore, we consider a variation of the notion of embedded tree decomposition in
which, for each face, including the outer face, there is a bag that contains every vertex of the face. We show that
C-Planarity is fixed-parameter tractable with the embedded-width of the underlying graph and the number
of disconnected clusters as parameters.

1 Introduction

Fig. 1: A c-planar drawing

A clustered graph (or c-graph) is a pair C(G, T) with underlying graph G and
inclusion tree T , i.e., a rooted tree whose leaves are the vertices of G. Each
internal node µ of T represents a cluster of vertices of G (its leaf descendants)
which induces a subgraph G(µ). A c-planar drawing of C(G, T) (Fig. 1) consists
of a drawing of G and of a representation of each cluster µ as a simple closed
region R(µ), i.e., a region homeomorphic to a closed disc, such that: (1) Each
region R(µ) contains the drawing of G(µ). (2) For every two clusters µ, ν ∈ T ,
R(ν) ⊆ R(µ) if and only if ν is a descendant of µ in T . (3) No two edges cross.
(4) No edge crosses any region boundary more than once. (5) No two region
boundaries intersect.

An interesting and challenging line of research in graph drawing concerns the computational complexity of
the C-Planarity problem, which asks to test the existence of a c-planar drawing of a c-graph. This problem is
notoriously difficult, particularly when (as in Fig. 1) clusters may be disconnected, faces may have unbounded size, and
the cluster hierarchy may have multiple nested levels. No known subexponential-time algorithm solves the (general)
C-Planarity problem, and it is unknown whether it is NP-complete, although the related problem of splitting as
few clusters as possible to make a c-graph c-planar was proved NP-hard [5]. Thus, there is considerable interest
in subexponential-time, slice-wise polynomial, and fixed-parameter tractable algorithms, besides polynomial-time
algorithms for special cases of C-Planarity.

C-Planarity was introduced by Feng, Cohen, and Eades [24], who solved it in quadratic time for the c-connected
case when every cluster induces a connected subgraph. Similar results were given by Lengauer [32] using different
terminology. Dahlhaus [21] claimed a linear-time algorithm for c-connected C-Planarity (with some details later
provided by Cortese et al. [18]). Goodrich et al. [27] gave a cubic-time algorithm for disconnected clusters that
satisfy an “extroverted” property, and Gutwenger et al. [28] provided a polynomial-time algorithm for “almost”
c-connected inputs. Cornelsen and Wagner showed polynomiality for completely connected c-graphs, i.e., c-graphs
for which not only every cluster but also the complement of each cluster is connected [17]. FPT algorithms have also
been investigated [10,15]. For additional special cases, see, e.g., [2,3,4,7,14,23].

A c-graph is flat when no non-trivial cluster is a subset of another, so T has only three levels: the root, the
clusters, and the leaves. Flat C-Planarity can be solved in polynomial time for embedded c-graphs with at most 5
vertices per face [22,26] or at most two vertices of each cluster per face [13], for embedded c-graphs in which each
cluster induces a subgraph with at most two connected components [30], and for c-graphs with two clusters [9,26,29]
or three clusters [1]. At the other end of the size spectrum, Jeĺınková et al. [31] provide efficient algorithms for
3-connected flat c-graphs when each cluster has at most 3 vertices. Fulek [25] speculates that C-Planarity could
be solvable in subexponential time for more general embedded flat c-graphs.

ar
X

iv
:1

80
3.

05
46

5v
1

 [
cs

.D
S]

 1
4

M
ar

 2
01

8

2 Da Lozzo et al.

New Results. In this paper, we provide subexponential-time and fixed-parameter tractable algorithms for broad
classes of c-graphs. We show the following results:

� C-Planarity can be solved in subexponential time for embedded flat c-graphs with bounded face size (Section 3).
� C-Planarity is fixed-parameter tractable for embedded flat c-graphs with embedded-width and number of

disconnected clusters as parameters (Section 4).

Our first result uses divide-and-conquer with a large but subexponential branching factor. It exploits cycle
separators in planar graphs and a concise representation of the connectivity of each cluster in a c-planar drawing.
This method also leads to an XP algorithm for generalized h-simply nested graphs, which extend simply-nested graphs
with bounded face size (Section 3.1). Recall that, XP (short for slice-wise polynomial) is the class of parameterized
problems with input size n and parameter k than can be solved in O(nf(k)) time, where f is a computable function.

We obtain our second result by expressing c-planarity in extended monadic second-order logic for embedded flat
c-graphs and applying Courcelle’s Theorem. The graphs to which this result applies, with bounded treewidth and
bounded face size, include the nested triangles graphs, a standard family of examples that are hard for many graph
drawing tasks, the dual graphs of bounded-treewidth bounded-degree plane graphs [12], and the buckytubes, graphs
formed from a planar hexagonal lattice wrapped to form a cylinder of bounded diameter.

2 Definitions and Preliminaries

The graphs considered in this paper are finite, simple, and connected. A graph is planar if it admits a drawing in
the plane without edge crossings. A combinatorial embedding is an equivalence class of planar drawings, where two
drawings of a graph are equivalent if they determine the same rotation at each vertex, i.e, the same circular orderings
for the edges around each vertex. A planar drawing partitions the plane into topologically connected regions, called
faces. The bounded faces are the inner faces, while the unbounded face is the outer face. A combinatorial embedding
together with a choice for the outer face defines a planar embedding. An embedded graph (plane graph) is a planar
graph with a fixed combinatorial embedding (fixed planar embedding). The length of a face f is the number of
occurrences of edges encountered in a traversal of f . The maximum face size of an embedded graph is the length of
its largest face.

A graph is connected if it contains a path between any two vertices. A cut-vertex is a vertex whose removal
disconnects the graph. A separation pair is a pair of vertices whose removal disconnects the graph. A connected
graph is 2-connected if it contains at least 3 vertices and does not have a cut-vertex, and a 2-connected graph is
3-connected if it contains at least 4 vertices and does not have a separation pair. The blocks of a graph are its
maximal 2-connected subgraphs. Any (subdivision of a) 3-connected planar graph admits a unique combinatorial
embedding (up to a flip) [34].

Tree-width and Embedded-width. A tree decomposition of a graph G is a tree T whose nodes, called bags, are
labeled by subsets of vertices of G. For each vertex v the bags containing v must form a nonempty contiguous subtree
of T , and for each edge uv at least one bag must contain both u and v. The width of the decomposition is one less
than the maximum cardinality of any bag, and the treewidth tw(G) of G is the minimum width of any of its tree
decompositions.

Recently, Borradaile et al. [11] developed a variant of treewidth, specialized for plane graphs, called embedded-
width. According to their definitions, a tree decomposition respects an embedding of a plane graph G if, for every
inner face f of G, at least one bag contains all the vertices of f . They define the embedded-width emw(G) of G to be
the minimum width of a tree decomposition that respects the embedding of G. We will use the following result [11].

Theorem 1 ([11], Theorem 2). If G is a plane graph where every inner face has length at most `, then
emw(G) ≤ (tw(G) + 2) · `− 1.

Borradaile et al. do not require the vertices of the outer face to be contained in a same bag. In our applications,
we modify this concept so that the tree decomposition also includes a bag containing the outer face, and we denote
the minimum width of such a tree decomposition as emw(G). We have the following.

Lemma 1. If G is a plane graph whose maximum face size (including the size of the outer face) is `, then
emw(G) = O(` · tw(G)).

Proof. To prove the statement, we can proceed as follows.
We augment G to a graph G′, by embedding G in the interior of a triangle ∆ and by identifying one of the

vertices of the outer face of G with a vertex of ∆. Clearly, tw(G′) = max(tw(G), 2) and G′ has maximum face size

Subexponential-Time and FPT Algorithms for C-Planarity Testing 3

u

v
f

(a)
u

v
f

(b)
u

v
f

(c)

Fig. 2: (a) An embedded flat c-graph C(G, T). (b) A super c-graph of C containing all the candidate saturating edges of
C (thick and colored curves); since vertices u and v belong to different components of Xµ(f) but to the same connected
component of G(µ), edge (u, v) is not a candidate saturating edge. (c) A super c-graph of C satisfying Condition (iii) of
Theorem 2; regions enclosing vertices of each cluster are shaded.

`′ = O(`). Also, we have that emw(G) ≤ emw(G′), since G ⊆ G′ and since all the vertices incident to the same
face in G are also incident to the same face in G′. Thus, the statement follows from the fact that, by Theorem 1,
emw(G′) ≤ (tw(G′) + 2) · `′ − 1. �

Clustered Planarity. Recall that, in a c-graph C(G, T), each internal node µ of T corresponds to the set V (µ)
of vertices of G at leaves of the subtree of T rooted at µ. Set V (µ) induces the subgraph G(µ) of G. We call the
internal nodes other than the root clusters. A cluster µ is connected if G(µ) is connected and disconnected otherwise.
A c-graph C(G, T) is c-connected if every cluster is connected.

A c-graph is c-planar if it admits a c-planar drawing. Two c-graphs C(G, T) and C′(G′, T ′) are equivalent if both
are c-planar or neither is. If the root of T has leaf children, enclosing each leaf v in a new singleton cluster produces
an equivalent c-graph. Therefore, we can safely assume that each vertex belongs to a cluster. A c-graph is flat if
each leaf-to-root path in T has exactly three nodes. The clusters of a flat c-graph form a partition of the vertex set.

An embedded c-graph C(G, T) is a c-graph whose underlying graph has a fixed combinatorial embedding. It is
c-planar if it admits a c-planar drawing that preserves the embedding of G. In what follows, we only deal with
embedded flat c-graphs. Therefore, we will refer to such graphs simply as c-graphs.

We define the candidate saturating edges of a c-graph C(G, T) as follows. For each face f of G, let G(f) be the
closed walk composed of the vertices and edges of f . For each cluster µ ∈ T , consider the set Xµ(f) of connected
components of G(f) induced by the vertices of µ and, for each component ξ ∈ Xµ(f), assign a vertex of f belonging
to ξ as a reference vertex of ξ. We add an edge inside f between the reference vertices of any two components in
Xµ(f) if and only if such vertices belong to different connected components of G(µ); see Figs. 2a and 2b. A c-graph
obtained from C(G, T) by adding to C a subset E+ of its candidate saturating edges is a super c-graph of C .

Di Battista and Frati [22] gave the following characterization.

Theorem 2 ([22], Theorem 1). A c-graph C(G, T) is c-planar if and only if:

(i) G is planar;

(ii) there exists a face f in G such that when f is chosen as the outer face for G no cycle composed of vertices of
the same cluster encloses a vertex of a different cluster in its interior; and

(iii) there exists a super c-graph C′(G′, T) of C such that G′ is planar and C′ is c-connected (see Fig. 2c).

Conditions (i) and (ii) of Theorem 2 can be easily verified in linear time. Therefore, we can assume that any
c-graph satisfies these conditions. Following [22] we thus view the problem of testing c-planarity as one of testing
Condition (iii).

A cluster-separator in a c-graph C(G, T) is a cycle ρ in G for which some cluster µ ∈ T has vertices both in
the interior and in the exterior of ρ but with V (µ) ∩ V (ρ) = ∅. Condition (iii) immediately yields the following
observation.

Observation 1. A c-graph that has a cluster-separator is not c-planar.

4 Da Lozzo et al.

u

v

w
w2

w1

u

v

(a)

v

(b)

Fig. 3: Transformations for the proof of Lemma 2.

In the next sections, it will be useful to only consider c-graphs which are at least 2-connected (Section 3) and
3-connected (Section 4). The next lemma, conveniently stated in a stronger form3, shows that this is not a loss of
generality.

Lemma 2. Let C(G, T) be an n-vertex c-graph with maximum face size `. There exists an O(n)-time algorithm that
constructs an equivalent c-graph C∗(G∗, T ∗) with |V (G∗)| = O(n) such that: 1. G∗ is 3-connected, 2. the maximum
face size κ of G∗ is O(`), and 3. the c-graph C�(G�, T �) obtained by augmenting C∗(G∗, T ∗) with all its candidate
saturating edges is such that tw(G�) = O(emw(G)).

Proof. To prove the statement, we can proceed as follows.

First, we transform c-graph C(G, T) into an equivalent c-graph C′(G′, T ′), by applying the transformation in
Fig. 3a to every edge, such that |V (G′)| = O(|V (G)|), every vertex of G′ has degree at least 3, the maximum face
size `′ of G′ is O(`), tw(G′) = tw(G), and each vertex u of G′ is incident to at least three edges in each block u
belongs to.

Second, we transform c-graph C′(G′, T ′) into an equivalent c-graph C∗(G∗, T ∗), by applying the transformation
in Fig. 3b to every vertex, such that |V (G∗)| = O(|V (G′)|), G∗ is 3-connected, the maximum face size `∗ of G∗ is
O(`′), and the c-graph C�(G�, T �) obtained by augmenting C∗(G∗, T ∗) with all its candidate saturating edges is
such that tw(G�) = O(` · tw(G)), which implies that tw(G�) = emw(G), since emw(G) = O(` · tw(G)) by Lemma 1.

We now describe each of the transformations in detail.

First, initialize C′ = C . For every vertex c of G, let (c, x) be any edge incident to c. Add to G′ vertices w1 and w2

and embed paths (c, w1, x) and (c, w2, x) in the interior of each of the two faces of G′ edge (c, x) is incident to; also,
subdivide edge (c, x) with a vertex w, add edges (w1, w) and (w2, w), and assign vertices w1, w2, and w to the same
cluster of T ′ (T) vertex c belongs to. Refer to Fig. 3a. By construction, all the newly added vertices have degree at
least 3. In particular, observe that each cut-vertex of G′ is incident to at least three edges in each of the blocks such
a cut-vertex belongs to. It is easy to see that C′ and C are equivalent. Also, the maximum face size `′ of G′ is O(`).
Further, tw(G′) = max(tw(G), 3), as the transformation replaces edges with subgraphs of treewidth 3.

Second, initialize C∗ = C′ . For every vertex c of G′, we subdivide each edge (c, xi) incident to c with a dummy
vertex vi. Denote such a graph by G+. Also, add an edge between any two vertices vi and vj such that edges (c, xi)
and (c, xj) are consecutive around c in the unique face shared by vi and vj in G+. Finally, assign each vertex vi to

the same cluster of T ∗ (T ′) vertex c belongs to. Refer to Fig. 3b. The equivalence between C∗(G∗, T ∗) and C′(G′, T ′)
is again straightforward. Clearly, |V (G∗)| = O(|V (G′)|) and `∗ = O(`′). Also, by the observation that the cut-vertices
of G′ are incident to at least three edges in each of the blocks such cut-vertices belong to, the applied transformation
fixes the rotation at all the vertices of G∗. Since each vertex of G∗ has minimum degree 3 and G∗ has a fixed
combinatorial embedding (up to a flip), by the result of Whitney [34], we have that G∗ is 3-connected. Furthermore,
emw(G∗) = O(emw(G′)), since G∗ is obtained by subdividing each edge of G′ twice, thus obtaining a graph G+ with
the same tree-width as G′ and maximum face-size in O(`′), and by adding edges between some of the vertices incident
to the faces of G+. Since G� is the graph obtained by adding all the candidate saturating-edges of G∗ (recall that such
edges only connect vertices in the same face of G∗), we have that tw(G�) = O(emw(G∗)) = O(emw(G′)). Since, by
Lemma 1, emw(G′) = O(`′ ·tw(G′)) and since `′ = O(`) and tw(G′) = O(tw(G)), we have that tw(G�) = O(` ·tw(G)).
This concludes the proof of the lemma. �

3 In Section 4, we exploit all the properties of the lemma. In Section 3, we only exploit the existence of an equivalent
2-connected c-graph with maximum face size κ = O(`).

Subexponential-Time and FPT Algorithms for C-Planarity Testing 5

3 A Subexponential-Time Algorithm for C-Planarity

In this section, we describe a divide-and-conquer algorithm for testing the c-planarity of 2-connected c-graphs
exploiting cycle separators in planar graphs.

The “conquer” part of our divide-and-conquer uses the following operation on pairs of c-graphs. Let G1 and
G2 be plane graphs on overlapping vertex sets such that the outer face of G1 and an inner face of G2 are bounded
by the same cycle ρ. Merging G1 and G2 constructs a new plane graph G from G1 ∪ G2 as follows. We remove
multi-edges (belonging to cycle ρ) and assign each vertex v a rotation whose restriction to the edges of G2 (of G1) is
the same as the rotation at v in G2 (in G1). This is possible as cycle ρ bounds the outer face of G1 and an inner
face of G2. We say that G is a merge of G1 and G2. Now consider two c-graphs C1(G1, T1) and C2(G2, T2) such that
(i) G1 ∩G2 = ρ is a cycle, (ii) for each vertex v ∈ V (ρ), vertex v belongs to the same cluster µ both in T1 and in
T2, and (iii) cycle ρ bounds the outer face of G1 and an inner face of G2 (when a choice for their outer faces that
satisfies Condition (ii) of Theorem 2 has been made). Merging C1 and C2 is the operation that constructs a c-graph
C(G, T) as follows. Graph G is obtained by merging G1 and G2. Tree T is obtained as follows. Initialize T to T1.
First, for each cluster µ ∈ T2 ∩ T1, we add the leaves of µ in T2 as children of cluster µ in T , removing duplicate
leaves. Second, for each cluster µ ∈ T2 \ T1, we add the subtree of T2 rooted at µ as a child of the root of T . We say
that C(G, T) is a merge of C1(G1, T1) and C2(G2, T2).

In the “divide” part of the divide-and-conquer, we replace subgraphs of the input by smaller planar components
called cycle-stars that preserve their c-planarity properties. Let G be a connected plane graph that contains a face
whose boundary is a cycle ρ. We say that G is a cycle-star if removing all the edges of ρ makes G a forest of stars;
refer to Fig. 4c. Also, we say that cycle ρ is universal for G and we say that a vertex of G is a star vertex of G if it
does not belong to ρ. Clearly, the size of G is O(|ρ|).

For a c-planar c-graph C(G, T) and a cycle separator ρ, we denote by C+ρ (G+, T +) (by C−ρ (G−, T −)) the c-graph
obtained from C by removing all the vertices and the edges of G that lie in the interior of ρ (in the exterior of ρ).
Consider a super c-graph C′(G′, T) of C satisfying Condition (iii) of Theorem 2, which exists since C is c-planar.
We now give a procedure, which will be useful throughout the paper, to construct two special c-planar c-graphs
C−(S−,K−) and C+(S+,K+) associated with C′ whose properties are described in the following lemma.

Lemma 3. C-graphs C−(S−,K−) and C+(S+,K+) are such that:

1. graph S− (S+) is a cycle-star whose universal cycle is ρ,
2. cycle ρ bounds the outer face of S− (an inner face of S+),
3. each star vertex of S− (S+) and all its neighbours belong to the same cluster in K− (K+), and
4. the c-graph Cout (Cin) obtained by merging C−(S−,K−) and C+ρ (G+, T +) (by merging C+(S+,K+) and C−ρ (G−, T −))

is c-planar.

We describe how to construct C−(S−,K−) from C′ ; refer to Fig. 4. The construction of C+(S+,K+) is symmetric.
First, for each cluster µ such that V (µ) ∩ V (ρ) = ∅, we remove all the vertices in V (µ) lying in the interior of ρ

together with their incident edges. By Observation 1, the resulting c-graph is still c-planar and c-connected. Also,
we remove edges in the interior of ρ whose endpoints belong to different clusters. Clearly, this simplification preserve
c-connectedness. We still denote the resulting c-graph as C′ .

Second, consider the c-graph H consisting of the vertices and of the edges of C′ lying in the interior and along the
boundary of ρ. For each cluster µ and for each connected component ciµ of µ in H, we replace all the vertices and edges

of ciµ lying in the interior of ρ in C′ with a single vertex siµ, assigning it to the same cluster µ and making it adjacent

to all the vertices in V (ciµ) ∩ V (ρ). Let C∗ be the resulting c-graph. It is easy to see that such a transformation
preserves c-connectedness and planarity, therefore C∗ is a c-connected c-planar c-graph. By construction, each vertex
v ∈ V (ρ) is adjacent to a single vertex siµ, where µ is the cluster vertex v belongs to; thus, the vertices and the
edges in the interior and along the boundary of ρ in C∗ form c-graph C−(S−,K−) whose underlying graph S− is a
cycle-star satisfying Properties (1), (2) and (3) of Lemma 3. Further, since the subgraph of C∗ consisting of the
vertices and of the edges lying in the exterior and along the boundary of ρ coincides with C+ρ (G+, T +), we have that
C∗ is a c-planar c-connected super c-graph of Cout. Thus, by Condition (iii) of Theorem 2, Property (4) of Lemma 3
is also satisfied.

Let C−∆(R−,J−) (C+∆(R+,J +)) be a c-graph obtained by augmenting the c-graph C−(S−,K−) (C+(S+,K+)) of
Lemma 3 by introducing new vertices, each belonging to a distinct cluster, and by adding edges only between the
vertices in V (S−) (V (S+)) and the newly introduced vertices in such a way that cycle ρ bounds a face of R− (R+)
and all the other faces of R− (R+) are triangles. From the construction of Lemma 3, we also have the following
useful technical remark.

6 Da Lozzo et al.

ρ

(a) C ′

ρ
c1µ

c2µ

c3µ

(b) H

ρ
s1µ

s2µ

s3µ

S−

(c) S−

s1µ
s2µ

s3µ

S−

(d) C∗

Fig. 4: (a) Super c-graph C
′

of C . (b) Each component of the blue cluster µ in H lies inside a simple closed region. (c)

Cycle-star S− corresponding to H. (d) The c-connected c-planar c-graph C∗ obtained by replacing H with S− in C
′
.

Remark 1. The c-graph obtained by merging C−∆(R−,J−) and C+ρ (G+, T +) (by merging C+∆(R+,J +) and C−ρ (G−, T −))
is c-planar.

We now describe a divide-and-conquer algorithm based on Lemma 3, called TestCP, that tests the c-planarity
of a 2-connected c-graph C(G, T) and returns a super c-graph C∗(G∗, T) of C satisfying Condition (iii) of Theorem 2,
if C is c-planar. See Fig. 5 for illustrations of the c-graphs constructed during the execution of the algorithm.

We first give an intuition on the role of cycle-stars in Algorithm TestCP.
Let C(G, T) be a c-planar c-graph and let ρ be a cycle separator of G. By Lemma 3, for each c-connected

c-planar super c-graph C′ of C , we can injectively map the super c-graph I− of C−ρ (G−, T −), composed of the

vertices of G− and of the edges in the interior and along the boundary of ρ in C′ , with a cycle-star S− whose
universal cycle is ρ. This is due to the fact that there exists a one-to-one correspondence between the connected
components of I− induced by the vertices of each cluster in T − and the star vertices of S−. Similar considerations
hold for the super c-graph I+ of C+ρ (G+, T +). Although the c-planarity of C+ρ and C−ρ is necessary for the c-planarity
of C , it is not a sufficient condition, as the connectivity of clusters inside ρ in I− (internal cluster-connectivity)
and the connectivity of clusters outside ρ in I+ (external cluster-connectivity) must also together determine the
c-connectedness of C′ . The role of cycle-stars S− and S+ in the algorithm presented in this section is exactly that of
concisely representing the internal cluster-connectivity of I− and the external cluster-connectivity of I+, respectively,
to devise a divide-and-conquer approach to test the c-planarity of C .

Outline of the algorithm. We overview the main steps of our algorithm below.

– If n = O(`), we test c-planarity directly, as a base case for the divide-and-conquer recursion. Otherwise,
we construct a cycle-separator ρ of G and test whether ρ is a cluster-separator. If so, C cannot be c-planar
(Observation 1), and we halt the search.

– We generate all cycle-stars S−i with universal cycle ρ. A cycle-star S−i represents a potential connection pattern
of clusters inside ρ. For each cycle-star S−i we apply Procedure OuterCheck to test whether this pattern could
be augmented by additional connections outside ρ to complete the desired cluster-connectivity. That is, we test
whether C+ρ admits a c-connected c-planar super c-graph whose internal cluster-connectivity is represented by S−i .

To test this, we replace the subgraph G− of G in C with an internally-triangulated supergraph R−i of S−i to
obtain a c-graph C+ and recursively test C+ for c-planarity. It is important to observe that, the triangulation step
prevents C+ from having saturating edges inside ρ, thus enforcing exactly the same internal-cluster connectivity
represented by S−i (Remark 1). If C+ is c-planar, the procedure returns a c-connected c-planar super c-graph
C+con of C+. If no cycle-star passes the test, C is not c-planar by Lemma 3. We call all the cycle-stars that passed
this test admissible.

– We then apply Procedure InnerCheck to verify whether the internal-cluster connectivity represented by some
admissible cycle-star S−i can actually be realized by a c-connected c-planar super c-graph of C . For each admissible
cycle-star S−i , the procedure applies the construction of Lemma 3 to obtain a cycle-star S+

i representing the
external cluster-connectivity of C+con. Then, it tests whether C−ρ admits a c-connected c-planar super c-graph C−con
whose external cluster-connectivity is represented by S+

i . This is done similarly to Procedure OuterCheck, by
triangulating the exterior of ρ and recursively testing c-planarity of a smaller graph. If Procedure InnerCheck
succeeds for any admissible cycle-star S−i , then we can merge the subgraphs of C−con and of C+con induced by the

Subexponential-Time and FPT Algorithms for C-Planarity Testing 7

C(G, T)

ρ

G+

G−

S−i

ρ

G+
R−i

ρ

G+

C+(G+
i , T +

i)

Gout

R−i

ρ

C+con(H+
i , T +

i)

S+
i

R−i

ρ

R−iR+
i

ρ

R+
i

ρ

G−

C−(G−i , T −i)

Gin

R+
i

ρ

C−con(H−i , T −i)

Gin

Gout

ρ

C∗(G∗, T ∗)

Fig. 5: Illustrations of all of the c-graphs constructed by Algorithm TestCP.

vertices inside and outside ρ, respectively, to obtain a c-connected c-planar super c-graph of C , and we halt the
search with a successful outcome. It might be the case that C−con has a different internal-cluster connectivity than
that represented by S−i , but this is not a problem, because the different cluster connectivity (which necessarily
corresponds to a different admissible cycle-star) still provides a c-planar drawing of the whole graph.

– If no admissible cycle-star passes Procedure InnerCheck, C is not c-planar.

It is crucial in this algorithm that ρ be a cycle-separator. Because it is a cycle, no candidate saturating edges can
connect vertices in the interior of ρ to vertices in the exterior of ρ, as such vertices do not share any face. That is,
the interaction between G−ρ and G+

ρ only happens through vertices of ρ. This allows us to split the instance into
smaller instances recursively along ρ and model the interaction via cycle-stars (by Lemma 3 and Remark 1) whose
universal cycle is ρ.

The complete listing of Algorithm TestCP is provided in the next page.

Base Case of the algorithm. The base case occurs when C+(G+
i , T

+
i) and C−(G−i , T

−
i) are no longer smaller

than C(G, T).
Observe that, we obtained G+

i (G−i) by merging G+ (G−) and R−i (R+
i) along cycle ρ, which has size s(n). The

size of G+ and G− is bounded by 2n
3 + s(n), while the size of R−i and R+

i is bounded by 3s(n). Therefore, since

cycle ρ is shared by all the mentioned graphs by construction, we have that the size of G+
i and G−i is at most

2n
3 + 3s(n). Thus, with s(n) ≤ 2

√
`n [33], we can set the base case of Algorithm TestCP when n ≤ 2n

3 + 6
√
`n,

that is, n ≤ 324`.

Correctness of the algorithm. We show that, given a 2-connected c-graph C(G, T), Algorithm TestCP returns
YES, which happens when both procedures OuterCheck and InnerCheck succeed, if and only if C(G, T) is
c-planar.

(⇒) Suppose that OuterCheck and InnerCheck succeed for a cycle-star S−ω ∈ S constructed at step 2a. We
show that C(G, T) is c-planar. Consider the c-graph C∗(G∗, T) constructed at step 3(a)v from C−con(H−ω , T −ω) and
C+con(H+

ω , T +
ω). The proof of this direction follows by the next claim about C∗ and from Theorem 2.

1 The merging operations are well defined as cycle ρ bounds the outer face of R−i and an inner face of G+, as well as an
inner face of R+

i and the outer face of G−.
2 As C+(G+

i , T
+
i) and C−(G−i , T

−
i) are 2-connected, TestCP can be recursively applied.

8 Da Lozzo et al.

Algorithm TestCP(c-graph C(G, T))

Base case

If |V (G)| = O(`), then we can test C-Planarity for C(G, T) in O(1) time when ` is a
constant, by performing a brute force search to find a subset E′ of the candidate saturat-
ing edges of C such that c-graph C

′
(G ∪ E′, T) satisfies Condition (iii) of Theorem 2.

Recursive step

1. Select a cycle separator ρ of G. If ρ is a cluster-separator, then return NO; otherwise,
construct c-graphs C+

ρ (G+, T +) and C−ρ (G−, T −) as defined in Lemma 3.
2. OuterCheck

(a) Construct the set S of all cycle-stars such that, for every S ∈ S, it holds that
(i) ρ is the universal cycle of S, (ii) ρ bounds the outer face of S, and (iii) every
star vertex of S is incident only to vertices of ρ belonging to the same cluster.

(b) For each cycle-star S−i ∈ S:
i. Construct a c-graph C−(S−i ,K

−
i) as follows. First, initialize K−i to the

subtree of T whose leaves are the vertices of S−i . Then, for each star vertex
v of S−i , assign v to the cluster µ ∈ K−i to which all its neighbours belong.

ii. Augment C−(S−i ,K
−
i) to an internally triangulated c-graph C−∆(R−i ,J

−
i)

by introducing new vertices, each belonging to a distinct cluster, and by
adding edges only between vertices in V (S−i) and the newly introduced
vertices (that is, no two non-adjacent vertices in S−i are adjacent in R−i).

iii. Merge C−∆(R−i ,J
−
i) and C+

ρ (G+, T +) to obtain a c-graph C+(G+
i , T

+
i)1.

iv. Run TestCP(C+(G+
i , T

+
i)) to test whether C+(G+

i , T
+
i) is c-planar2.

(c) If no c-graph C+(G+
i , T

+
i) is c-planar, then return NO; otherwise, initialize S ′

as the set of admissible cycle-stars, i.e., the cycle-stars in S whose corresponding
c-graph C+(G+

i , T
+
i) is c-planar.

3. InnerCheck
(a) For each admissible cycle-star S−i ∈ S ′:

i. Let C+
con(H+

i , T
+
i) be the c-planar c-connected super c-graph of C+ returned

by TestCP(C+(G+
i , T

+
i)) (step 2(b)iv). Apply the construction of Lemma 3

to c-graph C+
con(H+

i , T
+
i) and cycle ρ to obtain a c-graph C+(S+

i ,K
+
i)

satisfying Properties (2) and (3) of the lemma.
ii. Augment C+(S+

i ,K
+
i) to a c-graph C+

∆(R+
i ,J

+
i) by introducing new ver-

tices, each belonging to a distinct cluster, and by adding edges only between
the vertices in V (S+

i) and the newly introduced vertices in such a way
that cycle ρ bounds an inner face of R+

i and all the other faces of R+
i are

triangles.
iii. Merge C+

∆(R+
i ,J

+
i) and C−ρ (G−, T −) to obtain a c-graph C−(G−i , T

−
i)1.

iv. Run TestCP(C−(G−i , T
−
i)) to test whether C−(G−i , T

−
i) is c-planar2.

v. If TestCP(C−(G−i , T
−
i)) returns YES, then construct a c-planar

c-connected super c-graph C∗(G∗, T) of C(G, T) as follows. Let
C−con(H−i , T

−
i) be the c-planar c-connected c-graph returned by

TestCP(C−(G−i , T
−
i)). Remove all the vertices and edges of H−i in the

exterior of cycle ρ, thus obtaining a new c-graph Cin(Gin, Tin) in which
cycle ρ bounds the outer face. Similarly, remove all the vertices and edges of
H+
i in the interior of cycle ρ, thus obtaining a new c-graph Cout(Gout, Tout)

in which cycle ρ bounds an inner face. Finally, merge Cin and Cout to obtain
c-graph C∗(G∗, T) and return YES along with c-graph C∗(G∗, T).

4. return NO if no c-graph C−(G−i , T
−
i), constructed at step 3(a)iii, is c-planar.

Subexponential-Time and FPT Algorithms for C-Planarity Testing 9

Claim 1. C-graph C∗(G∗, T) is a c-planar c-connected super c-graph of C(G, T).

Proof. Graphs Gin and Gout are planar, as they are subgraphs of H−ω and H+
ω , respectively (step 3(a)v). By

construction, cycle ρ bounds an inner face of Gout and the outer face of Gin. Therefore G∗, obtained by merging
Gin and Gout, is planar. Also, observe that, Gin and Gout are supergraphs of G− and G+, respectively, therefore
graph G∗ is a super graph of G.

We now show that C∗ is c-connected, that is, for each cluster µ ∈ T , graph G∗(µ) is connected.
First, let µ be a cluster in T such that V (µ) lies in the interior of ρ in G. Since C−con(H−ω , T −ω) is c-connected,

we have that H−ω (µ) is connected. Also, V (µ) lie in the interior of ρ in H−ω . By construction, Gin contains all the
vertices and the edges in the interior of ρ, therefore we also have that Gin(µ) is connected. Hence, G∗(µ) is connected.
The proof that graph G∗(µ) is connected, for each cluster µ in T such that V (µ) lies in the exterior of ρ in G, is
analogous.

Then, let µ be a cluster such that V (µ) ∩ V (ρ) 6= ∅. Clearly, if V (µ) ⊆ V (ρ), then G∗(µ) is connected since both
Gin(µ) and Gout(µ) are connected. Otherwise, the following three cases are possible: either Gin(µ) is disconnected,
or Gout(µ) is disconnected, or both Gin(µ) and Gout(µ) are disconnected.

We show that all the vertices in Gin(µ) and in Gout(µ) are connected in G∗(µ).
We first prove that all the vertices in Gin(µ) are connected in G∗(µ).
Consider two connected components c′ and c′′ of Gin(µ). Observe that, by construction, c-graph C−con(H−ω , T −ω)

(step 3(a)v) is a merge of Cin(Gin, Tin) and of C+∆(R+
ω ,J +

ω). Since C−con is c-connected and since R+
ω is an augmentation

of cycle-star S+
ω such that edges in E(R+

ω)\E(S+
ω) do not have endpoints in the same cluster, the c-graph C#(G#, T #)

obtained by merging Cin and C+(S+
ω ,K+

ω) is also c-connected. Since C# is c-connected, the vertices of c′ and c′′ are
connected via star vertices of S+

ω and vertices of Gin belonging to cluster µ in G#(µ). Observe that, by construction,
c-graph C+con(H+

ω , T +
ω) is a merge of Cout(Gout, Tout) and of C−∆(Rω,Jω). Further, S+

ω has been obtained by applying
the construction of Lemma 3 to c-graph C+con(H+

ω , T +
ω) (step 3(a)i) and cycle ρ. Therefore, each connected component

of µ in Gout corresponds to a star vertex of S+
ω . Hence, we have that the vertices of c′ and c′′ are also connected in

G∗ via vertices of Gout and Gin belonging to cluster µ.
Now, we prove that all the vertices in Gout(µ) are connected in G∗(µ).
Consider two connected components c′ and c′′ of Gout(µ). Observe that, as shown above, each connected

component of µ in Gout corresponds to a star vertex of S+
ω . Recall that C# is c-connected. Therefore, the star vertices

of S+
ω corresponding to c′ and c′′ are connected via other star vertices of S+

ω and vertices of Gin belonging to cluster
µ in G#(µ). Hence, the vertices of c′ and c′′ are also connected in G∗ via vertices of Gout belonging to connected
components of µ corresponding to star vertices of S+

ω and vertices of Gin belonging to cluster µ in G∗(µ). �

(⇐) Suppose that C(G, T) is c-planar. We show that Procedure OuterCheck and InnerCheck succeed. Since
C(G, T) is c-planar, there exists a super c-graph C∗(G∗, T) of C such that G∗ is planar and C∗ is c-connected, by
Theorem 2. By using the construction of Lemma 3 on c-graph C∗, we can obtain a cycle-star S− whose universal
cycle is ρ that represents the connectivity of clusters inside ρ in C∗. The proof of this direction follows from the next
claim.

Claim 2. Procedures OuterCheck and InnerCheck succeed for S−i = S−.

Proof. Procedure OuterCheck succeeds if, for a cycle separator ρ of G selected at step 1 of the algorithm, there
exists a cycle-star S−i whose universal cycle is ρ such that the corresponding c-graph C+(G+

i , T
+
i), constructed at

steps 2(b)i, 2(b)ii, and 2(b)iii of the algorithm, is c-planar. Recall that, cycle-star S− has the following properties:
1. Cycle ρ is the universal cycle of S− and bounds the outer face of S−, and 2. for each star vertex v of S−, the
neighbours of v belong to the same cluster µ ∈ K−vertex v belongs to. Since, steps 2a and 2(b)i construct all c-graphs
C−(S−i ,K

−
i) with the above properties, when S−i = S− we are guaranteed to compute c-graph C−(S−,K−). First,

observe that the c-graph obtained by merging c-graphs C−(S−,K−) and C+ρ (G+, T +) is c-planar, since S− has been
obtained by applying the construction of Lemma 3 to a super c-connected c-planar c-graph C∗ of C . This together
with Remark 1 imply that c-graph C+(G+

i , T
+
i) is c-planar. Thus, the invocation of TestCP on C+(G+

i , T
+
i) at

step 2(b)iv will return YES. Hence, Procedure OuterCheck succeeds.
Procedure InnerCheck succeeds if, there exists a c-graph C−(G−i , T

−
i), constructed at steps 3(a)i, 3(a)ii,

and 3(a)iii of the algorithm, that is c-planar. By Theorem 2, a c-graph C−(G−i , T
−
i) is c-planar if and only if there exists

a super c-graph C′(G′, T −i) of C−(G−i , T
−
i) such that G′ is planar and C′ is c-connected. As Procedure OuterCheck

succeeds, the c-graph C+(G+
i , T

+
i) corresponding to S− is c-planar. Therefore, Procedure OuterCheck provides us

with a c-planar c-connected c-graph C+con(H+
i , T

+
i) (see steps 2(b)iv and 3(a)i) that is a super c-graph of C+(G+

i , T
+
i).

Consider the c-graph C+(S+
i ,K

+
i) constructed at step 3(a)i by applying the construction of Lemma 3 to C+con. Observe

that, the c-graph obtained by merging C+(S+
i ,K

+
i) and C−∆(R−i ,J

−
i) is a c-connected c-planar c-graph. This is due

10 Da Lozzo et al.

to the fact that, since R−i is internally triangulated, there exists no edge in the interior of ρ in H+
i that belongs to

H+
i and does not belong to R−i , that is, no candidate saturating edges connect two vertices in the interior of ρ in
C+con. Since S+

i ⊆ R
+
i , we also have that the c-graph obtained by merging C+∆(R+

i ,J
+
i) (constructed at step 3(a)ii)

and C−∆(R−i ,J
−
i) is a c-connected c-planar c-graph. Also, since each of the vertices added to obtain R−i from S−

belongs to a different cluster and since the edges added to internally triangulate S− do not connect vertices of the
same cluster, we have that the c-graph obtained by merging C+∆(R+

i ,J
+
i) and C−(S−,K−) is also a c-connected

c-planar c-graph.
Let A be the subgraph of G∗ induced by the edges in the interior and on the boundary of ρ in C∗. Since S− exactly

represents the cluster connectivity of A, the c-graph obtained by merging C+∆(R+
i ,J

+
i) and A is also a c-connected

c-planar c-graph. The fact that, such a c-graph is a super c-graph of C−(G−i , T
−
i) shows that C−(G−i , T

−
i) is c-planar.

Hence, Procedure InnerCheck succeeds. �

We are finally ready to present the main result of the section.

Theorem 3. The C-Planarity problem can be solved in 2O(
√
`n·logn) time for n-vertex c-graphs with maximum

face size `.

Proof. Given an n-vertex c-graph C(G, T) with maximum face size `, by Lemma 2, we can construct in linear time
a 2-connected, in fact 3-connected, c-graph C′ equivalent to C . Therefore, we can apply Algorithm TestCP to C′ to
determine whether C is c-planar.

We now argue about the running time.
Since G′ is 2-connected and since, by Lemma 2, |V (G′)| = O(|V (G)|) and the maximum face size `′ of G′ is O(`),

we can construct a cycle separator ρ of G of size s(n) = O(
√
`n) that separates the vertices in the interior of ρ from

the vertices in the exterior of ρ in such a way that both such sets contain at most 2n
3 vertices [33]. Also, since all

cycle-stars whose universal cycle is ρ have size O(s(n)) and the augmentations at steps 2(b)ii and 3(a)ii can be done
by introducing at most s(n) new vertices, graphs G+

i (step 2(b)iv) and G−i (step 3(a)iv) have O(2n3 +O(s(n))) size.

Further, by construction, G−i and G+
i are 2-connected and their maximum face size is `′; thus, the cycle separators

of G−i and G+
i have size bounded by s(|V (G−i)|) and by s(|V (G+

i)|), respectively.
Moreover, observe that each cycle-star S−i ∈ S satisfying the properties described at step 2a can be constructed

in O(s(n)) time. Also, each cycle-star S−i is in one-to-one correspondence with a non-crossing partition of a set
containing s(n) elements. This is due to the fact that each vertex of ρ is incident to at most a star vertex of S−i and
that, by the planarity of S−i , the neighbours of any two star vertices do not alternate along ρ. The number of all
such partitions is expressed by the Catalan number Cs(n) ≤ 4s(n).

The non-recursive running time f(n) is bounded by the time taken by steps 1 and 3(a)i, that is, O(n) time.
In fact, the cycle-separator of an n-vertex graph can constructed in O(n) time [33]. Testing whether a cycle is a
cluster-separator can be done by performing a visit of the graph to detect if there exist a cluster whose vertices lie
inside and outside of ρ, but not along ρ; this can clearly be done in O(n) time. Finally, applying the construction of
Lemma 3 to obtain a cycle-star only requires finding the connected components of each cluster inside (or outside) ρ
and their respective connections to cycle ρ, which can be done in O(n) time by performing a DFS-visit of G− (or
G+).

By the above arguments, the running time of Algorithm TestCP is expressed by by the following recurrence:

T (n) = 2Cs(n)

(
T
(2n

3
+O

(
s(n)

))
+ f(n)

)
(1)

Since equation (1) solves to T (n) = 2O(
√
`n·logn) for s(n) = O(

√
`n), Cs(n) = 4s(n), f(n) = O(n), the statement

follows. �

In the next section, we show how to adapt algorithm TestCP to obtain an XP algorithm with parameter h for
generalized h-simply nested graphs, which extend simply-nested graphs with bounded face size.

3.1 Generalized h-Simply-Nested Graphs

A plane graph is h-simply-nested if it consists of nested cycles of size at most h and of edges only connecting vertices
of the same cycle or vertices of adjacent cycles; refer to Fig. 6. We extend the class of h-simply-nested graphs to the
class of generalized h-simply-nested graphs, by allowing the inner-most cycle to contain a plane graph consisting of
at most 2h vertices in its interior and the outer-most cycle to contain a plane graph consisting of at most 2h vertices
in its exterior. See [16] for a related graph class, in which the vertices in the interior of the inner-most cycle can only

Subexponential-Time and FPT Algorithms for C-Planarity Testing 11

form a tree, there exist no other vertices in the exterior of the outer-most cycle, and chords are not allowed for the
remaining cycles.

ρ

Fig. 6: A generalized 6-simply-nested
graph.

Let G be a generalized h-simply-nested plane graph with n > 5h vertices.
We have the following simple observation about the structure of G; refer to
Fig. 6.

Observation 2. Graph G contains a cycle ρ with |V (ρ)| ≤ h that separates G
into two generalized h-simply-nested graphs G+ and G− with |V (G+)| ≤ n

2 and
|V (G−)| ≤ n

2 such that G+ (G−) does not contain any vertex in the exterior
(interior) of its outer-most cycle (inner-most cycle). Further, such a cycle can
be computed in O(n) time.

By Observation 2, we can use a cycle separator of size at most h in
Algorithm TestCP to test the c-planarity of a c-graph whose underlying
graph is a generalized h-simply-nested plane graph G (instead of a cycle
separator of size O(

√
`n), where ` is the maximum face size of G). Observe

that, graphs G+
i and G−i obtained at steps 2(b)iii and 2(b)iii of the algorithm, respectively, also belong to the family

of generalized h-simply-nested plane graphs. Therefore, Observation 2 also holds for such graphs. Altogether, we
obtain the following recurrence relation for the running-time:

T (n) = 2Ch

(
T
(n

2
+O(h)

)
+O(n)

)
(2)

Equation (2) immediately implies the following theorem.

Theorem 4. The C-Planarity problem can be solved in nO(h) time for n-vertex c-graphs whose underlying graph
is a generalized h-simply-nested graph.

4 An MSO2 formulation for C-Planarity

In this section, we show that the property of a c-graph of admitting a c-planar drawing can be expressed in extended
monadic second-order (MSO2) logic. We use this result and the fact that graph properties definable in MSO2

logic can be verified in linear time on graphs of bounded treewidth, by Courcelle’s Theorem [19], to build an FPT
algorithm for testing the c-planarity of embedded flat c-graphs.

First-order graph logic deals with formulae whose variables represent the vertices and edges of a graph. Second-
order graph logic also allows quantification over k-ary relations defined on the vertices and edges. MSO2 logic only
allows quantification over elements and unary relations, that is, sets of vertices and edges. Given a graph G and an
MSO2 formula φ, we say that G models φ, denoted by G |= φ, if the logic statement expressed by φ is satisfied by
the vertices, edges, and sets of vertices and edges in G. We will apply Courcelle’s theorem not to the underlying
graph G of the clustered planarity instance, but to the supergraph G� of G that includes all the candidate saturating
edges of G. This will allow us to quantify over sets of candidate saturating edges, but in exchange we must show
that G�, and not just G, has low treewidth (Lemma 2).

Let H be a graph and let E1, E2 ⊆ E(H). The following logic predicates can be expressed in MSO2 logic (refer,
e.g., to [8,20] for their detailed formulation):

� planarH(E1, E2) := the subgraph (V (H), E1 ∪ E2) of H is planar, and
� connH(U,E1, E2) := vertices in U ⊆ V (H) are connected by edges in E1 ∪ E2.

Let C(G, T) be a c-graph and let E∗ be the set of all the candidate saturating edges of C . By Property(iii) of
Theorem 2, c-graph C admits a c-planar drawing if and only if there exists a super c-graph C′(G′, T) of C such that
G′ is planar and C′ is c-connected. Testing Property(iii) amounts to determining the existence of a set E+ ⊆ E∗

such that (i) the subgraph G′ of G� obtained by adding the edges in E+ to G is planar and (ii) graph G′(µ) is
connected, for each cluster µ ∈ T .

We remark that in an MSO2 formula it is possible to refer to given subsets of vertices or edges of a graph,
provided that the elements of such subsets can be distinguished from the elements of other subsets by equipping
them with labels from a constant finite set [6]. Therefore, in our formulae we use the unquantified variables Vi
to denote the set of vertices belonging to cluster µi, for each disconnected cluster µi ∈ T , E∗ to denote the set
consisting of all the candidate saturating edges of C , and EG to denote E(G).

Let c be the number of disconnected clusters in T . We have the formula:

12 Da Lozzo et al.

c-planarC(G,T)≡ ∃(E+ ⊆ E∗)
[
planarG�(EG, E

+) ∧
c∧
i=1

connG�(Vi, EG, E
+)
]

It is easy to see that formula c-planarC(G,T) correctly expresses Condition(iii) of Theorem 2 only if G admits a
unique combinatorial embedding (up to a flip). In fact, if G has more than one embedding, formula c-planarC(G,T)

might still be satisfiable after a change of the embedding, as formula planarG�(EG, E
+) models the planarity of

an abstract graph rather than the planarity of a combinatorial embedding. We formalize this fact in the following
lemma.

Lemma 4. Let C(G, T) be a c-graph such that G has a unique combinatorial embedding and let C�(G�, T �) be the c-
graph obtained by augmenting C with all its candidate saturating edges. Then, C is c-planar iff G� |= c-planarC(G,T).

Since changes of embedding are not allowed in our context, as we aim at testing the c-planarity of a c-graph
given a prescribed embedding, we combine Lemmata 2 and 4, and then invoke Courcelle’s Theorem to obtain the
following main result.

Theorem 5. The C-Planarity problem can be solved in f(emw, c)O(n) time for n-vertex c-graphs with c discon-
nected clusters and whose underlying graph has embedded-width emw, where f is a computable function.

Proof. To test that C(G, T) admits a c-planar drawing with the given embedding we proceed as follows. First, we
apply Lemma 2 to obtain a c-graph C∗(G∗, T ∗) that is equivalent to C(G, T) such that G∗ is 3-connected. Note
that, the 3-connectivity of G∗ implies that it has a unique combinatorial embedding (up to a flip) [34]. Then, we
construct formula φ = c-planarC∗(G∗,T ∗) and the super c-graph C�(G�, T �) of C∗ obtained by augmenting C∗ with
all its candidate saturating edges. Finally, we use Courcelle’s Theorem to test whether G� |= φ. The correctness
immediately follows from Lemmata 2 and 4.

We now argue about the running time. By Lemma 2, c-graph C∗(G∗, T ∗) can be constructed in O(n) time. Let κ
be the maximum face size of G∗. The number of candidate saturating edges of C∗ is O(κ2n). By Lemma 2, κ = O(`).
Hence, we can augment C∗(G∗, T ∗) to obtain C�(G�, T �) in O(`2n) time.

By Courcelle’s theorem [19], it is possible to verify whether G� |= φ in g(tw(G�), len(φ))O(|V (G�)|+ |E(G�)|)
time, where g is a computable function. By Lemma 2, |V (G�)| = |V (G∗)| = O(n) and tw(G�) = emw(G). Also, by the
discussion above, |E(G�)| = O(`2n) and, by definition of embedded-width, ` = O(emw); thus, |E(G�)| = O(emw2n).
Further, formula φ can be constructed in time proportional to its length len(φ), which is O(c). Therefore, the overall
running time can be expressed as f(emw, c)O(n), where f is a computable function. �

5 Conclusions and Open Problems

In this paper, we provide subexponential-time, XP, and FPT algorithms to test C-Planarity of fairly-broad classes
of c-graphs.

Several interesting questions arise from this research: (1) Can our results be generalized from flat to non-flat
c-graphs? (2) Is there a fully polynomial-time algorithm to test C-Planarity of c-graphs whose underlying graph
is a generalized h-simply-nested graph? (3) Are there interesting parameters of the underlying graph such that
C-Planarity is FPT with respect to a single one of them (e.g., outerplanarity index, maximum face size, notable
graph width parameters)? (4) Are there interesting parameters of the c-graph such that C-Planarity is FPT with
respect to a single one of them (e.g., number of clusters, number of vertices of the same cluster incident to the same
face3, maximum distance between two faces containing vertices of the same cluster)?

3 This question has also been previously asked by Chimani et al. [13]

Subexponential-Time and FPT Algorithms for C-Planarity Testing 13

References

1. Akitaya, H.A., Fulek, R., Tóth, C.D.: Recognizing weak embeddings of graphs. In: Czumaj, A. (ed.) Proceedings of
the Twenty-Ninth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2018. pp. 274–292. SIAM (2018),
https://doi.org/10.1137/1.9781611975031.20

2. Angelini, P., Da Lozzo, G.: Clustered planarity with pipes. In: Hong, S. (ed.) 27th International Symposium on Algorithms
and Computation, ISAAC 2016. LIPIcs, vol. 64, pp. 13:1–13:13. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik
(2016), https://doi.org/10.4230/LIPIcs.ISAAC.2016.13

3. Angelini, P., Da Lozzo, G., Di Battista, G., Frati, F.: Strip planarity testing for embedded planar graphs. Algorithmica
77(4), 1022–1059 (2017), https://doi.org/10.1007/s00453-016-0128-9

4. Angelini, P., Da Lozzo, G., Di Battista, G., Frati, F., Patrignani, M., Roselli, V.: Relaxing the constraints of clustered
planarity. Comput. Geom. 48(2), 42–75 (2015), https://doi.org/10.1016/j.comgeo.2014.08.001

5. Angelini, P., Frati, F., Patrignani, M.: Splitting clusters to get c-planarity. In: Eppstein, D., Gansner, E.R. (eds.)
Graph Drawing, 17th International Symposium, GD 2009, Revised Papers. LNCS, vol. 5849, pp. 57–68. Springer (2009),
https://doi.org/10.1007/978-3-642-11805-0_8

6. Arnborg, S., Lagergren, J., Seese, D.: Easy problems for tree-decomposable graphs. J. Algorithms 12(2), 308–340 (1991),
https://doi.org/10.1016/0196-6774(91)90006-K

7. Athenstädt, J.C., Cornelsen, S.: Planarity of overlapping clusterings including unions of two partitions. J. Graph Algorithms
Appl. 21(6), 1057–1089 (2017), https://doi.org/10.7155/jgaa.00450

8. Bannister, M.J., Eppstein, D.: Crossing minimization for 1-page and 2-page drawings of graphs with bounded treewidth.
In: Duncan, C.A., Symvonis, A. (eds.) GD 2014. LNCS, vol. 8871, pp. 210–221. Springer (2014), https://doi.org/10.
1007/978-3-662-45803-7_18

9. Biedl, T.: Drawing planar partitions III: Two Constrained Embedding Problems. Tech. Report RRR 13-98, Rutcor
Research Report (1998)

10. Bläsius, T., Rutter, I.: A new perspective on clustered planarity as a combinatorial embedding problem. Theor. Comput.
Sci. 609, 306–315 (2016), https://doi.org/10.1016/j.tcs.2015.10.011

11. Borradaile, G., Erickson, J., Le, H., Weber, R.: Embedded-width: A variant of treewidth for plane graphs (2017),
http://arxiv.org/abs/1703.07532

12. Bouchitté, V., Mazoit, F., Todinca, I.: Treewidth of planar graphs: connections with duality. Electronic Notes in Discrete
Mathematics 10, 34–38 (2001), https://doi.org/10.1016/S1571-0653(04)00353-1

13. Chimani, M., Di Battista, G., Frati, F., Klein, K.: Advances on testing c-planarity of embedded flat clustered graphs. In:
Duncan, C.A., Symvonis, A. (eds.) Graph Drawing - 22nd International Symposium, GD 2014, Revised Selected Papers.
LNCS, vol. 8871, pp. 416–427. Springer (2014), https://doi.org/10.1007/978-3-662-45803-7_35

14. Chimani, M., Gutwenger, C., Jansen, M., Klein, K., Mutzel, P.: Computing maximum c-planar subgraphs. In: Tollis, I.G.,
Patrignani, M. (eds.) Graph Drawing, 16th International Symposium, GD 2008, Revised Papers. LNCS, vol. 5417, pp.
114–120. Springer (2008), https://doi.org/10.1007/978-3-642-00219-9_12

15. Chimani, M., Klein, K.: Shrinking the search space for clustered planarity. In: Didimo, W., Patrignani, M. (eds.) Graph
Drawing - 20th International Symposium, GD 2012, Revised Selected Papers. LNCS, vol. 7704, pp. 90–101. Springer
(2012), https://doi.org/10.1007/978-3-642-36763-2_9

16. Cimikowski, R.J.: Finding hamiltonian cycles in certain planar graphs. Inf. Process. Lett. 35(5), 249–254 (1990),
https://doi.org/10.1016/0020-0190(90)90053-Z

17. Cornelsen, S., Wagner, D.: Completely connected clustered graphs. J. Discrete Algorithms 4(2), 313–323 (2006), https:
//doi.org/10.1016/j.jda.2005.06.002

18. Cortese, P.F., Di Battista, G., Frati, F., Patrignani, M., Pizzonia, M.: C-planarity of c-connected clustered graphs. J.
Graph Algorithms Appl. 12(2), 225–262 (2008), http://jgaa.info/accepted/2008/Cortese+2008.12.2.pdf

19. Courcelle, B.: The monadic second-order logic of graphs. i. recognizable sets of finite graphs. Inf. Comput. 85(1), 12–75
(1990), https://doi.org/10.1016/0890-5401(90)90043-H

20. Cygan, M., Fomin, F.V., Kowalik, L., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized
Algorithms. Springer (2015), https://doi.org/10.1007/978-3-319-21275-3

21. Dahlhaus, E.: A linear time algorithm to recognize clustered graphs and its parallelization. In: Lucchesi, C.L., Moura,
A.V. (eds.) LATIN ’98: Theoretical Informatics, Third Latin American Symposium, Proceedings. LNCS, vol. 1380, pp.
239–248. Springer (1998), https://doi.org/10.1007/BFb0054325

22. Di Battista, G., Frati, F.: Efficient c-planarity testing for embedded flat clustered graphs with small faces. J. Graph
Algorithms Appl. 13(3), 349–378 (2009), http://jgaa.info/accepted/2009/DiBattistaFrati2009.13.3.pdf

23. Didimo, W., Giordano, F., Liotta, G.: Overlapping cluster planarity. J. Graph Algorithms Appl. 12(3), 267–291 (2008),
http://jgaa.info/accepted/2008/DidimoGiordanoLiotta2008.12.3.pdf

24. Feng, Q., Cohen, R.F., Eades, P.: Planarity for clustered graphs. In: Spirakis, P.G. (ed.) Algorithms - ESA ’95, Third
Annual European Symposium, Proceedings. LNCS, vol. 979, pp. 213–226. Springer (1995), https://doi.org/10.1007/
3-540-60313-1_145

25. Fulek, R.: C-planarity of embedded cyclic c-graphs. In: Hu, Y., Nöllenburg, M. (eds.) Graph Drawing. pp. 94–106. LNCS
9801 (2016)

https://doi.org/10.1137/1.9781611975031.20
https://doi.org/10.4230/LIPIcs.ISAAC.2016.13
https://doi.org/10.1007/s00453-016-0128-9
https://doi.org/10.1016/j.comgeo.2014.08.001
https://doi.org/10.1007/978-3-642-11805-0_8
https://doi.org/10.1016/0196-6774(91)90006-K
https://doi.org/10.7155/jgaa.00450
https://doi.org/10.1007/978-3-662-45803-7_18
https://doi.org/10.1007/978-3-662-45803-7_18
https://doi.org/10.1016/j.tcs.2015.10.011
http://arxiv.org/abs/1703.07532
https://doi.org/10.1016/S1571-0653(04)00353-1
https://doi.org/10.1007/978-3-662-45803-7_35
https://doi.org/10.1007/978-3-642-00219-9_12
https://doi.org/10.1007/978-3-642-36763-2_9
https://doi.org/10.1016/0020-0190(90)90053-Z
https://doi.org/10.1016/j.jda.2005.06.002
https://doi.org/10.1016/j.jda.2005.06.002
http://jgaa.info/accepted/2008/Cortese+2008.12.2.pdf
https://doi.org/10.1016/0890-5401(90)90043-H
https://doi.org/10.1007/978-3-319-21275-3
https://doi.org/10.1007/BFb0054325
http://jgaa.info/accepted/2009/DiBattistaFrati2009.13.3.pdf
http://jgaa.info/accepted/2008/DidimoGiordanoLiotta2008.12.3.pdf
https://doi.org/10.1007/3-540-60313-1_145
https://doi.org/10.1007/3-540-60313-1_145

14 Da Lozzo et al.

26. Fulek, R., Kyncl, J., Malinovic, I., Pálvölgyi, D.: Clustered planarity testing revisited. Electr. J. Comb. 22(4), P4.24
(2015), http://www.combinatorics.org/ojs/index.php/eljc/article/view/v22i4p24

27. Goodrich, M.T., Lueker, G.S., Sun, J.Z.: C-planarity of extrovert clustered graphs. In: Healy, P., Nikolov, N.S. (eds.)
Graph Drawing, 13th International Symposium, GD 2005, Revised Papers. LNCS, vol. 3843, pp. 211–222. Springer (2005),
https://doi.org/10.1007/11618058_20

28. Gutwenger, C., Jünger, M., Leipert, S., Mutzel, P., Percan, M., Weiskircher, R.: Advances in c-planarity testing of
clustered graphs. In: Kobourov, S.G., Goodrich, M.T. (eds.) Graph Drawing, 10th International Symposium, GD 2002,
Revised Papers. LNCS, vol. 2528, pp. 220–235. Springer (2002), https://doi.org/10.1007/3-540-36151-0_21

29. Hong, S.H., Nagamochi, H.: Simpler algorithms for testing two-page book embedding of partitioned graphs. Theoretical
Computer Science (2016), http://www.sciencedirect.com/science/article/pii/S0304397515012207

30. Jeĺınek, V., Jeĺınková, E., Kratochv́ıl, J., Lidický, B.: Clustered planarity: Embedded clustered graphs with two-component
clusters. In: Tollis, I.G., Patrignani, M. (eds.) Graph Drawing, 16th International Symposium, GD 2008, Revised Papers.
LNCS, vol. 5417, pp. 121–132. Springer (2008), https://doi.org/10.1007/978-3-642-00219-9_13

31. Jeĺınková, E., Kára, J., Kratochv́ıl, J., Pergel, M., Suchý, O., Vyskocil, T.: Clustered planarity: Small clusters in cycles
and eulerian graphs. J. Graph Algorithms Appl. 13(3), 379–422 (2009), http://jgaa.info/accepted/2009/Jelinkova+
2009.13.3.pdf

32. Lengauer, T.: Hierarchical planarity testing algorithms. J. ACM 36(3), 474–509 (1989), http://doi.acm.org/10.1145/
65950.65952

33. Miller, G.L.: Finding small simple cycle separators for 2-connected planar graphs. J. Comput. Syst. Sci. 32(3), 265–279
(1986), https://doi.org/10.1016/0022-0000(86)90030-9

34. Whitney, H.: Congruent graphs and the connectivity of graphs. American Journal of Mathematics 54(1), 150–168 (1932),
http://www.jstor.org/stable/2371086

http://www.combinatorics.org/ojs/index.php/eljc/article/view/v22i4p24
https://doi.org/10.1007/11618058_20
https://doi.org/10.1007/3-540-36151-0_21
http://www.sciencedirect.com/science/article/pii/S0304397515012207
https://doi.org/10.1007/978-3-642-00219-9_13
http://jgaa.info/accepted/2009/Jelinkova+2009.13.3.pdf
http://jgaa.info/accepted/2009/Jelinkova+2009.13.3.pdf
http://doi.acm.org/10.1145/65950.65952
http://doi.acm.org/10.1145/65950.65952
https://doi.org/10.1016/0022-0000(86)90030-9
http://www.jstor.org/stable/2371086

	 Subexponential-Time and FPT Algorithms for Embedded Flat Clustered Planarity

