
Computing Convex-Straight-Skeleton
Voronoi Diagrams for Segments

and Convex Polygons

Gill Barequet1, Minati De2(B), and Michael T. Goodrich3

1 Department of Computer Science, The Technion—Israel Institute of Technology,
Haifa, Israel

barequet@cs.technion.ac.il
2 Department of Mathematics, Indian Institute of Technology Delhi,

New Delhi, India
minati@maths.iitd.ac.in

3 Department of Computer Science, University of California, Irvine, Irvine, CA, USA
goodrich@uci.edu

Abstract. We provide efficient algorithms for computing compact rep-
resentations of Voronoi diagrams using a convex-straight-skeleton (i.e.,
convex polygon offset) distance function when sites are line segments or
convex polygons.

Keywords: Polygon-offset distance · Voronoi diagrams
Straight skeletons

1 Introduction

Voronoi diagrams (VD) are well-studied in a variety of fields, including, of course,
computational geometry, but also ecology, biology, astro-physics, robot motion
planning, and medical diagnosis (e.g., see [3,5]). Given a collection of disjoint
geometric objects, such as points, segments, or polygons, which are called sites,
a Voronoi diagram is a subdivision of the plane into cells such that all the points
in a given cell have the same nearest site according to some distance metric.

There are many different types of distance functions that can be used to
determine such nearest sites (e.g., see [5,15,19,20]), depending on the appli-
cation, with one of particular interest for this paper being based on offsets of
a convex polygon. Conceptually, this distance function is measured by locally
translating the edges of an underlying convex polygon by some amount, either
inwardly or outwardly. Such offset distance functions are motivated by applica-
tions in three-dimensional modeling and folding (e.g., see [1,7,8]) and are related
to a structure known as the straight skeleton [2,10,13]. For this reason, we refer
to such functions as convex-straight-skeleton distance functions.
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Assuming that sites are line segments or convex polygons, the combinatorial
complexities of convex-straight-skeleton Voronoi diagrams are given in a recent
paper by Barequet and De [6], but they do not give efficient algorithms for com-
puting such structures. Our interest in the present paper is the study of such effi-
cient algorithms, for computing a compact representation of a convex-straight-
skeleton Voronoi diagram for segments or convex polygons (where Voronoi edges
comprising polygonal chains are represented implicitly).

1.1 Related Work

The Voronoi diagram of point sites is extensively studied in the literature (e.g.,
see [3,5]). Using the Euclidean metric, the combinatorial complexity for the
Voronoi diagram is O(n), where the sites are n points [12], or n disjoint line
segments [4,18]. These diagrams can be constructed in O(n log n) time, which
is worst-case optimal. For a set of n disjoint convex polygonal sites, each with
complexity k, the Voronoi Diagram in the Euclidean metric for this set of sites
has combinatorial complexity O(kn) [14,16,20].

McAllister et al. [17] introduced the concept of a compact representation
of a Voronoi diagram of convex polygonal sites, with distance defined either
by the standard Euclidean metric or by scaling a convex polygon (which is
related to but nevertheless different from the offset-polygon distance functions
we study in this paper). They represent chains of piecewise-algebraic curves
as single segments and they show that their compact representation can be
used to quickly answer nearest-site queries and that, given a compact Voronoi
diagram representation, one can compute the original Voronoi diagram in time
proportionate to its combinatorial complexity. They show that such a compact
Voronoi diagram can be constructed to have total size O(n), where n is the
total number of sites. They provide an algorithm running in time O(n(log n +
log k) log m + m) for constructing such a compact Voronoi diagram of n convex
polygons, each of size k, using a scaled distance function based on a convex
m-gon.

Recently, Cheong et al. [11] showed that in the Euclidean metric, the farthest-
site counterpart to the compact Voronoi diagram also has combinatorial com-
plexity O(n), and it can be computed in O(n log3 n) time. On a related note,
Bohler et al. [9] recently introduced the related notion of an abstract higher-order
Voronoi diagram and studied its combinatorial complexity.

With respect to convex polygon-offset distance functions, the combinatorial
complexity of the convex-straight-skeleton Voronoi diagram of a set of n point
sites is shown by Barequet et al. [7] to be O(nm), where m is the combinatorial
complexity of the underlying convex polygon defining distance. Furthermore,
they show that compact representations of such diagrams can be computed in
O(n(log n+log2 m)+m) time. Recently, Barequet and De [6] show that the com-
binatorial complexity of a convex-straight-skeleton Voronoi diagram is O(nm)
for n line-segment sites and O(n(m+k)) for n convex polygons having at most k
sides each. We are not aware of any previous results for efficient algorithms for
computing a compact representation for a convex-straight-skeleton Voronoi dia-
gram for line-segment or convex-polygon sites, however.
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1.2 Our Contributions

In this paper, we show that it is possible to compute a compact representation
of a convex-straight-skeleton Voronoi diagram of n line segments in O(n(log n +
log2 m)+m2) time and of n convex polygon sites, each of complexity at most k,
in O(n(log n + log k log2 m) + m2) time.

Our algorithms are based on new insights into the geometry of convex-
straight-skeleton distance functions with line segment and convex polygon sites,
which allow us to show how to compute a number of geometric primitives effi-
ciently for segments and convex polygons when the distance is defined by a
convex offset-polygon distance function. For instance, we present an O(log m)-
time algorithm for computing the distance, DP(z, s), between a point, z, and
a line segment, s, using an offset distance defined by the polygon, P. We also
present an O(log2 m)-time algorithm for computing another elementary query,
vertex(s1, s2, s3): Given three line segments s1, s2, and s3, find the point which
is equidistant from them. Our data structures for answering both of these types
of queries require O(m2) preprocessing time. For convex polygon sites, we show
that the elementary query operation, DP(z, q), can be answered in O(log k log m)
time, where z is a point and q is a convex polygon with at most k sides. We also
show that the primitive, vertex(q1, q2, q3), can be answered in O(log k log2 m)
time, where z is a point and the qi’s are convex polygons with at most k sides.
Both of these results use data structures having O(m2) preprocessing time.

2 Preliminaries

P −P

(a) (b)

Fig. 1. (a) Offsets of a convex poly-
gon, P, along its straight skeleton
(which is the same as its medial axis
inside P). (b) Offsets of the convex
polygon (−P), including its straight
skeleton.

Let us borrow a few definitions from ear-
lier papers [6,7]. Given a convex polygon, P,
described by the intersection of m closed half-
planes, {Hi}, an offset copy of P, denoted
as OP,ε, is defined as the intersection of the
closed half-planes {Hi(ε)}, where Hi(ε) is the
half-plane parallel to Hi with bounding line
translated by ε. Depending on whether the
value of ε is positive or negative, the trans-
lation is respectively done outward or inward
of P . See Fig. 1(a). Let ε0 < 0 be the value for
which OP,ε0 degenerates into a single point c
(or a line segment s). We call the value, ε0,
the negative radius of P, and the point c (or any point on s) the center of P.

Using the above concept, the polygon-offset distance function DP from one
point to another point [7] and to an object [6] are defined as follows.

Definition 1 (Point to point distance [7]). Let z1 and z2 be two points
in R

2 and OP,ε be an offset of P such that a translated copy of OP,ε, cen-
tered at z1, contains z2 on its boundary. The offset distance is defined as

DP(z1, z2) =
ε + |ε0|

|ε0| =
ε

|ε0| + 1.
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�2

(a) (b) (c)

Fig. 2. (a) Three different positions of the offset polygons from where both line seg-
ments are equidistant; (b) The bisector (colored with blue) of two line segments accord-
ing to the definition used in [7]; and (c) The bisector (colored with blue) according to
our definition. (Color figure online)

Note that this distance function is not a metric since it is not symmetric. On
the other hand, observe that DP(z1, z2) = D(−P)(z2, z1), where (−P) = {−z|z ∈
P} is a “centrally-mirrored” copy of P. See Fig. 1(b). This fact is widely used to
compute the Voronoi diagram for point sites in [7].

Definition 2 (Point to object distance [6]). Let z be any point, and let o
be any object in R

2. The offset distance DP(z, o) is defined as DP(z, o) =
min
z′∈o

DP(z, z′).

2.1 Convex-Straight-Skeleton Voronoi Diagrams

Under the convex polygon offset distance function, the bisector of two points (as
defined originally [7]) can be 2-dimensional instead of 1-dimensional (see Fig. 2
for an illustration). This makes the Voronoi diagram of points unnecessarily
complicated. To make it simple, as is also done by Klein and Woods [15], the
bisector and Voronoi diagram with respect to the offset distance function DP is
defined as follows [6].

Let z be a point, and Σ = {σi} a set of objects in the plane. In order to
avoid 2-dimensional bisectors between two objects in Σ, we define the index of
the objects as the “tie breaker” for the relation ‘≺’ between distances from z
to the sites. That is, DP(z, σi) ≺ DP(z, σj), if DP(z, σi) < DP(z, σj) or, in
case DP(z, σi) = DP(z, σj), if i < j. Note that the relation ‘≺’ does not allow
equality if i �= j. Therefore, the definition below uses the closure of portions of
the plane in order to have proper boundaries between the regions of the diagram.

Definition 3 (Convex-Straight-Skeleton Voronoi diagram). Let Σ =
{σ1, σ2, . . . , σn} be a set of n sites in R

2. For any σi, σj ∈ Σ, we define the
region of σi with respect to σj as NV

σj

P (σi) = {z ∈ R
2|DP(z, σi) ≺ DP(z, σj)}.

The bisecting curve BP(σi, σj) is defined as NV
σj

P (σi) ∩ NV σi

P (σj), where X is
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the closure of X. The region of a site σi in the convex straight-skeleton Voronoi
diagram of Σ is defined as

NVP(σi) = {z ∈ R
2 |DP(z, σi) ≺ DP(z, σj) ∀j �= i}.

The nearest-site convex straight-skeleton Voronoi diagram is the union of the
regions

NVDP(Σ) =
⋃

i

NVP(σi).

In other words, the diagram NVDP(Σ) is a partition of the plane, such that
if a point p ∈ R

2 has more than one closest site, then it belongs to the region
of the site with the smallest index. The bisectors between regions are defined by
taking the closures of the open regions.

3 Tools for Constructing Convex Straight-Skeleton
Voronoi Diagrams

Let us generalize our distance function to object-to-point distance as follows.

Definition 4 (Object-to-point distance). Let z be any point, and let o be any
object in R

2. The offset distance DP(o, z) is defined as DP(o, z) = min
z′∈o

DP(z′, z).

The following lemma is crucial for the correctness of our algorithms.

Lemma 5. DP(z, o) = D(−P)(o, z).

3.1 Tools for Line Segments

(−P)s

u1,ε

u2,ε

�1,ε

�2,ε

(a) (b)

Fig. 3. (a) A convex polygon (−P)s (marked
with red), and O(−P)s,ε for different values of
ε; the extruded medial axis of (−P)s is marked
with blue; and (b) The medial axis of (−P)s

(marked with blue). (Color figure online)

In [7], the strong relationship
between the continuous change
of O(−P),ε (as a function of ε)
and the medial axis of (−P) was
observed. The medial axis, which is
also the straight skeleton of the con-
vex polygon (−P) is defined as the
set of points inside (−P) that have
more than one closest point among
the points of ∂(−P). It was noticed
that if we change the value of ε con-
tinuously by fixing the center, then
the vertices of O(−P),ε slide along
the edges of the medial axis. Out-
side the polygon, the medial axis
and straight skeleton differ in that
the straight skeleton extends out-
ward as bisectors of edge offsets, whereas the medial axis extends “rounded”



Computing Convex-Straight-Skeleton Voronoi Diagrams 135

edges from vertices. This information was widely used to efficiently com-
pute DP(z1, z2) for any two points z1 and z2 in R

2. As a result, the prepro-
cessing of the medial axis of (−P) in a tree-like data structure was sufficient to
answer DP(z1, z2) queries in O(log m) time, for any two points z1 and z2 in R

2.

Lemma 6 [7, Theorem 10]. Allowing O(m) time preprocessing of the poly-
gon (−P), the distance function DP(z1, z2) can be computed in O(log m) time,
where z1 and z2 are two points.

For our purposes, we would like to preprocess the underlying polygon and
compute a similar data structure which will enable us to answer DP(z, s) queries
efficiently, for any point z and line segment s in R

2.

z

z′
q∗

z1

z2

Fig. 4. The extruded medial
axis of (−P)s: The medial
region and parallel region
are colored with light green
and light blue, respectively;
two common boundaries are
marked with red. (Color figure
online)

Let (−P)s be the convex polygon obtained
by taking the union of all the translated copies
of (−P) centered at all the points in the line seg-
ment s. Similarly, we define O(−P)s,ε as the con-
vex polygon obtained by taking the union of all
the translated copies of O(−P),ε centered at all
the points in the line segment s. Note that (−P)s

(resp., O(−P)s,ε) is the convex-hull of two trans-
lated copies of (−P) (resp., O(−P),ε) centered
at the two endpoints of s. Note that when ε
takes the value ε0, which is the negative radius
of (−P), then O(−P)s,ε0 degenerates into the line
segment s. We refer to the line segment s as
the center of O(−P)s,ε, for ε ≥ ε0. Note that
even in the worst case, the complexity of (−P)s

is not twice the complexity of P, but simply
|(−P)s| = |P| + 2. We define the extruded medial
axis of (−P)s as the set of points inside (−P)s such that if we change the value
of ε continuously by fixing the center at s, then the vertices of O(−P)s,ε slide
along the edges of the extruded medial axis (see Fig. 3(a)). Also note that the
extruded medial axis of (−P)s may not be the same as the medial axis of (−P)s

(see Figs. 3(a–b) for a comparison).
We define the following distance function.

Definition 7 (D(−P)s(s, z)). Let z be any point and s be any line segment in R
2,

and O(−P)s,ε be an offset of (−P)s (centered at s) such that O(−P)s,ε contains z
on its boundary. The offset distance D(−P)s(s, z) is defined as D(−P)s(s, z) =
ε + |ε0|

|ε0| =
ε

|ε0| + 1.
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Lemma 8. D(−P)(s, z) = D(−P)s(s, z).

Combining Lemmata 5 and 8, we have the following.

Lemma 9. DP(z, s) = D(−P)s(s, z).

Let us now show how to compute efficiently the distance DP(z, s) for any
point z and line segment s in R

2. Following Lemma 9, we know that it is
sufficient to compute D(−P)s(s, z). Provided that the extruded medial axis
of (−P)s is computed in a preprocessing step, D(−P)s(s, z) can be computed
as in Lemma 6 [7]. Note that DP(z, s) is a primitive operation for the computa-
tion of the compact Voronoi diagram. Thus, simply preprocessing the extruded
medial axis of (−P)s for every segment s ∈ S would result in increased pre-
processing space (i.e., O(nm) space). However, we prove here that even with
preprocessing only the medial axis of (−P), we can compute DP(z, s) with the
same query time as that of computing DP(zj , z�), zj , z� ∈ R

2.
Let us now illustrate the properties of the extruded medial axis of (−P)s.

Place two translated copies T1,ε and T2,ε of the offset polygon O(−P),ε, centered
at two endpoints z1 and z2 of the line segment s (see Fig. 3(a)). Let u1,ε and
u2,ε be the two vertices of the upper tangent1 of the convex-hull joining T1,ε

and T2,ε. Observe that u1,ε and u2,ε are the same vertex of the offset polygon
O(−P),ε. Similarly, let �1,ε and �2,ε be the two vertices of the lower tangent of the
convex-hull joining T1,ε and T2,ε. Note that if we change the value of ε, then both
ui,ε and �i,ε change along the medial axis of Ti,ε, i ∈ {1, 2}, and the upper (resp.,
lower) tangent moves and is always parallel to s. Thus, the extruded medial axis
of (−P)s is a subset of the union of the medial axes of T1,ε and T2,ε. Specifically,
the portion of the medial axis of Ti,ε, that lies between ui,ε and �i,ε and whose
end vertices are in the convex-hull, are in the extruded medial axis of (−P)s.
We refer to this part of the medial axis of Ti,ε as the medial region with respect
to the line segment s. We define the parallel region as the part of the polygon
(−P)s that does not have dominating edges from the medial region (see Fig. 4
for an illustration). For a point z which belongs to the parallel region of (−P)s,
let z′ be the projection of z on the common boundary of the medial region of Ti,
i ∈ {1, 2} and the parallel region (see Fig. 4). Then, DP(z, s) can be calculated
by simply computing DP(z′, zi).

Lemma 10. Allowing O(m2) time preprocessing of the polygon (−P), DP(z, s)
can be computed in O(log m) time, where z is a point and s is a line segment.
Along with that, a point q∗ ∈ s satisfying DP(z, q∗) = DP(z, s) can be reported
in the same amount of time.

1 If s is vertical, then we arbitrarily choose the left tangent as the upper.
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Proof. We keep two copies, T1 and T2, of the processed medial axis of (−P) as
required by Lemma 6. In addition, we preprocess (−P) such that both traversing
and binary searching is possible along any vertex-to-center path of (−P). Since
there are m vertices, there are m such paths. By simply storing each path as a
list, we need a total of O(m2) space and time to preprocess this data structure2.

To answer the query DP(z, s), we do the following:

Step 1. Compute the upper and lower tangents of the two translated copies T1

and T2, centered at z1 and z2, respectively, where z1 and z2 are the endpoints
of the line segment s. Let ui and �i be the points in which the upper and
lower tangents Ti, i ∈ {1, 2}, touch the two polygons.

Step 2.1. If z is in the relevant region of Ti with respect to s, then answer
DP(z, s), return the point q∗ by evoking DP(z, zi), and stop.

Step 2.2. Otherwise (if z is in the parallel region), we answer a ray-shooting
query on the common boundary Bi between the medial region of Ti and the
parallel region of (−P)s to find z′, the projection of z on Bi (see Fig. 4). We
obtain DP(z, s) by computing DP(z′, zi). We can then find the point q∗ by
translating the point zi by d(z, z′) along the line segment s, where d(z, z′) is
the Euclidean distance between z and z′.

Step 1 takes O(log m) time, assuming that (−P) is available as a cyclic list
of vertices. Step 2.1 can be done in O(log m) time as in Lemma 6. Since Bi is
a path from a vertex of (−P) to its center along the medial axis where we can
perform a binary search, we can find z′ in O(log m) time. Hence, Step 2.2 takes
O(log m) time. In total, the query time complexity is O(log m). �	

Another primitive operation is finding the Voronoi vertex v∗ where the
Voronoi cells with respect to the polygon-offset distance DP for sites s1, s2, s3
occur in counterclockwise order around v∗. Applying the tentative prune-and-
search paradigm, we can find v∗ similarly to the method in [7]. The only dif-
ference is that here, three different polygons (−P)s1 , (−P)s2 , and (−P)s3 come
into the picture instead of three identical copies of (−P). Thus, we have the
following:

Lemma 11. Given three line segments s1, s2, s3 in the plane, and a convex poly-
gon P of m sides, a Voronoi vertex v∗, where the Voronoi cells with respect to
the polygon-offset distance DP for sites s1, s2, s3 occur in counterclockwise order
around v∗, can be computed in O(log2 m) time (allowing O(m2) time for prepro-
cessing).

2 This preprocessing step can probably be implemented in a more efficient way, but
since it’s not the bottleneck of the algorithm, such an improvement will not affect
the total running time of the algorithm for computing DP(z, s).
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3.2 Tools for Convex Polygonal Sites

z

q∗

z′
zi

(a) (b)

Fig. 5. (a) (−P)q: The polygon q is colored gray.
Translated copies of (−P), centered at the vertices of
q, are shown with dotted lines. The extruded medial
axis of (−P)q is marked with blue. (b) The medial
region and parallel region are colored light green and
light blue, respectively. (Color figure online)

Here, we generalize the for-
merly described tool of line
segments for convex poly-
gons. Let q be a convex
polygon with k sides, and
∂q be the boundary of q.
Let (−P)q be the convex
polygon obtained by unit-
ing all the translated copies
of (−P) centered at all
the points z ∈ q. Sim-
ilarly, we define an offset
copy O(−P)q,ε as the convex
polygon obtained by uniting
all the translated copies of
O(−P),ε centered at all the
points z ∈ q. Note that
(−P)q (resp., O(−P)q,ε) is the convex-hull of k translated copies of (−P) (resp.,
O(−P),ε) centered at the k vertices of the polygon q. Note that when ε takes the
value ε0, which is the negative radius of (−P), then O(−P)q,ε0 degenerates into
the polygon q. We refer to the polygon q as the center of O(−P)q,ε, for ε ≥ ε0.
The complexity of (−P)q is |(−P)q| = |P| + k because each side of (−P) can
appear at most once along the boundary of (−P)q, and there are exactly k tan-
gents. We define the extruded medial axis of (−P)q as the set of points inside
(−P)q such that if we change the value of ε ≥ ε0 continuously by fixing the
center at q, then the vertices of O(−P)q,ε slide along the edges of the extruded
medial axis (see Fig. 5). Similarly to the previous section, the extruded medial
axis of (−P)q may differ from the medial axis of (−P)q.

We define the following distance function.

Definition 12 (D(−P)q (q, z)). Let z be any point and q be any convex polygon
with k sides in R

2, and O(−P)q,ε be an offset copy of (−P)q (centered at q) such
that O(−P)q,ε contains z on its boundary. The offset distance D(−P)q (q, z) is

defined as D(−P)q (q, z) =
ε + |ε0|

|ε0| =
ε

|ε0| + 1.

Lemma 13. D(−P)(q, z) = D(−P)q (q, z).

Proof. The proof is similar to the proof of Lemma 8. �	
Combining Lemmata 5 and 13, we have the following.

Lemma 14. DP(z, q) = D(−P)q (q, z).

Let us illustrate the properties of the extruded medial axis of (−P)q. Place
k translated copies Ti,ε, i ∈ {1, . . . , k}, of the offset polygon O(−P),ε centered



Computing Convex-Straight-Skeleton Voronoi Diagrams 139

at the k vertices {zi}, i ∈ {1, . . . , k}, of the polygon q (see Fig. 5(a)). Here Ti,ε

and Ti+1,ε are two clockwise consecutive copies, and let ti be the outer common
tangent of Ti,ε and Ti+1,ε, where the addition of subtraction of the index i are
modulo k. Let ui1,ε and ui2,ε be the two vertices of the outer tangent of the
convex-hull joining Ti,ε and Ti+1,ε. Observe that ui1,ε and ui2,ε are the same
vertex of the offset polygon O(−P),ε. Note that if we change the value of ε, then
all vertices uij ,ε move along the medial axis of Ti,ε, i ∈ {1, 2, . . . , k}, j ∈ {1, 2},
and all k outer tangents move parallel to themselves. Thus, the extruded medial
axis of (−P)q is a subset of the union of medial axes of Ti,ε, i ∈ {1, 2, . . . , k} (see
Fig. 5(b)). Specifically, the portion of the medial axis of Ti,ε that lies between
u(i−1)2,ε and ui1,ε and whose end vertices appear in O(−P)q,ε are in the extruded
medial axis of (−P)q. We refer to this part of the medial axis of Ti,ε as the medial
region of Ti,ε with respect to the polygon q. We define the ith parallel region
as the part of the polygon O(−P)q,ε that does not have dominating edges from
the medial region and lies between Ti,ε and Ti+1,ε (see Fig. 5(b)). For a point z
which belongs to the ith parallel region of O(−P)q,ε, let z′ be the projection of z
on the common boundary of the medial region of Ti and the ith parallel region.
Then, DP(z, q) can be found by simply computing DP(z′, zi).

Lemma 15. Allowing O(m2) time and space for preprocessing of the polygon
P, the function DP(z, q) can be computed in O(log k log m) time, where z is a
point, and q is a convex polygon with at most k sides.

Proof. We keep three copies Tj , j ∈ {−1, 0, 1} of the processed medial axis of
(−P) as required by Lemma 6. In addition, we preprocess (−P) such that both
traversing and binary searching are possible along each vertex-to-center path of
(−P). Since there are m vertices, there are m such paths. By simply storing each
path as a list, we need a total of O(m2) space and time to preprocess this data
structure (See footnote 2).

To answer the query DP(z, s), we perform a binary search along the cyclic
list of vertices of the polygon q. At each step of the binary search, we select, say,
zi, the ith vertex of q, and decide whether either (i) z is in the medial region;
(ii) z is in the parallel region of the corresponding translated copy of (−P); or
(iii) z is in the left or right side of zi in the cyclic order list of vertices of q.

To decide whether z is in the medial region or in the parallel region of the
corresponding translated copy of (−P), centered at the ith vertex, we do the
following:

Step 1. Place three copies Tj , j ∈ {−1, 0, 1} at the (i − 1)st, ith, and (i + 1)st
vertices of q. Let zi be the ith vertex of q.

Step 2. Find the outer common tangents of T−1, T0 and of T0, T1. This will
allow us to detect the medial region and parallel region of T0 with respect
to q.

Step 3.1. If z is in the medial region of T0, then we can answer DP(z, q) and
report the point q∗ by invoking DP(z, zi). We stop after reporting.

Step 3.2. Else, if z is in the parallel region (see Fig. 5(b)), we perform ray-
shooting on the common boundary Bi between the medial region and the
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parallel region of Ti to find z′, the projection of z on Bi. We obtain DP(z, s)
by computing DP(z′, zi). We can find the point q∗ by translating the point zi

by d(z, z′) along the line segment s, where d(z, z′) is the Euclidean distance
between z and z′.

Step 3.3. Otherwise, determine the side where z lies with respect to zi in the
cyclic list of vertices of q.

Step 1 takes constant time, Step 2 takes O(log m) time assuming that the
polygon (−P) is available as a cyclic list of vertices. Step 3.1 can be done in
O(log m) time as in Lemma 6. Since Bi is a path from a vertex of (−P) to its
center along the medial axis where we can do binary search, we can find z′ in
O(log m) time. Therefore, Step 3.2 takes O(log m) time. Step 3.3 needs constant
time. Thus, at each step of the binary search, we need O(log m) time. In total,
the query time complexity is O(log k log m). �	

The other primitive operation is to find the Voronoi vertex v∗, where the
Voronoi cells, with respect to the polygon-offset distance DP for three polygonal
sites q1, q2, q3, occur in counterclockwise order around v∗. Applying the tentative
prune-and-search paradigm, we can find v∗ similarly to the method used in [7].
The main difference is that here, three different polygons (−P)q1 , (−P)q2 and
(−P)q3 come into the picture instead of three identical copies of (−P). On the
other hand, each O(log m)-time distance evaluation function is replaced by an
O(log k log m)-time operation for evaluating DP(z, q) (by Lemma 15). Thus, we
have the following:

Lemma 16. Given three polygons p1, p2, p3 in the plane, each having at most
k sides, and a convex polygon P with m sides, the point v∗, equidistant from
p1, p2, p3 with respect to the polygon-offset distance DP , can be computed in
O(log k log2 m) time (allowing O(m2) time for preprocessing).

4 Computing a Compact Convex Straight-Skeleton
Voronoi Diagram

As mentioned above, McAllister et al. [17] presented an algorithm for computing
a compact representation of the nearest-site Voronoi diagram of a set of convex
polygonal sites with respect to a convex (scaled) distance function. Here, we show
how to adapt their method to obtain a compact representation of NV DP(Q),
where Q = {q1, q2, . . . , qn} is a set of n convex polygonal sites, each having at
most k sides, and NVDP(Q) is the nearest-site convex-straight-skeleton Voronoi
diagram of these sites, with respect to the convex polygon-offset distance function
DP , where P is an m-sided convex polygon.

For any point z and a polygonal site q, spoke(z, q) is defined as a line segment
z, z∗, such that DP(z, z∗) = min

z′∈q
DP(z, z′). Here, z∗ is referred to as the attach-

ment point of the spoke. Note that spoke(z, q) can be computed in O(log k log m)
time (with O(m2) preprocessing time), where the polygon q has k vertices/edges
(Lemma 15).
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For three sites q1, q2, q3, vertex(q1, q2, q3) is defined as the point v equidistant
from q1, q2, q3 with respect to the polygon-offset distance function DP . From
Lemma 16 we know that vertex(q1, q2, q3) can be computed in O(log k log2 m)
time (with O(m2) preprocessing time).

The compact Voronoi diagram is a simplified version of the full Voronoi
diagram. Here, we maintain a set of spokes from the Voronoi vertices around the
cell, and each polygonal site q is replaced by its core, where a core is the convex
hull of the attachment points that lie on the boundary of q (see [17, Fig. 4]). As
a result, we obtain a compact representation whose combinatorial complexity is
O(n). Note that the combinatorial complexity of NV DP(Q) is O(n(m+ k)) [6],
which is higher than the combinatorial complexity of the compact representation.

Note that each cell of this compact diagram is actually composed of portions
of two cells of the full Voronoi diagram. Thus, we can do the point location
as follows. Given a point z, we can obtain the compact cell and the two corre-
sponding candidate sites qi and qj in O(log n) time. Then, spending additional
O(log k log m) time to compare DP(z, qi) and DP(z, qj), we can determine the
identity of the cell of the full Voronoi diagram in which the point is located.

As observed in [7, Sect. 4], the geometric properties of the compact Voronoi
diagram are preserved when we use a convex polygon-offset distance function
instead of a convex distance function. Hence, we can apply Theorem 3.10 of
[17], which states that the compact representation of the Voronoi diagram can
be computed in O(n(log n + Tv)) time, where Tv is the time needed for per-
forming primitive operations like spoke(z, q) and vertex(q1, q2, q3). For con-
vex polygonal sites, Tv is O(log k log2 m) (this follows from Lemmata 15 and
16). Thus, we can compute a compact Voronoi diagram for NV DP(Q) in
O(n(log n + log k log2 m) + m2) time, where Q is a set of n disjoint convex
polygonal sites, each having at most k sides.

Theorem 17. For a set Q of n convex polygonal sites, each having at most
k sides, the compact representation of the Voronoi diagram NV DP(Q) can be
computed in expected O(n(log n + log k log2 m) + m2) time, where m is the
number of sides of the underlying convex polygon P.

Following the same arguments as in the proof of Theorem 17, we have the
following result.

Theorem 18. For a set S of n line segments, the compact representation of
the nearest-site Voronoi diagram NV DP(S ) can be computed in O(n(log n +
log2 m) + m2) time, where m is the number of sides of the underlying convex
polygon P.
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