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Abstract. We show that finding a minimum-width orthogonal upward
drawing of a phylogenetic tree is NP-hard for binary trees with uncon-
strained combinatorial order and provide a linear-time algorithm for
ordered trees. We also study several heuristic algorithms for the uncon-
strained case and show their effectiveness through experimentation.
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1 Introduction

A phylogenetic tree is a rooted tree that represents evolutionary relationships
among a group of organisms. The branching represents how species are believed
to have evolved from common ancestors and the vertical height of an edge repre-
sents the genetic difference or time estimates for when the species last diverged.
In this paper, we study the algorithmic complexity of producing minimum-width
drawings of phylogenetic trees, in particular we describe it as finding the mini-
mum width drawing of upward orthogonal trees of fixed edge-length. Edge-length
must equal vertical distance because edges can only extend vertically when the
tree is both orthogonal and upward; to allow for more than one outgoing edge,
vertices must extend horizontally.1 See Fig. 1.

Given a phylogenetic tree, T , with a length, Le, defined for each edge e ∈
T , the min-width phylogenetic tree drawing problem is to produce an upward
planar orthogonal drawing of T that satisfies each edge-length constraint (so the
drawn vertical length of each edge e is Le)2 and minimizes the width of the
drawing of T .

The motivation for this problem is to optimize the area of the drawing of a
phylogenetic tree, since the height of the drawing is fixed by the sum of lengths
of the edges on a longest root-to-leaf path. From an algorithmic complexity
perspective this problem is trivial in clock trees for non-extinct species, since all
root-to-leaf paths are of the same length and all leaves must therefore be drawn
1 Alternatively, an upward node-link tree with 1-bend edges and fixed node height.
2 W.l.o.g., each node is embedded below its parent; other orientations, such as drawing

nodes above their parents, are equivalent to this one via rotation.
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Fig. 1. An orthogonal upward drawing of a phylogenetic tree, from [6].

on the same level. Thus, we are interested in the general case, as shown in Fig. 1,
where width improvement is possible by allowing subtrees of extinct species to
lay above the branches of surviving species.

In this paper, we show that min-width phylogenetic tree is NP-hard if the
order of the leaves can be chosen (i.e. unconstrained) and provide a linear-time
algorithm for trees with a fixed leaf ordering. Also, we describe several heuristic
algorithms for the former and show their effectiveness by experimentation.

Related Work. There is considerable prior work on methods for producing com-
binatorial representations of phylogenetic trees, that is, to determine the branch-
ing structures and edge lengths for such trees, e.g., see [17,18,22,28,30]. For this
paper, we assume that a phylogenetic tree is given as input.

Existing software systems produce orthogonal drawings of phylogenetic trees,
e.g., see [7,10,19,23,24,31], but we are not familiar with any previous work
on characterizing the algorithmic complexity of the minimum-width orthogonal
phylogenetic tree drawing problem. Bachmaier et al. [2] present linear-time algo-
rithms producing other types of drawings of ordered phylogenetic trees, including
radial and circular drawings, neither of which are orthogonal drawings.

Several researchers have studied area optimization problems for planar
upward tree drawing without edge-length constraints, e.g., see [1,11–15,20,26,
27]. In terms of hardness, Biedl and Mondal [5] show it is NP-hard to decide
whether a tree has a strictly upward straight-line drawing in a given W × H
grid. Bhatt and Cosmadakis [4] show that it is NP-complete to decide whether
a degree-4 tree has a straight-line (non-upward) orthogonal grid drawing where
every edge has length 1. Gregori [16] extends their result to binary trees and
Brunner and Matzeder [9] extend their result to ternary trees. In addition,
Brandes and Pampel [8] show that several order-constrained orthogonal graph
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Fig. 2. Overview of Theorem 1 (a) General structure. (b) Drawing of reduction corre-
sponding to a satisfying assignment, A = {true, true, false, false}

drawing problems are NP-hard, and Bannister and Eppstein [3] show that com-
pacting certain nonplanar orthogonal drawings is difficult to approximate in
polynomial time unless P = NP . Previous hardness proofs do not apply to the
min-width phylogenetic tree drawing problem, however.

2 Min-Width Phylogenetic Tree Drawing is NP-hard

Theorem 1. Computing the minimum width required for an upward planar
orthogonal drawing of a binary tree with fixed vertical edge lengths is NP-hard.

We prove this via a reduction from NAE-3SAT, a variant of 3SAT in which an
assignment is considered satisfying when each clause’s boolean values are not all
the same. An instance, φ, of NAE-3SAT is defined by n variables X = {x1, ..., xn}
and m clauses C = {c1, ..., cm}. Each clause consists of exactly 3 literals, where a
literal is a negated or non-negated variable. Given a truth assignment, a literal is
considered satisfied if the literal evaluates to true. A truth assignment A satisfies
φ when each clause contains only one or two satisfied literals. Each clause must
therefore also have either one or two unsatisfied literals.

Given a truth assignment, A, we define A to be the truth assignment where
each assigned truth value is the negation of the truth value assigned in A. If
A satisfies φ each clause must contain a satisfied literal, l1, and an unsatisfied
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Fig. 3. Construction pieces: (a) wk substructures (b) Pyramidal embedding of bridge
and base for n = 3

literal, l2, then A must also contain an unsatisfied literal, l1, and a satisfied
literal, l2. Thus for any A satisfying φ, A must also satisfy φ.

We use this property to create a combinatorial phylogenetic tree T from an
instance φ such that T admits an upward orthogonal drawing of width 4n + 4 if
and only if φ is satisfiable. Since the vertical length of each edge is fixed, each
node in T has a fixed level or height at which it needs to be drawn. We say
that two nodes are horizontally aligned when they lie at the same level. Our
reduction follows the general structure shown in Fig. 2a. The top part of the
tree forms a truth-assignment gadget, where each variable has two branches, one
corresponding to a true value (shown in green) and the other corresponding to
a false value (shown in red). The truth-assignment gadget’s combinatorial order
therefore defines truth assignments for A and A, on the left and right, respec-
tively. Figure 2a illustrates all true and all false truth assignments (respectively)
whereas Fig. 2b illustrates a satisfying assignment for a two-clause formula. The
middle part comprises a sequence of clause gadgets, with 3 rows for each clause
gadget, plus rows of alignment nodes, separating the clause gadgets. The bottom
parts of the tree comprise bridge and base gadgets, which ensure that the pair
of branches corresponding to the true and false values for each variable must be
on opposite sides (see Lemma 2).

Let P (k) be a path of k nodes with unit edge-lengths, where p1 is the root
of the path and pi ∈ P, 2 ≤ i ≤ k is the i-th node along the path. A node pi may
have two children, the node pi+1 (if it exists) and some other new node (or two
if i = k). We define the substructures w1, w2, and w3 (Fig. 3a), consisting of the
minimal tree with 1, 2, and 3 leaves at the same height.

We proceed from top to bottom to describe the structure of T . The tree, T ,
is rooted on the first node of a path P (2n), called the variable path. We first
add a w2 component to p2n a unit-length away as its first child, which we use
to root the base. We then add a w2 component as the second child of each node
pi, 1 ≤ i ≤ 2n so the 2n new w2 components lay in horizontal alignment with the
one rooting the base. These 2n w2 components connect each node in the variable
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path to a branch. Of the 2n branches, there are two for each of the n variables
in φ. We label the branch originating from pi with the truth assignment setting
x�(i+1)/2� to ‘true’ if i is odd and ‘false’ if i is even. These branches are now
called assignment branches.

Each assignment branch consists of m clause components connected in a path
by unit-length edges, where the j-th component (for 1 ≤ j ≤ m) belongs to the
clause gadget of clause cj . All clause components belong to the same clause have
the same height, so each clause occupies a distinct horizontal band of space in the
tree. Each clause component consists of one of three possible wk components and
two surrounding alignment nodes, one above the wk component and one below.
Each wk component has height 3 and for clause components corresponding to
the same clause the leaves of all wk are horizontally aligned.

Recall that each variable has two assignment branches associated to it, one
corresponding to setting the variable to true and one to false. A clause compo-
nent is defined by both the clause, cj , and the branch’s labeled truth assignment,
xi = {true, false}. If xi does not participate in clause cj then its clause com-
ponent has a w2 substructure. If xi appears as a literal in cj and evaluating
it with the assigned truth value satisfies the literal then the clause component
has a w3 substructure. However, if the literal is unsatisfied then it contains a
w1 substructure. For example, in Fig. 2b clause c1 = (x1 ∨ x2 ∨ x3), the branch
labeled x1 = true contains w3, whereas x1 = false contains w1 and both x4

assignment branches contain w2.
Top alignment nodes have incoming edges connecting from the bottom align-

ment nodes of the previous clause. These two consecutive rows of alignment nodes
enable the clause gadgets along an assignment branch to be shifted left or right to
efficiently align into the available space within that gadget (see AppendixA.1).

After the last clause component in each branch (labeled with xi) we attach a
node one unit away from the last shifter and give it two children, one 2n−2i+1
units away and the other 2n − 2i + 2. These nodes together form the bridge
gadget.

To build the base, we set a path P (2n + 2) as a child 5m + 2 units away for
each of the two leaves in the remaining copy of w2 attached to p2n. For each
non-leaf node in the path we just connected, we set their remaining child to be
a single node horizontally aligned with the leaf.

Lemma 1. At minimal width, the base and bridge can only assume a pyramidal
embedding. We define a pyramidal embedding as the embedding of the base in
which nodes closer to the root lie closer to the center and nodes further from the
root approach the outer sides, as shown in Fig. 3b.

Proof. This proof is based on the fact that a pyramidal embedding fully occupies
every cell, and thus occupies the least area and minimum width. Furthermore, the
pyramidal embedding is the only minimum width embedding for these gadgets.
We present the complete proof in AppendixA.2.

Lemma 2. The embedding of the truth-assignment gadget defines assignments
A and A.
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Proof. As a consequence of Lemma 1, the two edges coming into the base must
be centered. We refer to these two edges as ‘the split’. The base takes up width
2n+1 on either side of these two edges, and each branch needs width two, so at
most n can fit on either side.

Furthermore, in order for the bridge to assume the pyramidal embedding,
each leaf on the left side must have a corresponding leaf at the same level on
the right side. Note that the height of the leaves in the bridge gadget depends
on which variable branch they are attached to, so that leaves on the same level
correspond to the two assignments of the same variable. Therefore, there is one
assignment branch for each variable on each side, so the assignments labeling the
branches on one side must all be of different variables and thus describe a truth
assignment. The branches on the opposite side have the opposite assignment for
each variable. Let the truth assignment on the left side be A, and the one on
the right side be A. �

Lemma 3. Given truth assignments A and A, a clause in φ is satisfied if and
only if the width used by the clause gadget is at most 2n + 1 on both sides of the
split.

Proof. The maximum number of horizontally aligned nodes on the left side of
the clause gadget is equal to the sum of the width of the wk’s, k ∈ {1, 2, 3}, in
each assignment branch for assignment A. Recall that within a clause gadget
each assignment branch has an embedded copy of either w1, w2 or w3. We define
function pi,j , which describes the width of an embedded copy wk, and Sj(A),
which describes the sum of all the embedded element’s widths, as follows:

Sj(A) =
n∑

i=1

pi,j(A), where pi,j(A) =

⎧
⎪⎨

⎪⎩

3 if A does satisfy xi’s literal in cj

1 if A doesn’t satisfy xi’s literal in cj

2 if cj has no literal of xi

By definition, a clause can only be satisfied if one or two of the clause’s literals
are satisfied and the remaining one or two literals must be unsatisfied. W.l.o.g.
we can assume that each clause consists of two or three literals from distinct
variables.3 For clauses with literals from three distinct variables, any clause cj
satisfied by a truth assignment A must have only one or two satisfied literals. If A
satisfies only one literal in clause, cj , then Sj(A) evaluates to 3+1+1+2(n−3) =
2n − 1, since only 3 of the n variables participate in a clause. If it satisfies two
literals, it evaluates to 3 + 3 + 1 + 2(n − 3) = 2n + 1 instead. If A satisfies cj ,
then A also satisfies cj implying Sj(A) and Sj(A) are both at most 2n + 1. On
the other hand, if A doesn’t satisfy cj , then it either satisfies all three literals,
and Sj(A) evaluates to 3 + 3 + 3 + 2(n − 3) = 2n + 3, or A satisfies all three

3 Degenerate cases to consider include cases when a variable contributes multiple
literals to a single clause. We can safely ignore cases when all three identical literals
are present (which is not satisfiable) and when positive and negated literals of the
same variable are present (since the clause is always satisfied). When a literal is
repeated exactly twice, we handle it as a clause of only the two distinct literals.
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Fig. 4. Original and satisfied clause gadgets for φ = (x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2 ∨ x4)

literals and Sj(A) = 2n + 3. Therefore if A doesn’t satisfy cj , Sj(A) or Sj(A)
will exceed 2n + 1.

For clauses with literals from two distinct variables, any A can only satisfy
cj with one satisfied literal and one unsatisfied literal. Sj(A) and Sj(A) both
evaluate to 3 + 1 + 2(n − 2) = 2n, both remaining strictly less than 2n + 1.
However if A doesn’t satisfy cj then either A satisfies both literals, and Sj(A) =
3 + 3 + 2(n − 2) = 2n + 2, or A satisfies both literals. Therefore if A doesn’t
satisfy cj , Sj(A) or Sj(A) will exceed 2n + 1.

We have now proved that Sj(A) and Sj(A) are both at most 2n + 1 if and
only if A and A both satisfy cj . As long as the clause gadget is able to assume a
dense embedding, the width necessary on opposite sides should be exactly equal
to Sj(A) and Sj(A). The alignment nodes in each clause gadget are sufficient to
guarantee a dense embedding is possible, which we prove in AppendixA.1. �

Wrapping up the main proof, if any clause is not satisfied the clause gadget
will exceed the allowable space of 2n+1 and increase the width to at least 4n+5.
Therefore only a satisfying assignment A would retain a width of 4n+4, proving
that if a satisfying assignment for φ exists then there exists an embedding of T
with width 4n + 4 (Fig. 4).

On the other hand, if a tree T has a drawing of width 4n + 4 then every
clause was satisfied (following Lemma 3), and thus A must describe a satisfying
assignment for φ. This proves that T can be embedded with width 4n + 4 if and
only if φ is satisfiable.

Furthermore, our reduction features a multi-linear number of nodes: the vari-
able gadget has 8n + 3 nodes, the clause gadgets exactly 5mn nodes, the bridge
gadget 6n and the base gadget 8n + 6 totaling exactly 22n + 5mn + 12 nodes.
This completes our proof of Theorem 1.

3 Linearity for Fixed-Order Phylogenetic Trees

Theorem 2. A minimum width upward orthogonal drawing of a fixed-order n-
node phylogenetic tree can be computed in O(n) time.

We provide an algorithm that computes a minimum width drawing. The key
idea is to construct a directed acyclic graph (DAG) of the positional constraints
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Fig. 5. The constraint graph of Lemma 4

between nodes and edges. The DAG can then be processed efficiently to deter-
mine a positioning of each node and edge that ensures the minimum width.
Let S be a set of non-intersecting orthogonal objects (e.g., rectangles and seg-
ments) in the plane. Two objects s and s′ are horizontally visible if there exists
a horizontal segment that intersects s and s′ but no other object of S. Since the
height of each object of our drawing is fully determined by the edge lengths of
the tree, determining which objects are horizontally visible is essential to con-
struct a minimum width drawing. For a fixed order combinatorial phylogenetic
tree T = (V,E), the Constraint Graph D = (U,A) of T is a directed graph with
a vertex for each left and right side (of the rectangle representing the node in
the drawing) of each node of T and one for each edge of T . (See Fig. 5.) An arc
e = uv ∈ A if the objects corresponding to u and v are horizontally visible and
u precedes v as determined by the fixed order.

Lemma 4. The constraint graph D of the fixed order n-node phylogenetic tree
T = (V,E) is a DAG with 3n − 1 vertices and O(n) edges, where n = |V |.
Proof. The key is that D must be planar, for the full proof see AppendixA.3.

The algorithm has two main steps. First, we construct the constraint graph
D, and then we process the constraint graph to find a minimum-width draw-
ing. As we have mentioned, the vertices of D can be constructed directly from
the vertices and edges of T . We now show that the arcs in D can be created
using a single pre-order (node, then children left to right) traversal of the tree,
while growing a frontier indicating the rightmost object seen at each height. We
maintain the frontier efficiently as an ordered list of height ranges. Whenever we
update the frontier we have found a new rightmost object. If we are not extend-
ing the frontier (i.e. adding to the end of the list), then we have covered/partially
covered some object. The two objects must be horizontally visible so we add a
new directed arc from the left object to the right.

For a linear algorithm, we must avoid searching in the frontier for the position
of each object. The key observation is that, while processing a node v of T , the
edges and nodes of the subtree rooted at v only affect the frontier below v. In
other words, the position of v in the frontier doesn’t change while processing
its subtree. When a child is completely processed we can find the next sibling’s
position in the frontier by looking at the position of their parent.
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Once the constraint graph is constructed, it must be processed to find the
positions at which to draw each object. We process the vertices of D in topo-
logical order. Vertices that have no incoming arcs, which are the sources of the
constraint graph, must be the left side of vertices of T and can be positioned at
x-coordinate 0. At each remaining vertex, we check its incoming arcs and assign
it the leftmost position that is to the right of every vertex in its in-neighborhood.
Because the arcs represent the necessary order at each height and the sources
of the DAG are positioned as far left as possible, a simple inductive argument
proves that the resulting drawing has minimum width.

Traversing the tree to construct our DAG requires us to update the frontier
once for every arc, source, and sink of the DAG. Each update takes constant
time, so by Lemma 4 determining the arcs of the constraint DAG takes a total
of O(n) time. The time taken for the processing step includes the topological
sort and the time to check each incoming arc at each vertex. Both of these are
bounded by the number of arcs, so by Lemma4 processing the DAG also takes
O(n) time. In conclusion both steps take O(n) time so the algorithm takes O(n)
in total. This completes the proof of Theorem2.

4 Heuristics and Experiments

Let T be a combinatorial phylogenetic tree. Once the order of the children of each
vertex is determined, we can use Theorem 2 to find a minimum width drawing
that respects the edge lengths. Consequently, a heuristic only needs to define the
ordering of the children in each vertex. We define the flip of a tree (or subtree)
rooted at v as the operation of reversing the order of the children of v and every
descendant of v. Flipping a tree corresponds to flipping its drawing and does not
affect its minimum width.

The greedy heuristic proceeds bottom up from the leaves to the tree’s root.
For each vertex v with children c0, . . . , ck this heuristic assumes that the order
of the subtrees rooted at its children are fixed and finds the way to arrange its
children to minimize width. To do so it considers every possible permutation
and combination of flipped children. In general, for a degree d vertex, the greedy
heuristic checks O(d!3d−1) possible orderings, bounded degree trees therefore
take O(1) time per vertex. Because the algorithm calculates the minimum width
drawing using the O(n) algorithm from Theorem2, and runs it O(1) times per
vertex, the total running time of the heuristic is O(n2) for bounded degree trees.

Theorem 3. The greedy heuristic has an approximation ratio of at least Ω(
√

n),
even for binary phylogenetic trees.

Proof. Recall the structures for wk as described in Fig. 3a and consider equivalent
structures for larger values of k where all k leaves lie in horizontal alignment.
Using this definition of wk, Fig. 6 shows a tree structure where a minimum width
embedding of the subtree in yellow makes it impossible for the entire drawing to
admit minimum width. For a minimum width subtree, the greedy heuristic must
choose the smallest width possible (k+2) thus placing the long edges on opposite
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Fig. 6. Tree structures causing worst case performance for the greedy heuristic.

sides. In an optimal ordering the subtree’s embedding would need to be a unit
wider (k + 3) and place both of long edges adjacent to each other, making the
space below wk available for other subtrees. Label each subtree with the size of
the wk structure inside it, and consider the tree structure with k/2 − 1 subtrees
wk, wk−2...w2. This structure will have an optimal width of (k + 3) + (k/2 − 2)
where the first term accounts for the top-most subtree for wk (in yellow) and the
second from the number of edges connecting to remaining subtrees underneath.
The greedy heuristic must instead place each subtree, enclosed by the long edges,
side-by-side forcing most leaves into distinct columns. Only one pair of leaves per
subtree share their column, therefore the width is equal to the number of leaves
(n + 1)/2 minus the k/2 − 1 overlapping leaves (where n is the total number of
nodes). In total, there are n =

∑k/2−1
i=0 (7+2(k−2i)+1)−1 = k2/2+5k−1 nodes,

from which we find k. We find that k ≈ √
2n, and therefore the approximation

ratio achieved by the greedy heuristic for this tree is (n+1)/2−k/2−1
3k/2+1 ≈ n−√

2n
3
√
2n

=
Θ(

√
n), which proves that greedy can have an approximation at least as bad as

our tree, thus proving the ratio is at least Ω(
√

n). �

Similar to the greedy heuristic, the minimum area heuristic proceeds bottom
up from leaves to root and finds the best way of arranging its children assuming
their sub-trees have a fixed order. While the greedy heuristic minimizes the area
of the tree’s bounding rectangle, the minimum area heuristic minimizes the area
of the orthogonal y-monotone bounding polygon at the expense of a potential
larger total width. The running time is the same as the greedy heuristic and the
approximation ratio is also at least Ω(

√
n) (see Theorem 4 in AppendixA.4).

The hill climbing algorithm is a standard black-box optimization approach.
Beginning from an initial configuration, it repeatedly tests small changes and
keeps them if they do not hurt the quality of the solution. The quality of the
solution is exactly equal to the width of the resulting drawing of the tree, and
each change tested corresponds to reordering one node’s children.

Our simulated annealing algorithm is another black-box optimization app-
roach [21], with the same procedure as hill climbing. The main difference is that
changes hurting the solution’s quality are kept with probability inversely related
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(a) (b) (c)

Fig. 7. Drawings of a tree with 93 nodes (a) Input order, width = 37 (b) Greedy order,
width = 33 (c) Simulated annealing order, width = 26

to both the difference in quality and the number of steps taken so far. Once the
number of steps is large enough, simulated annealing mimics the behavior of the
hill climbing algorithm. Compared to hill climbing, simulated annealing has the
advantage of not being trapped in a local minimum when a poor starting point
was chosen.

Experiments. We evaluate five data sets of real phylogenetic trees obtained from
the online phylogenetic tree database TreeBase [25]. The size and compositions
of the datasets can be seen in Fig. 8. Each tree in TreeBase originates from a
scientific publication, which unfortunately means there are too many for us to
list on this paper; we instead provide a complete list of the studies associated
with phylogenetic trees used in the data sets and complete experiment source
code at github.com/UC-Irvine-Theory/MinWidthPhylogeneticTrees (along
with some interesting drawings).

Each dataset is read using Dendropy [29], an open source Python library
for phylogenetic computing. Each tree is read with an induced order from the
source file, which we will serve as the initial configuration. The datasets are
filtered to contain only trees with existing edge-lengths and maximum degree
3. Edge-lengths are normalized into discrete values that preserve nodes’ original
vertical ordering. For trees with few missing edge-lengths we assume missing
edges are of unit length. These normalized datasets are used to evaluate the
heuristics and produce easily comparable drawings.

Results. The first thing that stands out from our results is that all of our pro-
posed approaches improve on the original input order. A typical example is
shown in Fig. 7, where the input width is improved by the greedy heuristic and
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Fig. 8. Results. The left side shows the composition of the data sets, while the right
side compares the width obtained versus the simulated annealing.

simulated annealing. Secondly, although the greedy and minimum area heuristics
have a bad approximation ratio guarantee, this does not translate to real world
trees. As can be seen in Fig. 8, both heuristics performed well for trees regardless
of size. For example, in the Preferred data set the greedy heuristic achieved the
same width as the Simulated Annealing in 50% of the trees (Fig. 9). However, a
few cases exist where the greedy heuristic significantly under-performs. This is
notable for two reasons: the first is that the greedy heuristic produces a draw-
ing 60% wider than hill climbing, and the second is that the greedy heuristic is
outperformed by the minimum area heuristic.

Finally, it is clear that black-box approaches are useful to find small-width
drawings as they rarely produce drawings wider than those from the heuristics.
However the width decrease achieved by the black box algorithms comes at a
cost in running time, since in our implementation they took around 40 times
longer to converge on average.

Fig. 9. Percent width difference between greedy and simulated annealing depending
on tree size for Preferred dataset.
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A Additional Proofs

A.1 Alignment Nodes

Alignment nodes only need to be able to fully realign satisfied clauses, therefore
within the three structures at least one must be of width three and at least one
of width one. Therefore if we consider the periodicity of the column at which
the edge drops, the maximum possible phase difference in these periods is shown
in Fig. 10. Considering this order as an extreme case is sufficient because after
using both satisfied literal structures (after x3 in c1) the only remaining widths
could be two (which maintains the phase difference) or one (which reduces the
phase difference). The same argument can be made after using both unsatisfied
literal structures after x2.

Fig. 10. Set of consecutive clauses, c1 = x2 ∨ x3 ∨ x6 and c2 = x1 ∨ x2 ∨ x6 requiring
the largest realignment, with satisfying assignment x = {false, true, true, ...} (Color
figure online)

Without alignment nodes it would be impossible to connect x2 and x3 to the
next clause, but adding the two row of alignment nodes (shown in blue) between
clauses enable them to remain connected. This allows each clause to remain tight
and assume width of at most 2n + 1 whenever they are satisfied, regardless of
the previous clause.

A.2 Pyramidal Structure

Recall Lemma 1: At minimal width, the base and bridge can only assume a
pyramidal embedding. We define a pyramidal embedding as the embedding of the
base in which nodes closer to the root lie closer to the center and nodes further
from the root approach the outer sides, as shown in Fig. 3b.

Proof. We define the filled area of a drawing as the sum of the space used by
each node (equal to its width), and the space used by each edge (equal to its
length). The length of the edges is fixed, but we can change the filled area by
changing the layout to minimize the width of the non-leaf nodes. When the base
is in the pyramidal embedding, it fills the least possible area, since every non-leaf
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node must have width equal to its number of children. We now show that this
is the only configuration with minimal area.

We begin from the parents of the base gadget, which belong to a copy of
w2 (Fig. 3a). The two incoming edges from this structure must be next to one
another, with no gap between them. The two nodes at the top level of the base
each then have both a leaf and a large subtree attached.

The width of each of these top-level nodes must be two, and the only way
to achieve this is that each node’s leaf must lie on the inside and its subtree
on the outside. Similarly, for each subsequent node along the path, the same
argument shows that its leaf must lie on the inside. This proves by induction
that the base needs to be in a pyramidal embedding. The bridge then must
fit against the base. The bridge nodes with the lowest leaves must be on the
outside, with the next lowest leaves next to them, and so on by induction back
to the center. This shows that the pyramidal embedding is the unique embedding
that minimizes the filled area. Since the levels containing the base and bridge
nodes are completely packed with no gaps, this also implies that the pyramidal
embedding is the unique embedding that minimizes the width of these levels. �

A.3 Constraint Graph is a DAG

Recall Lemma 4: The Constraint Graph D of the fixed order n-node phylogenetic
tree T = (V,E) is a DAG with 3n − 1 vertices and O(n) edges, where n = |V |.
Proof. Our objects are the left and right sides of each vertex in T , and the edges
in T . This gives us two vertices in D for each vertex in T , and one for each edge.
Since T is a tree, it must have n−1 edges, so D has 3n−1 vertices. If two objects
are horizontally visible, then there is a segment between them that crosses only
those two objects. We will use these segments to build a planar embedding of
D, which will imply that D has O(n) edges.

Let the collection of segments connecting our objects be S. We first construct
a larger planar graph D′, in which the vertices are the endpoints of S. The edges
of D′ include all of the segments in S. We also add edges connecting each vertex
to the vertices immediately above and below it that represent the same object.
By the definition of horizontally visible, each segment in S can only intersect two
objects, so none of the segments in S can intersect. The additional edges also
cannot intersect, since they are ordered by the height of the vertices. Therefore,
D′ is planar.

We then contract all of the edges that connect two vertices in D′ correspond-
ing to the same object. This produces the DAG D. Since D is a contraction of
a planar graph, it must also be planar. �

A.4 Approximation Guarantee for Minimum Area Heuristic

We first describe the running time of the heuristic. For each ordering of the
children, the minimum width drawing is calculated using the algorithm from
Theorem 2 and the bounding polygon is calculated by traversing the tree once
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Fig. 11. Tree structures causing worst case performance for minimum area heuristic.

to find the extreme-most branches, running in O(n). We repeat this O(1) times
per vertex for a total running time of O(n2) for bounded degree trees.

Theorem 4. The minimum area heuristic has an approximation ratio of at least
Ω(

√
n).

Proof. Recall, the structures for wk as defined in Theorem 3 and further con-
strain it to be a complete binary tree with all its k leaves in horizontal align-
ment. Recall the subtrees used in Theorem 3 and note the subtrees used in this
tree instead increase the size of their wk by 3 each time (with the exception of
the first two which have the same wk). Furthermore each subtrees nodes end
immediately before the first node in the subtree two subtrees away, the latter
subtree also has a node aligned with the former’s wk leaves. The leaves in wk

are horizontally aligned with the top node in the next subtree.
Using these definitions Fig. 11 demonstrates a tree structure where a min-

imum area embedding of the two subtrees in yellow makes it impossible for
the entire drawing to admit minimum width and minimum area. The heuris-
tic achieves the right embedding for the subtree but fails to choose the right
embedding for the two sibling subtrees. Although the optimal’s embedding uses
a larger area for the combination of both siblings with wk, it occupies an almost
rectangular space resulting in a really small area (and width) increase when
adding the next subtree. Define each subtree by the size of the wk structure
inside it, consider the tree with 2k/3 subtrees wk, wk+3...w3k. This structure
will have an optimal width of 3k +6. The minimum area heuristic would instead
have two subtrees with their wk on opposite sides and the wk+3 overlapping
the bottom-most wk and every next pair of subtrees overlapping in the same
way. The total width achieved by the minimum area heuristic would there-
fore be

∑2k/6
i=0 (k + 6i + 5) = 2k2/3 + 11k/3 + 5. The total number of nodes is

n =
∑2k/3

i=0 (7+2(k −2i)+1)+6+k = 4k2/9+7k +14, which we can use to find
k in terms of n. We find that k ≈ √

n/2, and therefore the approximation ratio
achieved by the greedy heuristic for this tree is 2k2/3+11k/3+5

3k+6 ≈ 2k
9 = Ω(

√
n). �
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