
Brief Announcement: Reconstructing Binary Trees in Parallel
Ramtin Afshar

Univ. of California, Irvine

afsharr@uci.edu

Michael T. Goodrich

Univ. of California, Irvine

goodrich@uci.edu

Pedro Matias

Univ. of California, Irvine

pmatias@uci.edu

Martha C. Osegueda

Univ. of California, Irvine

mosegued@uci.edu

ABSTRACT
We study the parallel query complexity of reconstructing binary

trees from simple queries involving their nodes. We show that a

querier can efficiently reconstruct a binary tree with a logarithmic

number of rounds and quasilinear number of queries, with high

probability, for various types of queries.

KEYWORDS
tree reconstruction; phylogenetic trees; parallel algorithms

1 INTRODUCTION
Binary trees are ubiquitous in computational applications, including

search trees and phylogenetic trees, the latter of which are rooted

binary trees that represent evolutionary relationships among a

group of organisms. In this paper, we study how to learn binary

trees in terms of a query-complexity measure, Q(n), which is the

total number of queries of a certain type needed to reconstruct a

given tree. Previous work in this area has focused on sequential

reconstruction problems, where queries are issued and answered

one at a time. For example, in pioneering work for this research

area, Kannan et al. [1] show that an n-node binary phylogenetic

tree can be reconstructed sequentially from O(n logn) three-node
relative-distance queries, closer (x ,y, z), which is given three leaf

nodes, x , y, and z, and the response is a determination of which

pair, (x ,y), (x , z), or (y, z), has the lowest common ancestor (lca). In

this paper we are interested in parallel binary tree reconstruction.

To this end, we use a round-complexity parameter, R(n), which
measures the number of rounds of queries needed to reconstruct a

tree such that the queries issued in any round comprise a batch of

independent queries.

We show that an n-node rooted binary tree can be reconstructed

from three-node relative-distance queries with R(n) that is

O(logn) and Q(n) that is O(n logn), with high probability. We also

show that such a tree can be reconstructed from path queries,
which ask whether a given node, u, is an ancestor of a given node,

w , with R(n) that isO(logn) andQ(n) that isO(n logn), w.h.p. This
improvies the previous best bound for Q(n), due to Wang and

Honorio [2], who had a Q(n) bound of O(n log2 n).

Permission to make digital or hard copies of part or all of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for third-party components of this work must be honored.

For all other uses, contact the owner/author(s).

SPAA ’20, July 15–17, 2020, Virtual Event, USA
© 2020 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-6935-0/20/07.

https://doi.org/10.1145/3350755.3400229

2 PARALLEL RELATIVE-DISTANCE QUERIES
Our first parallel reconstruction algorithm uses a randomized divide-

and-conquer approach. In our case, the division process is random

three-way split through a vertex separator, rather than a separator-

based binary split. Initially, all leaves belong to a single partition, L.
Then two leaves, a and b, are chosen uniformly at random from L
and each remaining leaf, c , is queried in parallel against them using

relative-distance queries. Notice that the lowest common ancestor

of a and b splits the tree into three parts. Given a and b, the other
leaves are split into three subsets (R, A, and B) according to their

query results (shown in Fig. 1(a)):

• A: leaves close to a, i.e., for which closer (a,b, c) = (a, c)
• B: leaves close to b, i.e., for which closer (a,b, c) = (b, c)
• R: remaining leaves, i.e., for which closer (a,b, c) = (a,b)

a b

(a,b)

(a)

R

a b

vlca(a, b)

lca(c, d)

lca(a, c)

w lca(e, f)

cc

u
x

(b)

root(Tr)

Figure 1: (a) The subgroups leaves are split into.
(b) A graph detailing how to attach Ta , Tb and Tr .

We then recusively construct the trees, Ta , for A ∪ {a}, Tb , for
B ∪ {b}, and Tr , for R, in parallel. The remaining challenge, of

course, is to merge these trees to reconstruct the complete tree, T .
The subtree of T formed by subset A ∪ B is rooted at an internal

node, v = lca(a,b); hence, we can create a new node, v , label it
“lca(a,b)” and let Ta and Tb be v’s children. If R = ∅, then we are

done. Otherwise, we need to determine the parent of v in T ; that
is, we need to link v into Tr . To identify the parent of v in T , let
us assume inductively that each internal node in Tr has a label

“lca(c,d),” since we recursively label each internal node in T with

such a label. The crucial observation is to note if there exists an edge

(u → w) in Tr , such that u is labeled “lca(c,d)” and closer (a, c,d)
is (a, z) for z ∈ {c,d}, and w is either leaf z or an ancestor of z
labeled“lca(e, f)” with closer (a, e, f) = (e, f), (See Figure 1(b)). If
(u → w) exists then this edgemust be where the parent ofv belongs

in T , and if there is no such edge, the parent of v is the root of T
and the sibling of v is the root of Tr . Thus, we can determine the

edge (u → w) by performing a query, closer (a, c,d), for each each

node v in T (where the label of v is “lca(c,d)”) in parallel.

Theorem 2.1. we can reconstruct an n-node binary tree with
O(n logn) relative-distance queries in O(logn) rounds w.h.p.

Session: Brief Announcement SPAA ’20, July 15–17, 2020, Virtual Event, USA

491

https://doi.org/10.1145/3350755.3400229

SPAA ’20, July 15–17, 2020, Virtual Event, USA Ramtin Afshar, Michael T. Goodrich, Pedro Matias, and Martha C. Osegueda

3 PARALLEL PATH QUERIES
Let T be a degree-d tree, for d = 2 (we use the parameter, d , here
so we can give a more general algorithm in the full paper). Define

a path query, path(x ,y) = 1, iff x is an ancestor of y in T . Our
approach to reconstructing T using parallel path queries is to use a

separator-based divide-and-conquer strategy, that is, find a “near”

edge-separator in T , divide T using this edge, and recurse on the

two remaining subtrees in parallel. The difficulty, of course, is that

the querier has no knowledge of the edges ofT ; hence, the very first
step, finding a “near” edge-separator, is a bottleneck computation.

Fortunately, as we show in the following lemma, if v is a randomly-

chosen vertex, then, with probability depending on d , the path from

root r to v includes an edge-separator.

Lemma 3.1. Let T = (V ,E, r) be an rooted tree of degree d and
let v be a vertex chosen uniformly at random from V . Then, with
probability at least 1

d an even-edge-separator is one of the edges on
the path from r to v .

Definition 3.2. (splitting-edge) In a degree-d rooted tree, an edge

(parent(s), s) is a splitting-edge if |V |

d+2 ≤ |D(s)| ≤ |V |(d+1)
d+2 .

Our algorithm assumes the existence of a randomized method,

find-splitting-edge, which returns a splitting edge in T , with
probability Ω(1/d), and otherwise returns Null. Our reconstruction
algorithm is therefore a randomized recursive algorithm that takes

as input a set of vertices, V , with a (known) root vertex r ∈ V , and

returns the edge set, E, for V . At a high level, our algorithm is to

repeatedly call the method, find-splitting-edge, until it returns a
splitting-edge, at which point we divide the set of vertices using

this edge and recurse on the two resulting subtrees.

In more detail, during each iteration of a while loop, we choose

a vertex v ∈ V uniformly at random. Then, we find the vertices on

the path from r to v and store them in a set, Y , using the fact that a
vertex, z, is on the path from r tov if and only ifpath(z,v) = 1. Then,

we attempt to find a splitting-edge using function find-splitting-
edge. If find-splitting-edge is unsuccessful, we give up on vertex,

v , and restart the while loop with a new choice for v . Otherwise,
find-splitting-edge succeeded and we cut the tree at the returned

splitting-edge, (u,v). All vertices, z ∈ V , where path(v, z) = 1

belong to the subtree rooted at v , thus belonging to V1. Whereas

the remaining vertices belong to V2 and the partition containing

both u and rooted at r . Thus, after cutting the tree we recursively
reconstruct-rooted-tree on V1 and V2.

The main idea for our efficient tree reconstruction algorithm lies

in our find-splitting-edge method, which we describe next. This

method takes as input the vertex v , the vertex set Y , (comprising

the vertices on the path from r to v), and the vertex set V . With

probability depending on d , the output of this method is a splitting-

edge; otherwise, the output is Null. Our algorithm performs a type

of “noisy” search in Y to either locate a likely splitting edge or

return Null as an indication of failure.

Our find-splitting-edge algorithm consists of two phases. We

enter Phase 1 if the size of path Y is too big, i.e., |Y | > |V |/K =
|Y |

C2 log |V |
, whereC2 is a predetermined constant and K = C2 log |V |.

The purpose of this phase is either to pass a shorter path including

an even-edge-separator to the second phase or to find a splitting-

edge in this iteration. The search on the set Y is noisy, because it

involves random sampling. In particular, we take a random sample

S of sizem = C1

√
|V | from path Y (where C1 is a predetermined

constant). We include r and v , the two endpoints of the path Y , to
S . Then, we estimate the number of descendants of s , D(s), for each
s ∈ S . To estimate this number for each s ∈ S , we take a random
sample Xs of K elements from V and we perform queries to find

count(s,Xs). Here, we usem ·K ∈ O(
√
|V | log |V |) queries in a single

round. Then, if all the estimates were less than K/(d + 1), we return
Null as an indication of failure (we guess that all the nodes on the

path Y have too few descendants to be a separator). Similarly, if

all the estimates were greater than
Kd
d+1 , we return Null (we guess

that all the nodes on the path Y have too many descendants to be a

separator). If there exists a node s such that
K
d+1 ≤ count(s,Xs) ≤

Kd
d+1 , we check if s is a splitting-edge by counting its descendants

using verify-splitting-edge. This function takes vertex s and the full
vertex set V to return edge (find-parent(s,V), s) if it is s splitting-
edge and return Null otherwise.

If neither of these three cases happens, we perform queries to

sort elements of S using a trivial quadratic work parallel sort which

takes O(m2) ∈ O(|V |) queries in a single round. We know that two

consecutive nodes w and z exist on the sorted order of S , where
count(w,Xw) > Kd

d+1 and count(z,Xz) <
K
d+1 . We find all the nodes

on Y starting at w and ending at z, and use this as our new Y .
In Phase 2, we expect a path of size under |Y |/K , which is true

with high probability. Otherwise, we just return Null. In this phase,

we estimate the number of descendants much like we did in the

previous phase, except the only difference is that we estimate the

number of descendants for all the nodes on our new path Y . If there

exists a node s ∈ Y such that
K
d+1 ≤ count(s,Xs) ≤

Kd
d+1 , we verify

if it is a splitting-edge, as described earlier.

Finally, let us describe how we find the parent of a node s in
V . We first find, Y , the set of ancestors of v in V in parallel using

|V | queries. Let x ≻ y describe the total order of nodes in path Y ,
where for any x ,y ∈ Y : x ≻ y if and only if path(x ,y) = 1. The

parent of s is the lowest vertex on this path. Then, the key idea is

that if |Y | ∈ O(
√
|V |), then we can sort the elements using O(|V |)

queries. If the path is greater than this amount, then we take S , a

sample of size O(
√
|V |) from the path. Next, we sort this sample

to obtain x1 < · · · < xm for S and then find all of the nodes in Y
which are less than the smallest sample x1. Finally, we replace Y
with these descendants and repeat the whole procedure once again.

We can prove that if we repeat this sampling idea, then with high

probability after only two iterations of sampling, the size of the

path is O(
√
|V |), and therefore, all the nodes of Y can be sorted to

return the minimum.

Theorem 3.3. We can reconstruct an n-node binary tree with
O(n logn) path queries in O(logn) roundes w.h.p.

REFERENCES
[1] Sampath K. Kannan, Eugene L. Lawler, and Tandy J. Warnow. 1996. Determining

the Evolutionary Tree Using Experiments. Journal of Algorithms 21, 1 (1996),
26–50. https://doi.org/10.1006/jagm.1996.0035

[2] Zhaosen Wang and Jean Honorio. 2019. Reconstructing a Bounded-Degree

Directed Tree Using Path Queries. In 57th IEEE Allerton Conference on
Communication, Control, and Computing. See also arxiv.org/abs/1606.05183.

Session: Brief Announcement SPAA ’20, July 15–17, 2020, Virtual Event, USA

492

https://doi.org/10.1006/jagm.1996.0035
arxiv.org/abs/1606.05183

	Abstract
	1 Introduction
	2 Parallel Relative-Distance Queries
	3 Parallel Path Queries
	References

