
Adaptive Exact Learning in a Mixed-Up
World: Dealing with Periodicity, Errors
and Jumbled-Index Queries in String

Reconstruction

Ramtin Afshar1, Amihood Amir2, Michael T. Goodrich1 ,
and Pedro Matias1(B)

1 Department of Computer Science, University of California Irvine, Irvine, USA
{afsharr,goodrich,pmatias}@uci.edu

2 Department of Computer Science, Bar Ilan University, Ramat Gan, Israel
amir@cs.biu.ac.il

Abstract. We study the query complexity of exactly reconstructing
a string from adaptive queries, such as substring, subsequence, and
jumbled-index queries. Such problems have applications, e.g., in com-
putational biology. We provide a number of new and improved bounds
for exact string reconstruction for settings where either the string or the
queries are “mixed-up”.

Keywords: Exact learning · String reconstruction · Jumbled-index
queries · Periodicity · DNA sequencing · Stringology · Substrings ·
Hybridization · Information security

1 Introduction

Exact learning involves asking a series of queries so as to learn a configuration
or concept uniquely and without errors, e.g., see [12]. For example, imagine a
game where a player, Alice, is trying to exactly learn a secret string, S, such
as S = "rumpelstiltskin", which is known only to a magic fairy. Alice may
ask the fairy questions about S, but only if they are in a form allowed by the
fairy, such as “Is X a substring of S?”. Any allowable question that Alice asks
must be answered truthfully by the fairy. Alice’s goal is to learn S by asking
the fewest number of allowable questions. Her strategy is adaptive if her ques-
tions can depend on the answers to previous queries. This exact-learning string-
reconstruction problem might at first seem like a contrived game, but it actually
has a number of applications. For instance, in interactive DNA sequencing, the
fairy’s string is an unknown DNA sequence, S, and allowable queries are “Is X a
substring of S?” Each such question can be answered by a hybridization exper-
iment that exposes copies of S to a mixture containing specific primers to see

The full version of this paper is available in [5].

c© Springer Nature Switzerland AG 2020
C. Boucher and S. V. Thankachan (Eds.): SPIRE 2020, LNCS 12303, pp. 155–174, 2020.
https://doi.org/10.1007/978-3-030-59212-7_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-59212-7_12&domain=pdf
http://orcid.org/0000-0002-8943-191X
http://orcid.org/0000-0003-0664-9145
https://doi.org/10.1007/978-3-030-59212-7_12

156 R. Afshar et al.

which ones bind to S, e.g., see [73]. Thus, we are interested in the exact-learning
complexity of adaptively learning an unknown string via queries of various given
types, that is, for exactly reconstructing a string from queries. Formally, we
are interested in minimizing a query-complexity measure, Q(n), which, in our
case, is the number of queries of certain types needed in order to exactly learn
a string, S. This query-complexity concept comes from machine-learning and
complexity theory, e.g., see [3,12,18,25,32,76,83].

1.1 Related Work

Motivated by DNA sequencing, Skiena and Sundaram [73] were the first to study
exact string reconstruction from adaptive queries. For substring queries, of the
form “Is X a substring of S?”, they give a bound for Q(n) of (σ −1)n+2 log n+
O(σ), where σ is the alphabet size. For subsequence queries, of the form “Is
X a subsequence of S?”, they prove a bound for Q(n) of Θ(n log σ + σ log n).
Recently, Iwama et al. [44] study the problem for binary alphabets, which
removes the additive logarithmic term in this case. These papers do not consider
“mixed-up” strings, however, such as strings that are periodic or periodic with
errors. The abundance of repetitions and periodic runs in genomic sequences is
well known and has been exploited in the last decades for biologic and medical
information (see e.g. [15,16,30,33,35,53,65,66,74,82]). It is somewhat surprising
that this phenomenon has not been used to achieve more efficient algorithms.
Margaritis and Skiena [60] study a parallel version of exact string reconstruc-
tion from queries, which are hybrids of adaptive and non-adaptive strategies,
showing, e.g., that a length-n string can be reconstructed in O(log2 n) rounds
using n substring queries per round. Tsur [77] gives a polynomial approximation
algorithm for the 1-round case. As in [73], these papers do not consider bounds
for Q(n) based on properties of the string such as its periodicity. Cleve et al. [28]
study string reconstruction in a quantum-computing model, showing, for exam-
ple, that a sublinear number of queries are sufficient for a binary alphabet. This
result does not seem to carry over to a classical computing model, however,
which is the subject of our paper.

Another type of query we consider is the jumbled (or histogram)-index
query, first considered in [20,21,26,37] and studied more recently in, e.g. [4,7,
9,10,52,62]. Jumbled indexing has many applications. It can be used as a tool
for de novo peptide identification (as in e.g. [45,50,51]), and has been used as a
filter for searching an image database [27,31,75,81,85]. In this query, which has
received much study of late, but has not been studied before for adaptive string
reconstruction, one is given a Parikh vector, i.e., a vector of frequency counts for
each character in an alphabet, and asked if there is a substring of the reference
string, S, having these frequency counts and, if so, where it occurs in S. Such
reconstruction may aid in narrowing down peptide identification, or focusing on
image retrieval.

Another model for string reconstruction, tangential to ours and studied
extensively, is the one defined by a non-adaptive oracle, e.g., see [1,2,13,14,19–
22,24,26,29,34,36–38,40–43,47–49,54,56,58,59,63,64,67–72,78,79,84]. In this

Adaptive Exact Learning in a Mixed-Up World 157

model we are given a set of answers to queries in advance, and we aim to under-
stand sufficient and necessary conditions on the answers that enable the exact
reconstruction of the string. This model differs from the adaptive one consid-
ered in this paper in that it focuses on the study of combinatorial properties
of strings, rather than on minimizing the number of queries. We review existing
literature for non-adaptive string reconstruction in more detail in the full version
of the paper [5].

1.2 Our Results

We provide new and improved results for exactly reconstructing strings from
adaptive substring, subsequence, and jumbled-index queries. For example, we
believe we are the first to characterize query complexities for exactly recon-
structing periodic strings from adaptive queries, including the following results
for reconstructing a length-n periodic (i.e., “mixed-up”) string, S = pkp′, of
smallest period p, where p′ is a prefix of p and the alphabet has size σ:

– It requires at least |p| lg σ substring or subsequence queries.
– It can be done with σ|p| + �lg |p|� substring queries, if n is known.
– It can be done with O(σ|p| + lg n) substring queries, if n is unknown.
– It can be done with σ�lg n� + 2|p|�lg σ� subsequence queries, for known n.
– It can be done with 2σ�lg n�+2|p|�lg σ� subsequence queries, if n is unknown.

Perhaps our most technical result is that we show that we can reconstruct
a length-n string, S, within Hamming distance d of a periodic string S′ = pkp′,
of smallest period p, using O(min(σn, dσ|p| + d|p| lg n

d+1)) substring queries, if
n is unknown. We also show that we can exactly reconstruct a general length-n
string, S, using 2σ�lg n� + n�lg σ� subsequence queries, if n is unknown. Such
queries are another “mixed-up” setting, since there can be multiple subsequence
matches for a given string. Our bound improves the previous best, decades-old
result, by Skiena and Sundaram [73], who prove a query complexity of 2σ lg n +
1.59n lg σ + 5σ for this case. If n is known, then σ�lg n� + n�lg σ� subsequence
queries suffice. We believe we are the first to study string reconstruction using
jumbled-index queries, which are yet another “mixed-up” setting, since they
simply count the frequency of each character occurring in a substring. We prove
the following results:

– We can reconstruct a length-n string with O(σn) yes/no extended jumbled-
index queries, which include a count for an end-of-string character, $.

– For jumbled-index queries that return an index of a matching substring, string
reconstruction is not possible if this index is chosen adversarially, but is pos-
sible using O(σ + n lg n) queries if it is chosen uniformly at random.

1.3 Preliminaries

We consider strings over the alphabet Σ = {a1, a2, . . . , aσ} of σ letters. The size
of a string X is denoted by |X|. We use X[i] to denote the ith letter of X and

158 R. Afshar et al.

X[i..j] to refer to the substring of X starting at its ith and ending at its jth

letter (e.g., X = X[1..|X|]). We may ignore i when expressing a prefix X[..j] of
X. Similarly, X[i..] is a suffix of X. Occasionally, we will express concatenation
of strings X and Y by X ·Y (instead of XY) to emphasize some property of the
string. A string X concatenated with itself k (resp. infinitely many) times can
be expressed as Xk (resp. X∞). The reversal of a string X is denoted by XR.

A string, S, has period p if S = pkp′, such that k > 0 is an integer and p′ is
a (possibly empty) prefix of p. Further, a string S is periodic if it has a period
that repeats at least twice, i.e. S = pkp′ and k > 11. The following is a well
known result concerning the periodicity of a string, due to Fine and Wilf [39],
which we will need later on.

Lemma 1 (Periodicity Lemma [39]). If p, q are periods of a string X of
length |X| ≥ |p| + |q| − gcd(|p|, |q|), then X also has a period of size gcd(|p|, |q|).

A doubling search is the operation used to determine a number n from a
(typically unbounded) range of possibilities. It involves doubling a query value,
m, until it is greater than n, followed by a binary search to determine n itself.
Its time complexity is 2�lg n� + 12.

Due to space constraints, we defer proofs of Lemmas and Theorems marked
with � to the full version of the paper [5], where we also include pseudo-code
for our algorithms.

2 Substring Queries

In this section, we study query complexities for a string, S, subject to yes/no
substring queries, IsSubstr, i.e. queries of “Is X a substring of S?”. We focus
on the cases where S corresponds to an originally periodic string, that may have
lost its periodicity property due to error corruption. The nature of the errors
is context-dependent. For example, corruption may be caused by transmission
errors or measurement errors.

There are multiple ways to model errors in strings (see [8,11,23,46,55,57,
80]). In this paper, we consider Hamming distance. We say that S is a d-
corrupted periodic string if there exists a periodic string S′ of period p,
such that |S| = |S′| and δ(S′, S) ≤ d, where δ is the Hamming distance. We
refer to p as an approximate period of S. Notice that, depending on d, there
might exist multiple possible strings S′ that originate S.

Our main result in this section is the following.

1 Our algorithms assume that S is periodic (k > 1), while the Periodicity Lemma (1)
only requires a string to have a period (k > 0).

2 A more sophisticated version of this procedure exists (see [17]) that actually improves
the constant in the time complexity, but for simplicity, we use the traditional algo-
rithm, which is asymptotically equivalent.

Adaptive Exact Learning in a Mixed-Up World 159

Theorem 1. We can reconstruct a length-n d-corrupted periodic string S using

O

(
min

(
σn, dσ|p| + d|p| lg n

d + 1

))
queries,

for known d, unknown |p|, regardless of whether we know n, where p is a smallest
approximate period of S.

The algorithm of Theorem 1 is a more elaborate version of a reconstruction
algorithm for the special case of d = 0, i.e. when no errors occurred and S = S′,
and when n is not known in advance.

Theorem 2. We can reconstruct a length-n periodic string, S = pkp′, of small-
est period p, using O(σ|p| + lg n) substring queries, assuming both n and |p| are
unknown in advance.

The algorithm of Theorem 2, in turn, builds from a simple reconstruction
algorithm that handles the case where n is known in advance and d = 0.

For clarity, we will present our results in increasing order of complexity, from
the least general result of d = 0 and known n, to the most general result of
arbitrary d and unknown n.

2.1 Uncorrupted Periodic Strings of Known Size

We first give a simple algorithm to reconstruct a periodic string S = pkp′ of
smallest period p and known size with query complexity O(σ|p|), and then
show how to improve this algorithm to have query complexity σ|p| plus lower-
order terms. Our algorithms use a primitive developed by Skiena and Sun-
daram [73], which we call “append (resp., prepend) a letter.” In the append
(resp., prepend) primitive, we start with a known substring q of S, and we ask
queries IsSubstr(qai) (resp., IsSubstr(aiq)), for each ai ∈ Σ. Note that if we know
that one of the qai (resp., aiq) strings must be a substring, we can save one
query, so that appending or prepending a letter uses at most σ − 1 queries in
this case.

In our simple algorithm3, we iteratively grow a candidate period, q, using
the append primitive until qg(q)−1 is a substring, where g(x) = �n/|x|�. Notice
that q may be an “unlucky” cyclic rotation of p, which only repeats g(p) − 1
times, and we need to account for this possibility. Thus, once we get a substring
corresponding to qg(q)−1, we then append/prepend letters until we recover all
of S.

Theorem 3. � We can reconstruct a length-n periodic string S = pkp′, of
smallest period p, using O(σ|p|) substring queries, assuming n is known in
advance and |p| is unknown.

3 Pseudo-code can be found in the full version of the paper [5], where the number of
queries is also shown for each step involving queries.

160 R. Afshar et al.

With a little more effort, we can improve the constant factor in the query
complexity, by showing that, for k = �n/|p|� > 3, the following implication
holds: if qg(q)−1 is a substring, then q must be a cyclic rotation of p.

Theorem 4. � We can reconstruct a length-n periodic string S = pkp′, of
smallest period p, using at most σ|p| + �lg |p|� substring queries, assuming that:
n is known in advance, k > 3 and |p| is unknown.

Notice that any reconstruction algorithm requires at least |p| lg σ queries.

Theorem 5. Reconstructing a length-n string, S = pkp′, of smallest period p,
requires at least |p| lg σ IsSubstr queries, even if n and |p| are known.

Proof. There are σ|p| possible periods for S. Since each period corresponds to a
different output of a reconstruction algorithm, A, and each query is binary, we
can model any such algorithm, A, as a binary decision tree, where each internal
node corresponds to an IsSubstr query. Each of the σ|p| possible periods must
correspond to at least one leaf of A; hence, the minimum height of A is lg(σ|p|).

	

2.2 Uncorrupted Periodic Strings of Unknown Size

As in Sect. 2.1, we iteratively grow a candidate period q and attempt to recover
S by concatenating q with itself in the appropriate way. The difficulty when n
is unknown is that we can no longer confidently predict g(q). Thus, we can no
longer issue a single query to test if q is the right period. An immediate solution is
to use a doubling search. Unfortunately, this introduces a multiplicative O(lg n)
term into the query complexity. To avoid it, we show how we can take advantage
of the Periodicity Lemma (1) to amortize the extra work needed to recover S.

Let us describe the algorithm4. We start with an empty candidate period q.
At each iteration, we add a letter to q, using the append primitive and, using
a doubling search, determine the run-length t of q, i.e. the maximum integer
t such that qt is a substring of S. If t = 1, we advance to the next iteration
and repeat this process. If, on the other hand, t > 1, we use q to determine the
largest substring T that has a period of size |q|. This can be done efficiently,
using doubling searches, by determining the largest suffix l of q and the largest
prefix r of q, such that IsSubstr(l ·qt ·r). Once T is determined, we check whether
it corresponds to S by checking if there is any letter preceding and succeeding
T . If T corresponds to S, we output it. Otherwise, we update q to be any largest
substring of T whose size is assuredly less than |p|: using Periodicity Lemma (1),
we argue in Lemma 2 below that, if q is not a cyclic rotation of p, then p must
be as large as almost the entire substring T ; more specifically, it must be the
case that |p| > |T | − |q| + 1. Thus, we update q to be a length-(|T | − |q| + 1)
prefix of T (any other substring of T would also work). We use this fact to get

4 Pseudo-code can be found in the full version of the paper [5], where the number of
queries is also shown for each step involving queries.

Adaptive Exact Learning in a Mixed-Up World 161

a faster convergence to a cyclic rotation of p, while making sure that we do not
overshoot |p|. Indeed, this observation will enable us to incur a O(lg n) additive
factor, instead of a multiplicative one. After updating q, we advance to the next
iteration, where a new letter is appended to q, and repeat this process until
T = S.

Lemma 2. Let T be the largest proper substring of S = pkp′, of smallest period
p, such that: |q| is the length of the smallest period of T . Then, |p| > |T |−|q|+1.

Proof. Let us assume, by contradiction, that |p| ≤ |T | − |q| + 1. Then, |T | ≥
|q|+ |p|− 1 and, thus, |T | ≥ |q|+ |p|− gcd(|q|, |p|). In addition, if p is a period of
S, then T must have a period of size |p|. So, by the Periodicity Lemma (1), T also
has a period of size gcd(|q|, |p|). Moreover, since T is the largest proper substring
of S, |p| is not a multiple of |q|. Therefore, T must have a period shorter than
|q|, a contradiction. 	

Let q1, q2, . . . , qm be the sequence of m candidate periods of increasing length,
each of which is the result of the append/prepend primitive at the beginning of
every iteration, e.g. |q1| = 1. In addition, let us use ti to denote the run-length
of qi. Correctness of our algorithm follows from the following two lemmas.

Lemma 3. The algorithm successfully returns S = pkp′, of smallest period p, if
there exists an iteration i ∈ {1, 2, . . . ,m}, such that qi is a cyclic rotation of p.

Proof. If ti > 1, then it is easy to see that the string T computed at iteration i,
must correspond to S. If fi = 1, then the algorithm essentially switches to the
letter-by-letter algorithm, appending or prepending letters until the end, when
qm = S. 	

Lemma 4. There exists an iteration i ∈ {1, 2, . . . ,m}, such that qi is a cyclic
rotation of p.

Proof. Let us assume that there is no such iteration i. Then, since all the qi’s
are increasing in length, it must be the case that there exists an iteration j ∈
{1, 2, . . . ,m − 1}, such that: |qj | < |p|, but |qj+1| > |p|. However, it follows from
Lemma 2 (when ft > 1) and the fact that we add a single letter to qj (when
ft = 1) that p must be at least as large as qj+1, a contradiction. 	

The following lemma shows that we can charge the logarithmic factors,
incurred in each iteration j, to the work that would have been required to find
the letters introduced in qj+1. This establishes the amortization in query com-
plexity.

Lemma 5. � The number of queries performed in the jth iteration is at most
σ(|qj+1| − |qj |) + O(σ), for j < m, or O(σ + lg n), for j = m.

Theorem 2 follows from Lemmas 3 to 5. A detailed proof can be found in the
full version of the paper [5].

162 R. Afshar et al.

2.3 Corrupted Periodic Strings

Let us assume throughout the remainder of this section that S is a d-corrupted
periodic string of approximate period p. Again, the main idea of the algorithm
described in this section consists of: (1) determining a cyclic rotation of a true
period (in this case, there might be multiple true periods), by iteratively growing
a candidate period q, and (2) using q to recover S accordingly. However, in the
presence of errors, each of these steps becomes more difficult to realize efficiently.
For example, in the first step, we might be growing a candidate period q that
includes an error. So, in order to rightfully reject the hypothesis that q is at
most as large as some approximate period p, our algorithm should be able to
tell the difference between (i) |p| = |q| and q includes an error and (ii) |p| > |q|.
Otherwise, the algorithm will keep on growing q until it is equal to S, possibly
incurring σn queries. In addition, the second step of using q to determine S
requires more work, since the presence of errors discards the possibility of simply
concatenating q with itself the required number of times. Because of these issues,
it is crucial that our algorithm understands when a candidate period is or not
free of errors. Thus, the algorithm relies on the following.

Lemma 6. Let A be any length-(2d + 1)|p| substring of a d-corrupted periodic
string S of approximate period p, corresponding to the concatenation of length-
|p| substrings q1, q2, . . . , q2d+1. Then, a cyclic rotation of p must be the only
substring qj appearing at least d + 1 times in q1, q2, . . . , q2d+1.

Proof. Clearly, there is some qi that is a cyclic rotation of p. Moreover, there is
some qj that appears at least d + 1 times in q1, q2, . . . , q2d+1, or the number of
errors would exceed d, by the pigeonhole principle. If i �= j, then each occurrence
of qj , contributes at least 1 error, resulting in at least d+1 errors, a contradiction.
Finally, qj must be the only string with d + 1 appearances in q1, q2, . . . , q2d+1,
by the pigeonhole principle. 	

Let us give the details for our algorithm5, which is able to recover S, even
when its size n is unknown. We maintain an initially empty substring, A, of S, by
extending it with 2d + 1 letters in each iteration, using the append and prepend
primitives (as described in Sect. 2.1), potentially incurring an extra σ queries for
detecting a left or right endpoint of S. In the case that n = |S| < |p|(2d+1), the
last iteration requires only min(2d + 1, |S| − |A|) new letters. Thus, after adding
letters to A in the ith iteration, A is a substring of S of size at most i(2d + 1).
Before advancing to the next iteration, we determine the only possible length-
i candidate period q that could have originated A with at most d errors (by
Lemma 6). At this point we do not know if some approximate period p has size
|p| = i, so we try to use q to recover the rest of the string, halting whenever the
total number of errors exceeds d, in which case we advance to the next iteration
and repeat this process for a new candidate period of size i + 1. This logic is in

5 Pseudo-code can be found in the full version of the paper [5], where the number of
queries is also shown for each step involving queries.

Adaptive Exact Learning in a Mixed-Up World 163

the subroutine Expand(q), described next(See footnote 5). It initializes a string
T to q and expands it by doing the following at each iteration:

1. Appending to T the largest periodic substring of period −→q , where −→q is the
appropriate cyclic rotation of q that aligns with the right-endpoint of T .
This can be done efficiently by determining the maximum value of x, using a
doubling search, for which

IsSubstr(T · (−→q ∞[.. x])),

incurring 2�lg x� + 1 queries. The cyclic rotation −→q can be determined with
no additional queries, by maintaining the value x′, which is the value of x in
the previous iteration, i.e. −→q is the cyclic rotation of q starting at the index
(x′ mod |q| + 2) of q.

2. Prepending to T the largest periodic substring of period ←−q , where ←−q is
the appropriate cyclic rotation of q that aligns with the left-endpoint of T .
This can be done efficiently by determining the maximum value of y, using a
doubling search, for which

IsSubstr(((←−q R)∞[.. y])R · T),

incurring 2�lg y� + 1 queries. The cyclic rotation ←−q can be determined with
no additional queries in a similar fashion to −→q .

3. Determining, if they exist, the letters immediately to the left and to the right
of T , using 2σ queries, and adding them to T .

The expansion process in Expand(q) halts when either the total number of
errors with respect to q, δ(T, q∞[..|T |]), exceeds d (in which case we advance to
the next iteration), or when T = S (in which case we return T).

Remark 1. Expand(q) successfully returns S if and only if q is a cyclic rotation
of some approximate period.

Lemma 7. The number of queries performed during any call to Expand is
O(dσ + d lg n

d+1).

Proof. Each call to Expand uses at most 2(d + 1)σ queries to determine the
corrupted letters, as well as the left/right endpoints of S – the total number of
iterations of the while loop in Expand is d + 1, since every iteration except the
last introduces at least 2 errors in T , and each iteration incurs 2σ queries.

In addition, the number of queries used by Expand(q) during the doubling
searches is

|q|∑
j=1

(2�lg xj� + 2�lg yj� + 2) ,

where xj and yj denote, respectively, the lengths of the substrings determined
via doubling searches in steps 1 and 2, during the jth call to Expand. Since the

164 R. Afshar et al.

total number of iterations is d + 1, there is at most d + 2 such xj ’s and yj ’s.
Moreover, the above summation is maximized when all the xj ’s and yj ’s have
the same average value of at most (n − d)/(d + 1). This follows from Jensen’s
inequality and concavity of log. Thus, the overall time complexity is

O

(
dσ + d lg

n

d + 1

)
.

	

Correctness and query complexity of our algorithm follows from Remark 1

and Lemmas 6 and 7, giving us:

Theorem 6. � We can reconstruct a length-n d-corrupted periodic string S
using O(dσ|p| + d|p| lg n

d+1) queries, for known d, unknown |p|, regardless of
whether we know n, where p is a smallest approximate period of S.

If n is known, we could save the queries used to check the left and right
endpoints of S, but this does not alter the query complexity asymptotically.

We assume a small enough number of errors, following [6]. In particular, if
d = O(k/(1 + lg n)), our algorithm is an improvement to the O(σn) letter-
by-letter algorithm of Skiena and Sundaram [73] for general strings, where
k = �n/|p|�. Thus, our algorithm performs better if there is, on average, at
most 1 error in every other O(1 + lg n)th non-overlapping occurrence of p. If the
number of errors is not small enough, then one should run the letter-by-letter
algorithm intercalated with ours, to get an upper bound of O(σn) queries, giving
us Theorem 1, introduced at the beginning of this section.

3 Subsequence Queries

We study the query complexity for a length-n string, S, subject to yes/no sub-
sequence queries, IsSubseq, i.e., queries of the form “Is X a subsequence of S?”
We begin with a simple lower bound.

Theorem 7. � Reconstructing a length-n periodic string, S = pkp′, of smallest
period p, requires at least |p| lg σ IsSubseq queries, even if n and |p| are known.

Let us next describe an algorithm for reconstructing a periodic length-n
periodic string, S = pkp′, of smallest period p. We begin by performing either
binary searches (if n is known) or doubling search (if n is unknown), using queries
of the form IsSubseq(ai) to determine the number of a’s in S, for each a ∈ Σ.
From all of these queries, we can determine the value of n if it was previously
unknown. This part of our algorithm requires either σ�lg n� or 2σ�lg n� queries
in total, depending on whether we knew n at the outset.

If the number of a’s in S is n, for any a ∈ Σ, then we are done, so let us
assume the number of a’s in S is less than n, for each a ∈ Σ. Thus, when we
complete all our doubling/binary searches, for each letter, a ∈ Σ that occurs

Adaptive Exact Learning in a Mixed-Up World 165

a nonzero number of times in S, we have a maximal subsequence, Sa, of S,
consisting of a’s. Moreover, since S is periodic with a period that repeats k
times, each Sa is periodic with a period that repeats k times. Unfortunately,
at this point in the algorithm, we may not be able to determine k. So next we
create a binary merge tree, T , with each of its leaves associated with a nonempty
subsequence, Sa, much in the style of the well-known merge-sort algorithm, so
that T has height �lg σ�. We then perform a bottom-up merge-like procedure in
T using IsSubseq queries, as follows.

Let v be an internal node in T , with children x and y for which we have
inductively determined periodic subsequences, Sx and Sy, respectively, of S. Let
nx = |Sx| and ny = |Sy|. To create the subsequence, Sv, for v, we need to
perform a merge procedure to interleave Sx and Sy. To do this, we maintain
indices i and j in Sx and Sy, respectively, such that we have already determined
an interleaving, Sv[..i + j], of Sx[..i] and Sy[..j]. Initially, i = j = 0. We then
perform the query IsSubseq(Sv[..i+j]·Sx[i+1]·Sy[j+1..ny]). Suppose the answer
to this query is “yes”. In this case, we set Sv[..i+j +1] = Sv[..i+j] ·Sx[i+1] and
we increment i. If, on the other hand, the answer to the above query is “no”,
then we set Sv[..i + j + 1] = Sv[..i + j] · Sy[j + 1], because in this case we know
that IsSubseq(Sv[..i+j] ·Sy[j +1] ·Sx[i+1..nx]) would return “yes”. If this latter
condition occurs, then we increment j.

Let qv denote this new interleaving prefix, Sv[..i + j], and let k̂ = �n/|qv|�.
If qv

k̂qv
′ is a plausible interleaving of Sx and Sy, where qv

′ is a prefix of qv,
then we next ask the query IsSubseq(qv

k̂qv
′). If the answer is “yes”, then we set

Sv = qv
k̂qv

′ and this completes the merge. Otherwise, we continue incrementally
interleaving Sx and Sy, using the current values of i and j, by iterating the
procedure described above. Clearly, this merge procedure asks at most 2|qv|
queries in total.

Theorem 8. � We can determine a length-n periodic string, S = pkp′, of small-
est period p of unknown size, using 2σ�lg n� + 2|p|�lg σ� IsSubseq queries, if n is
unknown. If n is known, then σ�lg n� + 2|p|�lg σ� IsSubseq queries suffice.

A simple modification of our algorithm also implies the following.

Theorem 9. � We can determine a length-n string, S, using 2σ�lg n�+n�lg σ�
IsSubseq queries, without knowing the value of n in advance. If n is known, then
σ�lg n� + n�lg σ� IsSubseq queries suffice.

This latter theorem improves a result of Skiena and Sundaram [73], who
prove a query bound of 2σ lg n + 1.59n lg σ + 5σ when n is unknown.

4 Jumbled-Index Queries

Jumbled-indexing involves preprocessing a given string, S, so as to determine
whether there exists a substring of S whose letter frequencies match the given
Parikh vector , i.e., a vector ψ = (f1, . . . , fσ) such that fi is the number of

166 R. Afshar et al.

occurrences in S of ai ∈ Σ, e.g., see [4,7,9,10,52,62]. In this section, we study
the query complexity for reconstructing an unknown length-n string, S, using
jumbled-index queries. As observed by Acharya et al. [1,2], strings and their
reversals have the same “composition multiset”. This immediately implies the
following negative result.

Lemma 8. � If S is not a palindrome, then S cannot be reconstructed by yes/no
jumbled-index queries, which return whether there is a substring in S with a given
Parikh vector.

Given that simple yes/no jumbled-index queries are not sufficient for string
reconstruction, let us consider an extended type of yes/no jumbled-index query.

– Jumbled-Indexing with End-of-string symbol “$” (JIE): given an
extended Parikh vector, ψ = (f1, . . . , fσ, f$), for the letters in Σ and an end-
of-string symbol, $, which is not in Σ, this query returns a yes/no response
as to whether there is a substring of S$ with extended Parikh vector ψ.

Unlike the yes/no jumbled-index queries, this variant enables full reconstruction.

Theorem 10. We can reconstruct a length-n string, S, using (σ − 1)n JIE
queries, if n is known, or σ(n + 1) JIE queries, if n is unknown.

Proof. Our method is to use a letter-by-letter reconstruction algorithm via an
adaption of the prepend-a-letter primitive for substring queries. Suppose n is
unknown. Let ψ be an extended Parikh vector for a known suffix, s, of S$;
initially, ψ = (0, 0, . . . , 0, 1) and s = $. Then we perform a jumbled-index query
for ψi, for each ai ∈ Σ, where ψi = ψ except that ψi adds 1 to the fi value
in ψ. If one of these, say, ψi, returns “yes”, then we prepend ai to our known
suffix and we repeat this procedure using ψi for ψ. If all of these queries return
“no”, then we are done. If n is known, on the other hand, then we can skip this
last test of all-no responses and we can also save at least one query with each
iteration, with the algorithm otherwise being the same. 	

We can also consider jumbled-index queries that return an index of a match-
ing substring for a given Parikh vector, if such a substring exists. Though related,
notice that this type of query is not subsumed by the query studied in Acharya
et al. [1,2], which returns the number of occurrences (instead of position) of
matching substrings in S. There is some ambiguity, however, if there is more
than one matching substring; hence, we should consider how to handle such
multiple matches. For example, if a jumbled-index query returns the indices of
all matching substrings, then σ queries are clearly sufficient to reconstruct any
length-n string, for any n, without knowing the value of n in advance. Thus, let
us consider two more-interesting types of jumbled-index queries.

– Adversarial Jumbled-Indexing (AJI): given a Parikh vector, ψ =
(f1, . . . , fσ), this query returns, in an adversarial manner, one of the starting
indices of a matching substring, if such a string exists. If there is no matching
substring, this query returns False.

Adaptive Exact Learning in a Mixed-Up World 167

– Random Jumbled-Indexing (RJI): given a Parikh vector, ψ = (f1, . . . , fσ),
this query returns, uniformly at random, one of the indices of a substring with
Parikh vector ψ if such a substring exists in S. If there is no such substring,
this query returns False.

Unfortunately, for the AJI variant, there are some strings that cannot be fully
reconstructed, but this is admittedly not obvious. In fact, the unreconstructabil-
ity characterization of [1,2] fails for AJI queries, because the symmetry property
used in their construction of pairwise “equicomposable” strings inherently yields
matching substrings with symmetric (e.g. different) positions in S.

Nevertheless, we give a construction of an infinite family of pairwise undis-
tinguishable strings, i.e. two strings such that, for every possible query, there
exists an answer (positive or negative) that is common to both strings. Clearly,
the adversarial strategy is to output these common answers when given either
of these strings. In particular, for all b ≥ 1, consider the two binary strings of
length 4b + 14 given below, which differ only in the middle section, consisting of
01 in the first string and 10 in the second:

S1 = 101101(10)b01(10)b010010

S2 = 101101(10)b10(10)b010010

Theorem 11. � The strings S1 and S2 cannot be distinguished using AJI
queries, for b ≥ 1.

In contrast, the query variant RJI can be used to reconstruct any length-n
string, S, without knowing the value of n in advance. In particular, it is possible
to reconstruct any length-n string, S, using O(σ +n log n) RJI queries with high
probability. Our algorithm for doing this involves a reduction to a multi-window
coupon-collector problem.

Let ψi be a Parikh vector that is all 0’s except for a count of 1 for the letter
ai ∈ Σ. Note that an RJI query using ψi will return one of the ni locations in S
with an ai uniformly at random (if ni > 0). If ni = 0, for any i = 1, 2, . . . , σ, we
learn this fact immediately after one RJI query for ψi, so let us assume, w.l.o.g.,
that ni > 0, for all i = 1, 2, . . . , σ, after performing an initial σ number of RJI
queries.

Recall that in the coupon-collector problem, a collector visits a coupon
window each day and requests a coupon from an agent, who chooses one of n
coupons uniformly at random and gives it to the collector, e.g., see [61]. The
expected number of days required for the collector to get al.l n coupons is nHn,
where Hn is the nth Harmonic number. But this assumes the collector knows
when they have received all n coupons (i.e., the collector knows the value of n).

In a coupon-collector formulation of our reconstruction problem, we instead
have σ coupon windows, one for each letter ai ∈ Σ, where each window i has
ni coupons that differ from the coupons for the other windows, and we do not
know the value of any ni. Each day the collector must choose one of the coupon

168 R. Afshar et al.

windows, i, and request one of its coupons (corresponding to an RJI query
for ψi), which is chosen uniformly at random from the ni coupons for window
i. We are interested in a strategy and analysis for the collector to collect all
n = n1 + n2 + · · · + nσ coupons, with high probability (i.e., with probability at
least 1 − 1/n).

Note that although we do not know the value of any ni, we can nonetheless
test whether the collector has collected all n coupons. In particular, suppose we
have received RJI responses for all indices, 1, 2, . . . , n, for letters in S, and let
ni be the number of ai’s we have found so far. Let ψ′ = (n1, n2, . . . , nσ), and let
ψ′

i be equal to ψ′ except that we increment ni by 1. If an RJI query for each ψ′
i

returns False, then we know we have fully reconstructed S. Thus, if n = 1, then
we can determine this and S after 2σ RJI queries, so let us assume that n ≥ 2.
Further, we can assume we have a bound, N ≥ 2, which is at least n and at
most twice n, by a simple doubling strategy, where we double N any time a test
for n fails and we set N equal to any RJI query response that is larger than N .
Therefore, the remaining problem is to solve the multi-window coupon-collector
problem.

Our strategy for the multi-window coupon-collector problem is simply to visit
the coupon windows in phases, so that in phase i we repeatedly visit window i
until we are confident we have all of its ni coupons, for which the following
lemma will prove useful.

Lemma 9. � Let Ti be the number of trips to window i needed to collect all its
ni ≥ 1 coupons. Then, for any real number β:

Pr (Ti > βni ln N) ≤ ni

Nβ
.

Our strategy, then, is to let β ≥ 2 be constant, and in phase i, implement a
doubling strategy where we perform βNi log N RJI queries for ψi, such that Ni

is an upper bound estimate for ni, which we double each time we get more than
Ni distinct responses to our queries in this phase. So by the end of the phase i,
ni ≤ Ni ≤ 2ni. This gives us:

Theorem 12. � A string, S, of unknown size, n, can be reconstructed using
O(σ + n log n) RJI queries, with high probability.

5 Conclusion and Open Questions

We have studied the reconstruction of strings under the following settings, by
giving efficient reconstruction algorithms and proving lower bounds: (i) periodic
strings of known and unknown sizes, with and without mismatch errors, using
substring queries; (ii) periodic strings of known and unknown sizes, using sub-
sequence queries and (iii) general strings, using variations of jumbled-indexing
queries. For the non-optimal algorithms given here, it would be nice to know
whether there exist matching lower bounds, or whether there exist faster algo-
rithms. We mention additional possible future work in the full version of the
paper [5].

Adaptive Exact Learning in a Mixed-Up World 169

Acknowledgments. This research was funded in part by the U.S. National Science
Foundation under grant 1815073. Amihood Amir was partly supported by BSF grant
2018141 and ISF grant 1475-18.

References

1. Acharya, J., Das, H., Milenkovic, O., Orlitsky, A., Pan, S.: Quadratic-backtracking
algorithm for string reconstruction from substring compositions. In: 2014 IEEE
International Symposium on Information Theory, Honolulu, HI, USA, 29 June–
4 July 2014, pp. 1296–1300. IEEE (2014). https://doi.org/10.1109/ISIT.2014.
6875042

2. Acharya, J., Das, H., Milenkovic, O., Orlitsky, A., Pan, S.: String reconstruction
from substring compositions. SIAM J. Discrete Math. 29(3), 1340–1371 (2015).
https://doi.org/10.1137/140962486

3. Afshani, P., Agrawal, M., Doerr, B., Doerr, C., Larsen, K.G., Mehlhorn, K.: The
query complexity of finding a hidden permutation. In: Brodnik, A., López-Ortiz,
A., Raman, V., Viola, A. (eds.) Space-Efficient Data Structures, Streams, and
Algorithms. LNCS, vol. 8066, pp. 1–11. Springer, Heidelberg (2013). https://doi.
org/10.1007/978-3-642-40273-9 1

4. Afshani, P., van Duijn, I., Killmann, R., Nielsen, J.S.: A lower bound for jumbled
indexing. In: 2020 ACM-SIAM Symposium on Discrete Algorithms (SODA), pp.
592–606 (2020). https://doi.org/10.1137/1.9781611975994.36

5. Afshar, R., Amir, A., Goodrich, M.T., Matias, P.: Adaptive exact learning in
a mixed-up world: dealing with periodicity errors, and jumbled-index queries in
string reconstruction. arXiv preprint arXiv:2007.08787 (2029). https://arxiv.org/
abs/2007.08787

6. Amir, A., Eisenberg, E., Levy, A., Porat, E., Shapira, N.: Cycle detection and
correction. ACM Trans. Alg. 9(1) (2012). Article no. 13

7. Amir, A., Apostolico, A., Hirst, T., Landau, G.M., Lewenstein, N., Rozenberg, L.:
Algorithms for jumbled indexing, jumbled border and jumbled square on run-length
encoded strings. Theor. Comput. Sci. 656, 146–159 (2016). https://doi.org/10.
1016/j.tcs.2016.04.030. http://www.sciencedirect.com/science/article/pii/S030439
751630069X

8. Amir, A., et al.: Pattern matching with address errors: rearrangement distances.
J. Comput. Syst. Sci. 75(6), 359–370 (2009). https://doi.org/10.1016/j.jcss.2009.
03.001

9. Amir, A., Butman, A., Porat, E.: On the relationship between histogram
indexing and block-mass indexing. Philos. Trans. Roy. Soc. Math. Phys.
Eng. Sci. 372(2016) (2014). https://doi.org/10.1098/rsta.2013.0132. https://
royalsocietypublishing.org/doi/abs/10.1098/rsta.2013.0132

10. Amir, A., Chan, T.M., Lewenstein, M., Lewenstein, N.: On hardness of jumbled
indexing. In: Esparza, J., Fraigniaud, P., Husfeldt, T., Koutsoupias, E. (eds.)
ICALP 2014. LNCS, vol. 8572, pp. 114–125. Springer, Heidelberg (2014). https://
doi.org/10.1007/978-3-662-43948-7 10

11. Amir, A., Hartman, T., Kapah, O., Levy, A., Porat, E.: On the cost of interchange
rearrangement in strings. In: Arge, L., Hoffmann, M., Welzl, E. (eds.) ESA 2007.
LNCS, vol. 4698, pp. 99–110. Springer, Heidelberg (2007). https://doi.org/10.1007/
978-3-540-75520-3 11

12. Angluin, D.: Queries and concept learning. Mach. Learn. 2(4), 319–342 (1988).
https://doi.org/10.1023/A:1022821128753

https://doi.org/10.1109/ISIT.2014.6875042
https://doi.org/10.1109/ISIT.2014.6875042
https://doi.org/10.1137/140962486
https://doi.org/10.1007/978-3-642-40273-9_1
https://doi.org/10.1007/978-3-642-40273-9_1
https://doi.org/10.1137/1.9781611975994.36
http://arxiv.org/abs/2007.08787
https://arxiv.org/abs/2007.08787
https://arxiv.org/abs/2007.08787
https://doi.org/10.1016/j.tcs.2016.04.030
https://doi.org/10.1016/j.tcs.2016.04.030
http://www.sciencedirect.com/science/article/pii/S030439751630069X
http://www.sciencedirect.com/science/article/pii/S030439751630069X
https://doi.org/10.1016/j.jcss.2009.03.001
https://doi.org/10.1016/j.jcss.2009.03.001
https://doi.org/10.1098/rsta.2013.0132
https://royalsocietypublishing.org/doi/abs/10.1098/rsta.2013.0132
https://royalsocietypublishing.org/doi/abs/10.1098/rsta.2013.0132
https://doi.org/10.1007/978-3-662-43948-7_10
https://doi.org/10.1007/978-3-662-43948-7_10
https://doi.org/10.1007/978-3-540-75520-3_11
https://doi.org/10.1007/978-3-540-75520-3_11
https://doi.org/10.1023/A:1022821128753

170 R. Afshar et al.

13. Arratia, R., Martin, D., Reinert, G., Waterman, M.S.: Poisson process approxima-
tion for sequence repeats and sequencing by hybridization. J. Comput. Biol. 3(3),
425–463 (1996). https://doi.org/10.1089/cmb.1996.3.425

14. Batu, T., Kannan, S., Khanna, S., McGregor, A.: Reconstructing strings from
random traces. In: Munro, J.I. (ed.) Proceedings of the Fifteenth Annual ACM-
SIAM Symposium on Discrete Algorithms, SODA 2004, New Orleans, Louisiana,
USA, 11–14 January 2004, pp. 910–918. SIAM (2004). http://dl.acm.org/citation.
cfm?id=982792.982929

15. Benson, G.: Tandem repeats finder: a program to analyze DNA sequence. Nucleic
Acids Res. 27(2), 573–580 (1999)

16. Benson, G., Waterman, M.: A method for fast database search for all k-nucleotide
repeats. Nucleic Acids Res. 22, 4828–4836 (1994)

17. Bentley, J.L., Yao, A.C.: An almost optimal algorithm for unbounded search-
ing. Inf. Process. Lett. 5(3), 82–87 (1976). https://doi.org/10.1016/0020-
0190(76)90071-5

18. Bernasconi, A., Damm, C., Shparlinski, I.: Circuit and decision tree complexity of
some number theoretic problems. Inf. Comput. 168(2), 113–124 (2001). https://
doi.org/10.1006/inco.2000.3017. http://www.sciencedirect.com/science/article/pi
i/S0890540100930177

19. Bresler, G., Bresler, M., Tse, D.: Optimal assembly for high throughput shotgun
sequencing. BMC Bioinform. 14(2013). Article number. S18. https://doi.org/10.
1186/1471-2105-14-S5-S18

20. Burcsi, P., Cicalese, F., Fici, G., Lipták, Z.: Algorithms for jumbled pattern match-
ing in strings. Int. J. Found. Comput. Sci. 23(2), 357–374 (2012). https://doi.org/
10.1142/S0129054112400175

21. Butman, A., Eres, R., Landau, G.M.: Scaled and permuted string matching. Inf.
Process. Lett. 92(6), 293–297 (2004). https://doi.org/10.1016/j.ipl.2004.09.002

22. Carpi, A., de Luca, A.: Words and special factors. Theor. Comput. Sci. 259(1–2),
145–182 (2001). https://doi.org/10.1016/S0304-3975(99)00334-5

23. Cayley, A.: LXXVII. Note on the theory of permutations. Lond. Edinb. Dublin
Philos. Mag. J. Sci. 34(232), 527–529 (1849)

24. Chang, Z., Chrisnata, J., Ezerman, M.F., Kiah, H.M.: Rates of DNA sequence
profiles for practical values of read lengths. IEEE Trans. Inf. Theory 63(11), 7166–
7177 (2017). https://doi.org/10.1109/TIT.2017.2747557

25. Choi, S.S., Kim, J.H.: Optimal query complexity bounds for finding graphs.
Artif. Intell. 174(9), 551–569 (2010). https://doi.org/10.1016/j.artint.2010.02.003.
http://www.sciencedirect.com/science/article/pii/S0004370210000251

26. Cicalese, F., Fici, G., Lipták, Z.: Searching for jumbled patterns in strings. In:
Holub, J., Zdárek, J. (eds.) Proceedings of the Prague Stringology Conference
2009, Prague, Czech Republic, 31 August–2 September 2009, pp. 105–117. Prague
Stringology Club, Department of Computer Science and Engineering, Faculty of
Electrical Engineering, Czech Technical University in Prague (2009). http://www.
stringology.org/event/2009/p10.html

27. Cieplinski, L.: MPEG-7 color descriptors and their applications. In: Skarbek, W.
(ed.) CAIP 2001. LNCS, vol. 2124, pp. 11–20. Springer, Heidelberg (2001). https://
doi.org/10.1007/3-540-44692-3 3

28. Cleve, R., et al.: Reconstructing strings from substrings with quantum queries. In:
Fomin, F.V., Kaski, P. (eds.) SWAT 2012. LNCS, vol. 7357, pp. 388–397. Springer,
Heidelberg (2012). https://doi.org/10.1007/978-3-642-31155-0 34

29. Dakic, T.: On the turnpike problem. Simon Fraser University BC, Canada (2000)

https://doi.org/10.1089/cmb.1996.3.425
http://dl.acm.org/citation.cfm?id=982792.982929
http://dl.acm.org/citation.cfm?id=982792.982929
https://doi.org/10.1016/0020-0190(76)90071-5
https://doi.org/10.1016/0020-0190(76)90071-5
https://doi.org/10.1006/inco.2000.3017
https://doi.org/10.1006/inco.2000.3017
http://www.sciencedirect.com/science/article/pii/S0890540100930177
http://www.sciencedirect.com/science/article/pii/S0890540100930177
https://doi.org/10.1186/1471-2105-14-S5-S18
https://doi.org/10.1186/1471-2105-14-S5-S18
https://doi.org/10.1142/S0129054112400175
https://doi.org/10.1142/S0129054112400175
https://doi.org/10.1016/j.ipl.2004.09.002
https://doi.org/10.1016/S0304-3975(99)00334-5
https://doi.org/10.1109/TIT.2017.2747557
https://doi.org/10.1016/j.artint.2010.02.003
http://www.sciencedirect.com/science/article/pii/S0004370210000251
http://www.stringology.org/event/2009/p10.html
http://www.stringology.org/event/2009/p10.html
https://doi.org/10.1007/3-540-44692-3_3
https://doi.org/10.1007/3-540-44692-3_3
https://doi.org/10.1007/978-3-642-31155-0_34

Adaptive Exact Learning in a Mixed-Up World 171

30. Deininger, P.: SINEs: short interspersed repeated DNA elements in higher eukary-
otes. In: Berg, D., Howe, M. (eds.) Mobile DNA, Chap. 27, pp. 619–636. American
Society for Microbiology (1989)

31. Deselaers, T., Keysers, D., Ney, H.: Features for image retrieval: an experimental
comparison. Inf. Retrieval 11(2), 77–107 (2008). https://doi.org/10.1007/s10791-
007-9039-3

32. Dobzinski, S., Vondrak, J.: From query complexity to computational complexity.
In: Proceedings of the Forty-Fourth Annual ACM Symposium on Theory of Com-
puting, STOC 2012, pp. 1107–1116. ACM, New York (2012). https://doi.org/10.
1145/2213977.2214076

33. Domaniç, N.O., Preparata, F.P.: A novel approach to the detection of genomic
approximate tandem repeats in the levenshtein metric. J. Comput. Biol. 14(7),
873–891 (2007)

34. Dud́ık, M., Schulman, L.J.: Reconstruction from subsequences. J. Comb. Theory
Ser. A 103(2), 337–348 (2003). https://doi.org/10.1016/S0097-3165(03)00103-1

35. Dudley, J., Lin, M.T., Le, D., Eshleman, J.R.: Microsatellite instability as a
biomarker for PD-1 blockade. Clin. Cancer Res. 22(4), 813–820 (2016)

36. Elishco, O., Gabrys, R., Médard, M., Yaakobi, E.: Repeat-free codes. In: IEEE
International Symposium on Information Theory, ISIT 2019, Paris, France, 7–12
July 2019, pp. 932–936. IEEE (2019). https://doi.org/10.1109/ISIT.2019.8849483

37. Eres, R., Landau, G.M., Parida, L.: Permutation pattern discovery in biosequences.
J. Comput. Biol. 11(6), 1050–1060 (2004). https://doi.org/10.1089/cmb.2004.11.
1050

38. Fici, G., Mignosi, F., Restivo, A., Sciortino, M.: Word assembly through minimal
forbidden words. Theor. Comput. Sci. 359(1–3), 214–230 (2006). https://doi.org/
10.1016/j.tcs.2006.03.006

39. Fine, N.J., Wilf, H.S.: Uniqueness theorems for periodic functions. Proc. Am. Math.
Soc. 16(1), 109–114 (1965)

40. Gabrys, R., Milenkovic, O.: The hybrid k-Deck problem: reconstructing sequences
from short and long traces. In: 2017 IEEE International Symposium on Information
Theory, ISIT 2017, Aachen, Germany, 25–30 June 2017, pp. 1306–1310. IEEE
(2017). https://doi.org/10.1109/ISIT.2017.8006740

41. Gabrys, R., Milenkovic, O.: Unique reconstruction of coded sequences from multiset
substring spectra. In: 2018 IEEE International Symposium on Information Theory,
ISIT 2018, Vail, CO, USA, 17–22 June 2018, pp. 2540–2544. IEEE (2018). https://
doi.org/10.1109/ISIT.2018.8437909

42. Ganguly, S., Mossel, E., Rácz, M.Z.: Sequence assembly from corrupted shot-
gun reads. In: IEEE International Symposium on Information Theory, ISIT 2016,
Barcelona, Spain, 10–15 July 2016, pp. 265–269. IEEE (2016). https://doi.org/10.
1109/ISIT.2016.7541302

43. Holenstein, T., Mitzenmacher, M., Panigrahy, R., Wieder, U.: Trace reconstruction
with constant deletion probability and related results. In: Teng, S. (ed.) Proceed-
ings of the Nineteenth Annual ACM-SIAM Symposium on Discrete Algorithms,
SODA 2008, San Francisco, California, USA, 20–22 January 2008, pp. 389–398.
SIAM (2008). http://dl.acm.org/citation.cfm?id=1347082.1347125

44. Iwama, K., Teruyama, J., Tsuyama, S.: Reconstructing strings from substrings:
optimal randomized and average-case algorithms (2018)

45. Jeong, K., Bandeira, N., Kim, S., Pevzner, P.A.: Gapped spectral dictionaries and
their applications for database searches of tandem mass spectra. Mol Cell Pro-
teomics (2011). https://doi.org/10.1074/mcp.M110.002220

https://doi.org/10.1007/s10791-007-9039-3
https://doi.org/10.1007/s10791-007-9039-3
https://doi.org/10.1145/2213977.2214076
https://doi.org/10.1145/2213977.2214076
https://doi.org/10.1016/S0097-3165(03)00103-1
https://doi.org/10.1109/ISIT.2019.8849483
https://doi.org/10.1089/cmb.2004.11.1050
https://doi.org/10.1089/cmb.2004.11.1050
https://doi.org/10.1016/j.tcs.2006.03.006
https://doi.org/10.1016/j.tcs.2006.03.006
https://doi.org/10.1109/ISIT.2017.8006740
https://doi.org/10.1109/ISIT.2018.8437909
https://doi.org/10.1109/ISIT.2018.8437909
https://doi.org/10.1109/ISIT.2016.7541302
https://doi.org/10.1109/ISIT.2016.7541302
http://dl.acm.org/citation.cfm?id=1347082.1347125
https://doi.org/10.1074/mcp.M110.002220

172 R. Afshar et al.

46. Jerrum, M.: The complexity of finding minimum-length generator sequences.
Theor. Comput. Sci. 36, 265–289 (1985). https://doi.org/10.1016/0304-
3975(85)90047-7

47. Kalashnik, L.: The reconstruction of a word from fragments. In: Numerical Math-
ematics and Computer Technology, pp. 56–57 (1973)

48. Kannan, S., McGregor, A.: More on reconstructing strings from random traces:
insertions and deletions. In: Proceedings of the 2005 IEEE International Sympo-
sium on Information Theory, ISIT 2005, Adelaide, South Australia, Australia, 4–9
September 2005, pp. 297–301. IEEE (2005). https://doi.org/10.1109/ISIT.2005.
1523342

49. Kiah, H.M., Puleo, G.J., Milenkovic, O.: Codes for DNA sequence profiles. IEEE
Trans. Inf. Theory 62(6), 3125–3146 (2016). https://doi.org/10.1109/TIT.2016.
2555321

50. Kim, S., Bandeira, N., Pevzner, P.A.: Spectral profiles: a novel representation of
tandem mass spectra and its applications for de novo peptide sequencing and
identification. Mol. Cell. Proteomics 8, 1391–1400 (2009)

51. Kim, S., Gupta, N., Bandeira, N., Pevzner, P.A.: Spectral dictionaries: integrating
de novo peptide sequencing with database search of tandem mass spectra. Mol.
Cell. Proteomics 8(1), 53–69 (2009)

52. Kociumaka, T., Radoszewski, J., Rytter, W.: Efficient indexes for jumbled pattern
matching with constant-sized alphabet. In: Bodlaender, H.L., Italiano, G.F. (eds.)
ESA 2013. LNCS, vol. 8125, pp. 625–636. Springer, Heidelberg (2013). https://doi.
org/10.1007/978-3-642-40450-4 53

53. Kolpakov, R., Kucherov, G.: mreps: efficient and flexible detection of
tandem repeats in DNA. Nucleic Acids Res. 31, 3672–3678 (2003).
http://www.loria.fr/mreps/

54. Krasikov, I., Roditty, Y.: On a reconstruction problem for sequences. J. Comb.
Theory Ser. A 77(2), 344–348 (1997). https://doi.org/10.1006/jcta.1997.2732

55. Levenshtein, V.I.: Binary codes capable of correcting, deletions, insertions and
reversals. Soviet Phys. Dokl. 10, 707–710 (1966)

56. Levenshtein, V.I.: Efficient reconstruction of sequences. IEEE Trans. Inf. Theory
47(1), 2–22 (2001). https://doi.org/10.1109/18.904499

57. Lowrance, R., Wagner, R.A.: An extension of the string-to-string correction prob-
lem. J. ACM 22(2), 177–183 (1975). https://doi.org/10.1145/321879.321880

58. Manvel, B., Meyerowitz, A., Schwenk, A.J., Smith, K., Stockmeyer, P.K.: Recon-
struction of sequences. Discrete Math. 94(3), 209–219 (1991). https://doi.org/10.
1016/0012-365X(91)90026-X

59. Marcovich, S., Yaakobi, E.: Reconstruction of strings from their substrings spec-
trum. CoRR abs/1912.11108 (2019). http://arxiv.org/abs/1912.11108

60. Margaritis, D., Skiena, S.S.: Reconstructing strings from substrings in rounds. In:
IEEE 36th Symposium on Foundations of Computer Science (FOCS), pp. 613–620,
October 1995. https://doi.org/10.1109/SFCS.1995.492591

61. Mitzenmacher, M., Upfal, E.: Probability and Computing: Randomized Algo-
rithms and Probabilistic Analysis, 2nd edn. Cambridge University Press, Cam-
bridge (2017)

62. Moosa, T.M., Rahman, M.S.: Indexing permutations for binary strings. Inf.
Process. Lett. 110(18), 795–798 (2010). https://doi.org/10.1016/j.ipl.2010.06.012.
http://www.sciencedirect.com/science/article/pii/S0020019010002012

63. Motahari, A.S., Bresler, G., Tse, D.N.C.: Information theory of DNA shotgun
sequencing. IEEE Trans. Inf. Theory 59(10), 6273–6289 (2013). https://doi.org/
10.1109/TIT.2013.2270273

https://doi.org/10.1016/0304-3975(85)90047-7
https://doi.org/10.1016/0304-3975(85)90047-7
https://doi.org/10.1109/ISIT.2005.1523342
https://doi.org/10.1109/ISIT.2005.1523342
https://doi.org/10.1109/TIT.2016.2555321
https://doi.org/10.1109/TIT.2016.2555321
https://doi.org/10.1007/978-3-642-40450-4_53
https://doi.org/10.1007/978-3-642-40450-4_53
http://www.loria.fr/mreps/
https://doi.org/10.1006/jcta.1997.2732
https://doi.org/10.1109/18.904499
https://doi.org/10.1145/321879.321880
https://doi.org/10.1016/0012-365X(91)90026-X
https://doi.org/10.1016/0012-365X(91)90026-X
http://arxiv.org/abs/1912.11108
https://doi.org/10.1109/SFCS.1995.492591
https://doi.org/10.1016/j.ipl.2010.06.012
http://www.sciencedirect.com/science/article/pii/S0020019010002012
https://doi.org/10.1109/TIT.2013.2270273
https://doi.org/10.1109/TIT.2013.2270273

Adaptive Exact Learning in a Mixed-Up World 173

64. Motahari, A.S., Ramchandran, K., Tse, D., Ma, N.: Optimal DNA shotgun
sequencing: noisy reads are as good as noiseless reads. In: Proceedings of the 2013
IEEE International Symposium on Information Theory, Istanbul, Turkey, 7–12 July
2013, pp. 1640–1644. IEEE (2013). https://doi.org/10.1109/ISIT.2013.6620505

65. Parisi, V., Fonzo, V.D., Aluffi-Pentini, F.: STRING: finding tandem repeats in
DNA sequences. Bioinformatics 19(14), 1733–1738 (2003)

66. Pellegrini, M., Renda, M.E., Vecchio, A.: TRStalker: an efficient heuristic for find-
ing fuzzy tandem repeats. Bioinformatics [ISMB] 26(12), 358–366 (2010)

67. Sala, F., Gabrys, R., Schoeny, C., Mazooji, K., Dolecek, L.: Exact sequence recon-
struction for insertion-correcting codes. In: IEEE International Symposium on
Information Theory, ISIT 2016, Barcelona, Spain, 10–15 July 2016, pp. 615–619.
IEEE (2016). https://doi.org/10.1109/ISIT.2016.7541372

68. Scott, A.D.: Reconstructing sequences. Discrete Math. 175(1–3), 231–238 (1997).
https://doi.org/10.1016/S0012-365X(96)00153-7

69. Shomorony, I., Courtade, T.A., Tse, D.N.C.: Do read errors matter for genome
assembly? In: IEEE International Symposium on Information Theory, ISIT 2015,
Hong Kong, China, 14–19 June 2015, pp. 919–923. IEEE (2015). https://doi.org/
10.1109/ISIT.2015.7282589

70. Shomorony, I., Kamath, G.M., Xia, F., Courtade, T.A., Tse, D.N.C.: Partial DNA
assembly: a rate-distortion perspective. In: IEEE International Symposium on
Information Theory, ISIT 2016, Barcelona, Spain, 10–15 July 2016, pp. 1799–1803.
IEEE (2016). https://doi.org/10.1109/ISIT.2016.7541609

71. Simon, I.: Piecewise testable events. In: Brakhage, H. (ed.) GI-Fachtagung 1975.
LNCS, vol. 33, pp. 214–222. Springer, Heidelberg (1975). https://doi.org/10.1007/
3-540-07407-4 23

72. Skiena, S., Smith, W.D., Lemke, P.: Reconstructing sets from interpoint distances
(extended abstract). In: Seidel, R. (ed.) Proceedings of the Sixth Annual Sympo-
sium on Computational Geometry, Berkeley, CA, USA, 6–8 June 1990, pp. 332–339.
ACM (1990). https://doi.org/10.1145/98524.98598

73. Skiena, S., Sundaram, G.: Reconstructing strings from substrings. J. Comput. Biol.
2(2), 333–353 (1995). https://doi.org/10.1089/cmb.1995.2.333

74. Sokol, D.: TRedD - a database for tandem repeats over the edit distance.
Database J. Biol. Databases Curation 2010(baq003) (2010). https://doi.org/10.
1093/database/baq003

75. Tan, K., Ooi, B.C., Yee, C.Y.: An evaluation of color-spatial retrieval techniques
for large image databases. Multimed. Tools Appl. 14(1), 55–78 (2001). https://
doi.org/10.1023/A:1011359607594

76. Tardos, G.: Query complexity, or why is it difficult to separate NPA ∩ coNPA

from PA by random oracles A? Combinatorica 9(4), 385–392 (1989). https://doi.
org/10.1007/BF02125350

77. Tsur, D.: Tight bounds for string reconstruction using substring queries. In:
Chekuri, C., Jansen, K., Rolim, J.D.P., Trevisan, L. (eds.) APPROX/RANDOM
-2005. LNCS, vol. 3624, pp. 448–459. Springer, Heidelberg (2005). https://doi.org/
10.1007/11538462 38

78. Ukkonen, E.: Approximate string matching with q-grams and maximal matches.
Theor. Comput. Sci. 92(1), 191–211 (1992). https://doi.org/10.1016/0304-
3975(92)90143-4

79. Viswanathan, K., Swaminathan, R.: Improved string reconstruction over insertion-
deletion channels. In: Teng, S. (ed.) Proceedings of the Nineteenth Annual ACM-
SIAM Symposium on Discrete Algorithms, SODA 2008, San Francisco, California,

https://doi.org/10.1109/ISIT.2013.6620505
https://doi.org/10.1109/ISIT.2016.7541372
https://doi.org/10.1016/S0012-365X(96)00153-7
https://doi.org/10.1109/ISIT.2015.7282589
https://doi.org/10.1109/ISIT.2015.7282589
https://doi.org/10.1109/ISIT.2016.7541609
https://doi.org/10.1007/3-540-07407-4_23
https://doi.org/10.1007/3-540-07407-4_23
https://doi.org/10.1145/98524.98598
https://doi.org/10.1089/cmb.1995.2.333
https://doi.org/10.1093/database/baq003
https://doi.org/10.1093/database/baq003
https://doi.org/10.1023/A:1011359607594
https://doi.org/10.1023/A:1011359607594
https://doi.org/10.1007/BF02125350
https://doi.org/10.1007/BF02125350
https://doi.org/10.1007/11538462_38
https://doi.org/10.1007/11538462_38
https://doi.org/10.1016/0304-3975(92)90143-4
https://doi.org/10.1016/0304-3975(92)90143-4

174 R. Afshar et al.

USA, 20–22 January 2008, pp. 399–408. SIAM (2008). http://dl.acm.org/citation.
cfm?id=1347082.1347126

80. Wagner, R.A.: On the complexity of the extended string-to-string correction prob-
lem. In: Rounds, W.C., Martin, N., Carlyle, J.W., Harrison, M.A. (eds.) Proceed-
ings of the 7th Annual ACM Symposium on Theory of Computing, Albuquerque,
New Mexico, USA, 5–7 May 1975, pp. 218–223. ACM (1975). https://doi.org/10.
1145/800116.803771

81. Wang, J., Hua, X.: Interactive image search by color map. ACM Trans. Intell. Syst.
Technol. 3(1), 12:1–12:23 (2011)

82. Wexler, Y., Yakhini, Z., Kashi, Y., Geiger, D.: Finding approximate tandem repeats
in genomic sequences. In: RECOMB, pp. 223–232 (2004)

83. Yao, A.C.C.: Decision tree complexity and Betti numbers. In: Proceedings of the
Twenty-Sixth Annual ACM Symposium on Theory of Computing, STOC 1994,
pp. 615–624. ACM, New York (1994). https://doi.org/10.1145/195058.195414

84. Zenkin, A., Leont’ev, V.K.: On a non-classical recognition problem. USSR Comput.
Math. Math. Phys. 24(3), 189–193 (1984)

85. Zhou, W., Li, H., Tian, Q.: Recent advance in content-based image retrieval: a
literature survey. CoRR abs/1706.06064 (2017). http://arxiv.org/abs/1706.06064

http://dl.acm.org/citation.cfm?id=1347082.1347126
http://dl.acm.org/citation.cfm?id=1347082.1347126
https://doi.org/10.1145/800116.803771
https://doi.org/10.1145/800116.803771
https://doi.org/10.1145/195058.195414
http://arxiv.org/abs/1706.06064

	Adaptive Exact Learning in a Mixed-Up World: Dealing with Periodicity, Errors and Jumbled-Index Queries in String Reconstruction
	1 Introduction
	1.1 Related Work
	1.2 Our Results
	1.3 Preliminaries

	2 Substring Queries
	2.1 Uncorrupted Periodic Strings of Known Size
	2.2 Uncorrupted Periodic Strings of Unknown Size
	2.3 Corrupted Periodic Strings

	3 Subsequence Queries
	4 Jumbled-Index Queries
	5 Conclusion and Open Questions
	References

