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ABSTRACT
Motivated from parallel network mapping, we provide efficient

query complexity and round complexity bounds for graph recon-

struction using distance queries, including a bound that improves

a previous sequential complexity bound. Our methods use a high-

probability parametric parallelization of a graph clustering tech-

nique of Thorup and Zwick, which may be of independent interest.

CCS CONCEPTS
• Theory of computation→ Parallel algorithms.

KEYWORDS
Network mapping; graph reconstruction; parallel algorithms

ACM Reference Format:
Ramtin Afshar, Michael T. Goodrich, Pedro Matias, and Martha C. Osegueda.

2021. Brief Announcement: Parallel Network Mapping Algorithms. In Pro-
ceedings of the 33rd ACM Symposium on Parallelism in Algorithms and Ar-
chitectures (SPAA ’21), July 6–8, 2021, Virtual Event, USA. ACM, New York,

NY, USA, 4 pages. https://doi.org/10.1145/3409964.3461822

1 INTRODUCTION
Suppose we are given access to a connected, undirected graph,

𝐺 = (𝑉 , 𝐸), where the set of 𝑛 vertices, 𝑉 , is known but the set of

edges, 𝐸, is initially unknown. Motivated by network mapping, the

goal of the graph reconstruction problem is to learn 𝐸 by issuing

queries to an oracle that knows 𝐸 in a small number of rounds. In

this paper, we focus on distance queries:

• distance(𝑢, 𝑣): return the number of edges on a shortest path

from 𝑢 to 𝑣 in 𝐺 .

Because of the inherently distributed nature of the network map-

ping motivation, we are interested in algorithms that work in paral-

lel. Thus, we measure the efficiency of a parallel network mapping

algorithm, A, using the following measures, which we define in

terms of 𝑛, the number of vertices in 𝐺 , |𝑉 |.

Permission to make digital or hard copies of part or all of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for third-party components of this work must be honored.

For all other uses, contact the owner/author(s).

SPAA ’21, July 6–8, 2021, Virtual Event, USA
© 2021 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-8070-6/21/07.

https://doi.org/10.1145/3409964.3461822

• 𝑄 (𝑛): the query complexity of A. This is the total number

of queries issued to the oracle.

• 𝑅(𝑛): the round complexity of A. This is the number of

rounds of querying performed byA, where the queries issued
in a round are given in a batch such that any query issued

in a round may not depend on the response to any other

query in that round (but each query may depend on results

of queries from previous rounds).

Prior Related Work. There is considerable prior work on graph
reconstruction, e.g., see [1–6, 6–12, 14–17, 19, 20, 22–24], but most

of this work has focused on how to sequentially reconstruct the

graph, 𝐺 . The most relevant prior work is by Kannan, Mathieu,

and Zhou [19], who give algorithms for reconstructing Δ-degree

connected graphs using𝑂 (Δ3𝑛3/2 log2 𝑛 log log𝑛) distance queries
in expectation, and they prove that any algorithm takes at least

Ω(Δ𝑛 log𝑛/log(log𝑛/logΔ)) queries for the reconstruction.

Our Results. Wefirst provide a parallel implementation of a graph

clustering technique of Thorup and Zwick [25] that allows us to

tune the number of rounds for graph clustering to be any value

between𝑂 (1) and𝑂 (log𝑛), while their original implementation im-

plies an expected round complexity of𝑂 (log𝑛). Moreover, we show

that our complexity bounds hold with high probability
1
. Then, we

provide parallel graph reconstruction algorithms with query com-

plexities and round complexities that improve bounds that can be

derived from previous bounds for graph reconstruction problems.

One of our parallel constructions improves the current best sequen-

tial complexity for reconstructing a degree-Δ graph from distance
queries by [19]. Also, we give a constant-round reconstruction al-

gorithm with query complexity better than the trivial brute-force

algorithm.

2 PARALLEL GRAPH CLUSTERING
We begin by describing our parallel graph clustering algorithm,

whichmay be of independent interest, as it provides a parameterized

parallel extension of awell-known graph clustering result of Thorup

and Zwick [25]. Also, whereas Thorup and Zwick establish their

bounds in expectation, we establish ours with high probability.

We begin with some review from Thorup and Zwick [25]. Let

𝐺 = (𝑉 , 𝐸) be a connected, undirected 𝑛-vertex graph, and let

𝛿 (𝑢, 𝑣) denote the distance between vertices 𝑢 and 𝑣 in 𝐺 . In this

1
We say an event holds with high probability (w.h.p.) if it occurs with probability at

least 1 − 1/𝑛.
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Algorithm 1: parallel-centers(𝑉 , 𝑠, 𝛽):

1 𝐴← ∅,𝑊 ← 𝑉

2 while |𝑊 | > 0 do
3 𝐴′ ← Sample(𝑊, 𝑠)
4 𝐴← 𝐴 ∪𝐴′
5 for𝑤 ∈𝑊 do in parallel
6 𝐶𝐴 (𝑤) ← {𝑣 ∈ 𝑉 : 𝛿 (𝑤, 𝑣) < 𝛿 (𝐴, 𝑣)}
7 𝑊 ← {𝑤 ∈𝑊 : |𝐶𝐴 (𝑤) | > 𝛽𝑛/𝑠}
8 return 𝐴

section, we allow 𝐺 to be weighted, where 𝛿 (𝑢, 𝑣) is the sum of

weights on a shortest path from 𝑢 to 𝑣 , but in our algorithms for

parallel network mapping, we assume 𝐺 is unweighted, in which

case 𝛿 (𝑢, 𝑣) is the number of edges on a shortest path from 𝑢 to 𝑣 .

For a subset 𝐴 ⊆ 𝑉 , let 𝛿 (𝐴, 𝑣) = min𝑎∈𝐴 𝛿 (𝑎, 𝑣), and, for vertices
𝑤, 𝑣 ∈ 𝑉 , let 𝐶𝐴 (𝑤) be the cluster of 𝑤 and 𝐵𝐴 (𝑣) be the bunch
of 𝑣 with respect to 𝐴, defined as follows:

𝐶𝐴 (𝑤) = {𝑣 ∈ 𝑉 | 𝛿 (𝑤, 𝑣) < 𝛿 (𝐴, 𝑣)}
𝐵𝐴 (𝑣) = {𝑤 ∈ 𝑉 | 𝛿 (𝑤, 𝑣) < 𝛿 (𝐴, 𝑣)}

Note that if𝑤 ∈ 𝐴, then 𝐶𝐴 (𝑤) = ∅. Also, observe that bunches
and clusters are “inverses” of each other, in that 𝑣 ∈ 𝐶𝐴 (𝑤) if and
only if 𝑤 ∈ 𝐵𝐴 (𝑣). In addition, notice that clusters and bunches

can only shrink as we add vertices to 𝐴; that is, if 𝐴′ ⊆ 𝐴, then

𝐶𝐴 (𝑤) ⊆ 𝐶𝐴′ (𝑤) and 𝐵𝐴 (𝑣) ⊆ 𝐵𝐴′ (𝑣), for all 𝑣 and𝑤 in 𝑉 .

Now, let 𝛽 ∈ [4, 𝑛), be a “parallelism” parameter and let 𝑠 ∈
[4 ln𝑛, 𝑛) be a “size” parameter. Define a subset,𝐴 ⊆ 𝑉 , to be a set of

(𝛽, 𝑠)-balanced centers if |𝐶𝐴 (𝑤) | ≤ 𝛽𝑛/𝑠 , for all 𝑤 ∈ 𝑉 . Thorup
and Zwick [25] give a sequential algorithm for finding a a set of

(4, 𝑠)-balanced centers of expected size 𝑂 (𝑠 log𝑛). In Algorithm 1,

we give a parallel algorithm for finding a set of (𝛽, 𝑠)-balanced
centers of size 𝑂 (𝑠 log𝛽 𝑛) in 𝑂 (log𝛽 𝑛) rounds w.h.p. Thus, the
parameter 𝛽 allows one to trade off parallel time and cluster size.

Our algorithm (Algorithm 1) takes a graph 𝐺 = (𝑉 , 𝐸) as input
and initializes 𝐴, the eventual output of the algorithm, to be empty,

and𝑊 , the set of nodes 𝑣 ∈ 𝑉 where |𝐶𝐴 (𝑣) | > 𝛽𝑛/𝑠 , to be 𝑉 .

Then, we iteratively add Sample(𝑊, 𝑠) to 𝐴, and replace𝑊 with

vertices𝑤 ∈𝑊 such that |𝐶𝐴 (𝑤) | > 𝛽𝑛/𝑠 , in parallel. The function,

Sample(𝑊, 𝑠), returns𝑊 if |𝑊 | ≤ 𝑠 and, otherwise, returns a set of

elements from𝑊 such that each element in𝑊 is selected indepen-

dently at random with probability 𝑠/|𝑊 |. We continue in this way

until𝑊 = ∅.
Since the size of a cluster, |𝐶𝐴 (𝑤) |, does not increase as we add

more vertices to 𝐴, the set 𝐴 returned by our algorithm is a set of

(𝛽, 𝑠)-balanced centers. Also, the Sample function returns a sample

of size at most 2𝑠 with probability at least 1−𝑒−𝑠/3, which holds with
high probability across all iterations when 𝑠 ≥ 4 ln𝑛, by a standard

Chernoff bound, e.g., see [21, p. 69]. Incidentally, Thorup and Zwick

use the same Sample function, but don’t bound its maximum size

as we do. This high-probability upper bound for the sample size is

not sufficient to achieve a high-probability bound, however, for the

entire parallel graph clustering algorithm.

To that end, we define a parameter, 𝛼 , as follows:

𝛼 =

{
2 if 𝛽 ≤ ((4/3)𝑒)4

(4/3)𝑒𝛽1/2 otherwise

where 𝑒 ≈ 2.71828 is Euler’s number. This definition of 𝛼 is made

so that we achieve high probability bounds for a range of 𝛽 values.

Let𝑊𝑖 denote the set𝑊 at the beginning of iteration 𝑖 , let 𝐴′
𝑖

denote the set 𝐴′ that was added in iteration 𝑖 , and let 𝐴𝑖 denote

the set 𝐴 in this iteration, including the set, 𝐴′
𝑖
, i.e., 𝐴𝑖 = 𝐴𝑖−1 ∪𝐴′𝑖 ,

for 𝑖 = 1, 2, . . ., where 𝐴0 = ∅. Say that iteration 𝑖 is “bad” if the

following inequality holds:∑
𝑤∈𝑊𝑖

|𝐶𝐴′
𝑖
(𝑤) | > 𝛼𝑛 |𝑊𝑖 |

𝑠
,

and that otherwise it is “good”. Note that, since𝑊𝑖 is a given for

iteration 𝑖 , whether iteration 𝑖 is good or bad depends only on 𝐴′
𝑖
.

Lemma 2.1 (Thorup-Zwick [25], Lemma 3.2). Let𝑊 ⊆ 𝑉 , let
1 ≤ 𝑠 ≤ 𝑛, and let 𝐴′ ← Sample(𝑊, 𝑠). Then, for every 𝑣 ∈ 𝑉 ,
𝐸 [ |𝐵𝐴′ (𝑣) ∩𝑊 | ] ≤ |𝑊 |/𝑠 .

This implies the following:

𝐸


∑
𝑤∈𝑊𝑖

|𝐶𝐴′
𝑖
(𝑤) |

 = 𝐸

[ ∑
𝑣∈𝑉
|𝐵𝐴′

𝑖
(𝑣) ∩𝑊𝑖 |

]
≤ 𝑛 |𝑊𝑖 |

𝑠
.

Therefore, by Markov’s inequality, an iteration is bad with prob-

ability at most 1/𝛼 .
Let𝑊𝑖+1 denote the set of vertices,𝑊 , whose clusters have size

at least 𝛽𝑛/𝑠 at the end of a good iteration 𝑖 . As𝑊𝑖+1 ⊆ 𝑊𝑖 , and

𝐶𝐴𝑖
(𝑤) ⊆ 𝐶𝐴′

𝑖
(𝑤), for all𝑤 ∈ 𝑉 , in a good iteration we have:

𝛽𝑛 |𝑊𝑖+1 |
𝑠

≤
∑
𝑤∈𝑊𝑖

|𝐶𝐴𝑖
(𝑤) | ≤

∑
𝑤∈𝑊𝑖

|𝐶𝐴′
𝑖
(𝑤) | ≤ 𝛼𝑛 |𝑊𝑖 |

𝑠
;

hence, |𝑊𝑖+1 | ≤ (𝛼/𝛽) |𝑊𝑖 | in a good iteration. Thus, the num-

ber of good iterations of our algorithm is 𝑂 (log(𝛽/𝛼) 𝑛), which is

𝑂 (log𝛽 𝑛) for either choice of 𝛼 . Moreover, because an iteration is

good independent of whether any other iteration is good or bad, we

may use Chernoff bounds to show that the number of bad iterations

is also 𝑂 (log𝛽 𝑛) w.h.p., for either value of 𝛼 . This gives us the

following:

Theorem 2.2. Given an undirected, connected graph, 𝐺 = (𝑉 , 𝐸),
we can find a set, 𝐴, of (𝛽, 𝑠)-balanced centers of size 𝑂 (𝑠 log𝛽 𝑛) in
𝑂 (log𝛽 𝑛) parallel rounds w.h.p.

For example, if 𝛽 = 4, then we construct𝐴 to have size𝑂 (𝑠 log𝑛)
in 𝑂 (log𝑛) rounds, and if 𝛽 = 𝑛𝜖 , for some constant 0 < 𝜖 < 1/2,
then we construct 𝐴 to have size 𝑂 (𝑠) in 𝑂 (1) rounds.

3 PARALLEL NETWORK MAPPING
ALGORITHM FOR DEGREE-Δ GRAPHS

In this section, we provide an efficient parallel network mapping

algorithm for an 𝑛-vertex connected, undirected, unweighted graph

with maximum degree, Δ. Our parallel algorithm just uses distance
queries, and we perform all the queries needed in our algorithm

in a subroutine, Distances(𝑣,𝑉 ), which determines the distance,
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Algorithm 2: Our parallel querying algorithm, estimated-
parallel-centers(𝑉 , 𝑠, 𝛽), for finding a set of (𝛽, 𝑠)-balanced
centers 𝐴.

1 𝐴← ∅,𝑊 ← 𝑉

2 𝑇 ← 𝑐1 (𝑠/𝛽) log𝑛 // 𝑇 = expected size of our estimation set;

𝑐1 is a constant set in the analysis

3 while |𝑊 | > 0 do
4 𝐴′ ← Sample(𝑊, 𝑠)
5 𝐴← 𝐴 ∪𝐴′
6 𝑅 ← a random subset s.t. each 𝑣 ∈ 𝑉 is chosen

independently with probability 𝑇 /𝑛
7 for each 𝑟 ∈ 𝑅 do in parallel
8 Distances(𝑟,𝑉 )
9 for𝑤 ∈𝑊 do in parallel

10 𝑆 (𝑤) ← {𝑣 ∈ 𝑅 : 𝛿 (𝑤, 𝑣) < 𝛿 (𝐴, 𝑣)} //
𝑆 (𝑤) = 𝐶𝐴 (𝑤) ∩ 𝑅

11 𝑊 ← {𝑤 ∈𝑊 : |𝑆 (𝑤) | > 2𝛽𝑇 /𝑠} // that is,
|𝑆 (𝑤) | (𝑛/𝑇 ) > 2𝛽𝑛/𝑠

12 return 𝐴

𝛿 (𝑣,𝑤), for a given 𝑣 ∈ 𝑉 and every other 𝑤 ∈ 𝑉 , by issuing a

distance(𝑣,𝑤) query, for each𝑤 ∈ 𝑉 in parallel.

The key idea of our parallel network mapping algorithm is to

first find a set, 𝐴, of (𝛽, 𝑠)-balanced centers, using our parallel

algorithm from the previous section, and then use this set of centers

to compute a graph-theoretic Voronoi diagram [13, 18] for 𝐺 , from

which we may efficiently then perform a brute-force querying step

for each Voronoi region. This initial center-finding step runs in

𝑂 (log𝛽 𝑛) rounds and builds a set,𝐴, of size𝑂 (𝑠 log𝛽 𝑛). One of the
challenges in implementing this algorithm efficiently in parallel

using distance queries is that we need to determine cluster sizes

for all vertices in 𝑉 in each iteration, which would take too many

queries to compute exactly. So, rather than compute such sizes

exactly, we instead build a global random set, 𝑅, which we use to

approximate the size of each cluster. We can accurately estimate

the size of the clusters for all the vertices in 𝑉 with respect to a

candidate set, 𝐴, of centers by appropriately choosing𝑇 , the size of

set 𝑅. We give the details in Algorithm 2.

Lemma 3.1. Our estimated-parallel-centers algorithm constructs
a set, 𝐴, of (3𝛽, 𝑠)-balanced centers of size 𝑂 (𝑠 log𝛽 𝑛) in 𝑂 (log𝛽 𝑛)
parallel rounds, using𝑂 (𝑛(𝑠/𝛽) log𝑛 · log𝛽 𝑛) distance queries w.h.p.

This gives us the following corollaries.

Corollary 3.2. If 𝛽 = 𝑛𝜖 , for some constant 0 < 𝜖 < 1/2, then
estimated-parallel-centers(𝑉 , 𝑠, 𝛽) performs 𝑂 (𝑛1−𝜖𝑠 log𝑛) distance
queries in 𝑂 (1) rounds and outputs a set of (𝑂 (𝑛𝜖 ), 𝑠)-balanced cen-
ters, 𝐴, of size 𝑂 (𝑠) w.h.p.

Corollary 3.3. If 𝛽 = 4, then estimated-parallel-centers(𝑉 , 𝑠, 𝛽)
performs 𝑂 (𝑛𝑠 log2 𝑛) distance queries in 𝑂 (log𝑛) rounds and out-
puts a set of (𝑂 (1), 𝑠)-balanced centers, 𝐴, of size 𝑂 (𝑠 log𝑛) w.h.p.

Now that we have defined and analyzed the function estimated-
parallel-centers(𝑉 , 𝑠, 𝛽), let us next turn to our parallel algorithm for

reconstructing a connected, unweighted graph, 𝐺 , with maximum

degree Δ. This algorithm (Algorithm 3, reconstruct(𝑉 )) takes as

Algorithm 3: Parallel network mapping

1 Function reconstuct(𝑉 ):
2 𝐴← estimated-parallel-centers(𝑉 , 𝑠, 𝛽) // for each

𝑎 ∈ 𝐴, we also get 𝑁2 (𝑎) and 𝛿 (𝑎, 𝑣), for each 𝑣 ∈ 𝑉
3 for each 𝑎 ∈ 𝐴 do in parallel
4 Distances(𝑎,𝑉 )
5 for each 𝑎 ∈ 𝐴 do in parallel
6 𝐸𝑎 ← Exhaustive-Query(𝑁2 (𝑎))
7 for 𝑏 ∈ 𝑁2 (𝑎) do in parallel
8 Distances(𝑏,𝑉 )
9 𝐶𝐴 (𝑏) ← {𝑣 ∈ 𝑉 : 𝛿 (𝑏, 𝑣) < 𝛿 (𝐴, 𝑣)}

10 𝐸𝑎,𝑏 ← Exhaustive-Query(𝐶𝐴 (𝑏))
11 return

⋃
𝑎∈𝐴

(
𝐸𝑎 ∪

⋃
𝑏∈𝑁2 (𝑎) 𝐸𝑎,𝑏

)
input the vertex set 𝑉 , and outputs, 𝐸, the set of edges of the graph

𝐺 = (𝑉 , 𝐸). Let 𝐴 ⊆ 𝑉 be a set of centers, which in our network

mapping algorithm will come from a call to our estimated-parallel-
centers(𝑉 , 𝑠, 𝛽) algorithm. For any center, 𝑎 ∈ 𝐴, let 𝑁2 (𝑎) be the
set of 2-neighboring vertices of 𝑎 in 𝑉 , that is, 𝑁2 (𝑎) = {𝑣 ∈ 𝑉 :

𝛿 (𝑎, 𝑣) ≤ 2}. Note that, since𝐺 has maximum degree, Δ, |𝑁2 (𝑎) | ≤
Δ2 + 1. The following lemma shows that it is sufficient to consider

the 2-neighbors and clusters defined by 2-neighbors, for each center

𝑎 ∈ 𝐴, in order to cover all the edges in 𝐸.

Lemma 3.4. Let (𝑢, 𝑣) be an edge in 𝐸. Then there exists a center,
𝑎 ∈ 𝐴, such that 𝑢 and 𝑣 are both in 𝑁2 (𝑎) or both in𝐶𝐴 (𝑏) for some
𝑏 ∈ 𝑁2 (𝑎).

Lemma 3.4 establishes the correctness for our parallel network

mapping algorithm, which we give in detail in Algorithm 3.

Through a call to estimated-parallel-centers(𝑉 , 𝑠, 𝛽), we find a

set of (𝑂 (𝛽), 𝑠)-balanced centers,𝐴. Next, we issue distance queries
from each vertex 𝑎 ∈ 𝐴 to be able to identify nodes in 𝑁2 (𝑎). Then,
our mapping algorithm, reconstruct, constructs graph-theoretic
Voronoi diagram for the centers in𝐴, and then “branches out” from

each center𝑎 ∈ 𝐴 by considering the nodes in𝑁2 (𝑎) and the clusters
defined by nodes in 𝑁2 (𝑎). Finally, after having done this Voronoi
decomposition, our algorithm performs an exhaustive search in

each cluster in parallel, in 𝑂 (1) rounds.
The following lemma characterizes the query complexity and

round complexity.

Lemma 3.5. Suppose estimated-parallel-centers(𝑉 , 𝑠, 𝛽) has query
complexity, 𝑄 (𝑛), and round complexity, 𝑅(𝑛). Then Algorithm 3
reconstructs 𝐺 using 𝑂 (𝑄 (𝑛) + Δ2 (𝑛 + (𝛽𝑛/𝑠)2)𝑠 log𝛽 𝑛) queries in
𝑂 (𝑅(𝑛)) rounds, assuming Δ is 𝑂 (

√
𝑛).

Proof. The round complexity of our reconstruction algorithm

is dominated by the call to estimated-parallel-centers, since the
rest of the algorithm can be done in 𝑂 (1) rounds. With respect to

query complexity, since 𝐴 has size 𝑂 (𝑠 log𝛽 𝑛), we need at most

𝑂 (𝑛𝑠 log𝛽 𝑛) queries to find the distances from each 𝑎 ∈ 𝐴 to each

𝑣 ∈ 𝑉 . Since each 2-neighbor set has size 𝑂 (Δ2), we need at most

|𝐴|Δ2𝑛 ∈ 𝑂 (𝑛Δ2𝑠 log𝛽 𝑛) queries to find the distances to each 𝑣 ∈ 𝑉
from each vertex𝑏 ∈ 𝑁2 (𝑎) for each center 𝑎 ∈ 𝐴. Further, for brute
force querying in every cluster, we need atmost |𝐴| (Δ4+Δ2 (𝛽𝑛/𝑠)2)
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queries, since each 2-neighbor set has size 𝑂 (Δ2) and each cluster

has size𝑂 (𝛽𝑛/𝑠). Altogether, the total query complexity adds up to

be 𝑂 (𝑄 (𝑛) + Δ2 (𝑛 + (𝛽𝑛/𝑠)2)𝑠 log𝛽 𝑛) queries, if Δ is 𝑂 (
√
𝑛). □

By plugging in our derived bounds for the estimated-parallel-
centers algorithm, we get the following theorems.

Theorem 3.6. One can reconstruct an 𝑛-vertex connected graph,
𝐺 = (𝑉 , 𝐸), with 𝑂 (Δ2𝑛3/2+𝜖 ) distance queries in 𝑂 (1) rounds, for
constant 0 < 𝜖 < 1/2, w.h.p.

Proof. Set 𝛽 = 𝑛𝜖 and 𝑠 = 𝑛1/2+𝜖 in the estimated-parallel-
centers(𝑉 , 𝑠, 𝛽) method. The claimed bounds follow from corol-

lary 3.2 and lemma 3.5. □

The above theorem establishes an improvement over the brute-

force querying algorithm for solving the parallel network mapping

problem in 𝑂 (1) rounds. The next theorem establishes a bound for

solving the parallel network mapping problem in 𝑂 (log𝑛) rounds.

Theorem 3.7. One can reconstruct an 𝑛-vertex connected undi-
rected graph, 𝐺 = (𝑉 , 𝐸), with 𝑂 (Δ2𝑛3/2 log3/2 𝑛) distance queries
in 𝑂 (log𝑛) rounds w.h.p.

Proof. Set 𝛽 = 4 and 𝑠 = (𝑛/log𝑛)1/2 in the estimated-parallel-
centers(𝑉 , 𝑠, 𝛽) method. The claimed bounds then follow from corol-

lary 3.3 and lemma 3.5. □

Even though this is a parallel algorithm, it improves the sequen-

tial query complexity of an algorithm in [19] for graph reconstruc-

tion via distance queries by an𝑂 (Δ log
1/2 𝑛 · log log𝑛) factor, while

also improving the bounds to hold with high probability rather

than in expectation. Also, while the algorithm by Kannan, Mathieu,

and Zhou [19] needs to know the maximum degree, Δ, in order to

reconstruct the graph, our algorithm is oblivious to Δ.

4 CONCLUSION
We have given algorithms for solving the parallel network mapping

problem in parallel using 𝑂 (1) or 𝑂 (log𝑛) rounds. We have also

given new, parallel implementations for graph clustering, which

provide tradeoffs between the number of center vertices and the

sizes of clusters. Even for sequential algorithms, this result may

prove useful for applications where minimizing the number of

center points is a primary optimization goal. For instance, one can

apply our construction to the problems studied by Honiden, Houle,

Sommer [18] for balancing graph-theoretic Voronoi diagrams to

shave a 𝑂 (log𝑛) factor of the number of centers. It seems likely,

therefore, that this result will have other applications as well.
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