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Abstract. Given an undirected graph, G, and vertices, s and t in G,
the tracking paths problem is that of finding the smallest subset of
vertices in G whose intersection with any s-t path results in a unique
sequence. This problem is known to be NP-complete and has applications
to animal migration tracking and detecting marathon course-cutting,
but its approximability is largely unknown. In this paper, we address
this latter issue, giving novel algorithms having approximation ratios of
(1 + ε), O(lgOPT ) and O(lg n), for H-minor-free, general, and weighted
graphs, respectively. We also give a linear kernel for H-minor-free graphs.

Keywords: Graph algorithms · Approximation algorithms · Graph
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1 Introduction

In most modern marathons, each runner is provided with a small RFID tag,
which is worn on the runner’s shoe or embedded in the runner’s bib. RFID
readers are placed throughout the course and are used to track the progress of
the runners [9,36]. In spite these measures, some runners try to cheat by taking
shortcuts [37]. To detect all possible course-cutting, we are interested in the
combinatorial optimization problem of placing the minimum number of RFID
readers in the environment of a marathon to determine every possible path from
the start to the finish, including paths that deviate from the official course,
just from the sequence of RFID readers that are crossed by a runner taking a
given path. In addition to detecting marathon course-cutting, solutions to this
optimization problem could also allow for a type of marathon where each runner
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could be allowed to map out their own path from the start to finish so long as
their path is at least the required length.

Formally, we model a city road network [18,20,21] through which a marathon
will be run as an undirected graph, G = (V,E), where V is the set of road
intersections and possible RFID reader locations in the city, as well as the
placements of the start and finish lines, and E is the set of road segments joining
two points in V without having any other elements of V in its interior. Given
a start-finish pair, (s, t), of vertices in G, a tracking set for (s, t) is a subset,
T , of V , such that for any s-t path1 P in G, the sequence ST (P ) of vertices
in T traversed by P uniquely identifies P . In other words, T is a tracking set
if ST (P ) �= ST (Q) for all distinct s-t paths P and Q. We formally define the
optimization problem, which is called the tracking paths problem, as follows:

Tracking(G, s, t):
Input: An undirected simple graph G = (V,E) and vertices s, t ∈ V .
Output: A smallest tracking set for (s, t) in G.

We denote by WeightedTracking the vertex-weighted version, whose goal
is to find a tracking set of least total weight. Further, we denote by k-Tracking

the decision version of Tracking, which asks whether there exists a tracking
set of size at most k (for any given integer k). For conciseness, we refer to the
“tracking set of G”, when s and t are clear from context.

Related Work. Tracking has been shown to be NP-Complete [3], even when
the input graph is planar [19] or has bounded degree [10]. It is fixed-parameter
tractable (FPT): when parameterized by the solution size (a.k.a., the natural
parameter), it admits a quadratic kernel in general and a linear kernel when
the graph is planar [11] (other parameterizations have been studied in [12]).
Further, it admits approximation ratios of 4 [19] for planar graphs and of 2Δ+1
[10] for degree-Δ graphs. Exact polynomial time algorithms exist for bounded
clique-width graphs [19], as well as chordal and tournament graphs [10]. For the
NP-hard variant of tracking only shortest paths between multiple start-finish
pairs, there exists a O(

√
n lg n)-approximation [5]. We refer the reader to the

full version of the paper [26] for more details on related work.

Our Contributions. Our results are summarized below:

1. Linear kernel for H-minor-free graphs. Previously, we only knew of a
linear kernel for planar graphs [11]. This result also immediately implies an
efficient O(1)-approximation.

2. (1 + ε)-approximation for H-minor-free graphs. Previous best was a
4-approximation for planar graphs [19].

3. O(lgOPT )-approximation for Tracking, where OPT denotes the car-
dinality of an optimal tracking set. This is the first algorithm for general
graphs with a non-trivial approximation ratio. Previously, we only knew of a
O(

√
n lg n)-approximation for tracking shortest paths only [5].

1 In this paper, paths do not repeat vertices. We denote a path from u to v by u-v.
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4. O(lg n)-approximation for WeightedTracking. This is the first approx-
imation for weighted graphs, among all variants of Tracking.

Preliminaries. We use standard terminology concerning graphs, approximation
algorithms and kernelization, which is detailed in the full version of the paper
[26]. For space considerations, content marked with a link symbol “�” is provided
in more detail and/or proved in the full version of the paper [26].

2 Structural Properties

Definition 1 (Entry-exit subgraph). Let (G, s, t) be an instance of Track-

ing. An entry-exit subgraph is a triple (G′, s′, t′), where G′ is a subgraph of
G, and (s′, t′) is the entry-exit pair corresponding to vertices in C that satisfy
the following conditions:

1. There exists a path s-s′ from s to the entry vertex s′

2. There exists a path t′-t from the exit vertex t′ to t
3. Paths s-s′ and t′-t are vertex-disjoint
4. Path s-s′ (resp. t′-t) and G′ share exactly one vertex: s′ (resp. t′).

Notice that the same subgraph G′ of G may contain multiple entry-exit pairs.

Definition 2 (Entry-exit cycle). An entry-exit cycle is an entry-exit
subgraph (C, s′, t′), where C is a cycle (see Fig. 1).

We say that a vertex v tracks (C, s′, t′) if v ∈ C \ {s′, t′}. Moreover, we say
that (C, s′, t′) is tracked if there exists a tracker in a vertex that tracks it. A
cycle C is tracked if all entry-exit cycles with entry-exit pairs in C are tracked. If
C contains either (i) 3 trackers or (ii) s or t and 1 tracker in a non-entry/non-exit
vertex, then it must be tracked. We say that these cycles are trivially tracked .

We rely on the following alternative characterization of a tracking set, due to
Banik et al. [3, Lemma 2], which establishes Tracking as a covering problem.

Lemma 1 ([3]). For a graph G = (V,E), a subset T ⊆ V is a tracking set if
and only if every simple cycle C in G is tracked with respect to T .

Reduction Rules. Let us recall some reduction rules previously used to obtain
polynomial kernels [3,11] and approximation algorithms [4,10,12,19].

Rule 1. [3] If there exists an edge or vertex that does not participate in any
s-t path, remove it from the graph.

Rule 2. [11] If the degree of s (or t) is 1 and N(s) �= {t} (N(t) �= {s}), then
remove s (t), and label the vertex adjacent to it as s (t).

Rule 3. [19] If there exist adjacent vertices a, b /∈ {s, t} such that deg(a) =
deg(b) = 2, then contract the edge ab.
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Fig. 1. Entry-exit pair illustration, with entry vertex s′ and exit vertex t′.

Definition 3. We say that an undirected graph G is reduced by Rule X if it
cannot be further by reduced Rule X. Further, we say that G is reduced if it is
reduced by Rules 1, 2 and 3.

After exhaustive application of Rules 1 and 2, the graph is either a single edge,
(s, t), or all its vertices have degree at least 2. Henceforth, we assume the latter,
since the problem becomes trivial in the former case. Rule 3, which precludes the
existence of adjacent vertices of degree 2, is used to bound the overall number of
degree-2 vertices. Let us highlight a few additional useful consequences of Rule 1.

Remark 1 ([3]). Let G be a graph reduced by Rule 1. Then, every subgraph of
G containing at least one edge has at least one entry-exit pair.

Remark 2 ([3]). Let G be a graph reduced by Rule 1. Then, any tracking set of
G is also an FVS of G.

Remark 3. Let G be a graph reduced by Rule 1. Then the block-cut tree of G
is an s-t path (see Fig. 2).

G1 Gi Gκ

s = s1

tκ = t

s2 si si+1 sκ

t1 ti−1 ti tκ−1

Fig. 2. The block-cut tree of a graph G reduced by Rule 1 (see Remark 4).

In other words, the latter remark says that the graph G that results from
exhaustively applying Rule 1 consists of a sequence of κ ≥ 1 biconnected
components attached together by cut-vertices in a way that is analogous to series
composition in series-parallel graphs. Thus, we can turn an instance (G, s, t) of
Tracking into one or more subproblems on biconnected graphs, (Gi, si, ti), one
for each biconnected component, as depicted in Fig. 2.

Remark 4. � Let G be a graph reduced by Rule 1. Then, an optimal tracking
set for (G, s, t) is the disjoint union of optimal tracking sets for all (Gi, si, ti).

Lower Bounds. We expand on a result by Choudhary and Raman [11], which
provides a lower bound on the size of a tracking set, based on the presence of a
tree-sink structure in the graph.
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Definition 4 ([11]). A tree-sink2 in a graph G is a pair (Tr, x), where Tr is a
subtree of G with at least two vertices and x, the sink, a vertex not in Tr that is
adjacent to all the leaves3 of Tr in G. We use G(Tr, x) to denote the subgraph
induced by (Tr, x). (Notice that this definition does not preclude the adjacency
between non-leaf vertices and x.)

Lemma 2 ([11]). Let (Tr, x) be a tree-sink in a reduced graph G, such that
|NTr(x)| = δ. Further let (s′, t′) be an entry-exit pair of G(Tr, x). Then, if
x ∈ {s′, t′}, any tracking set of G contains at least δ − 1 vertices in V (Tr).

The above lemma is a generalization of the lower bound given by the
maximum number of vertex-disjoint paths between any two vertices [3], and
it can be generalized further to obtain a more useful lower bound, established as
the maximum degree among non-cut vertices (this follows from [11, Corollary 5]):

Lemma 3 ([11]). Let G′ be a subgraph of a reduced graph G and x a vertex in
G′, such that G′ − x is connected and NG′(x) = δ. Then, any tracking set of G
contains at least δ − 2 vertices in G′ − x.

3 H-Minor-Free Graphs

A graph is H-minor-free if it does not contain a fixed graph H as a minor.
In this section, we present a linear kernel for H-minor-free graphs and use this
kernel, as well as some ideas intrinsic to its construction, to design an efficient
polynomial-time approximation scheme (EPTAS). An EPTAS is a (1 ± ε)-
approximate algorithm whose running time is O(nc) for an input of size n and
a constant c independent of ε.

Unlike the minimum FVS problem, which also consists of covering cycles,
Tracking is not minor-closed [11] (i.e., an optimal solution for a minor of G may
require more trackers than an optimal solution for G), so the powerful framework
of bidimensionality [22] cannot be used to obtain either linear kernels [30] or
PTASs for H-minor-free graphs [14]. Moreover, Tracking does not possess the
“local” properties required by Baker’s technique to develop EPTASs for planar
graphs [2], or apex-minor-free graphs [17].

Linear Kernel. The following theorem about the sparsity of H-minor-free graphs
will be helpful throughout the section.

Theorem 1 (Mader [31]). Any simple H-minor-free graph with n vertices has
at most σHn edges, where σH depends solely on |V (H)|.

We now give the following lemma concerning a relationship between the sizes
of the vertex sets in certain bipartite minor-free graphs.

2 This is illustrated in [11], or in the full version of the paper [26].
3 We consider a leaf in an unrooted tree to be any vertex of degree 1.
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Lemma 4. � Let B = (U ∪ V,E) be a simple H-minor-free bipartite graph,
such that: (i) every vertex in V has degree at least 2, and (ii) there exist at most
δ neighbors in common between any pair u1, u2 in U , i.e., |N(u1) ∩ N(u2)| ≤ δ
for all u1, u2 ∈ U . Then |V | ≤ δσH |U |.

Next, we give a lemma which will be useful throughout the paper.

Lemma 5. � Let F be an FVS of a reduced graph G. Then |V (G − F )| ≤
4|X| − 5, where X is the cut set defined by (F,G − F ), consisting of edges with
endpoints in both F and G − F .

We will use Lemmas 4 and 5 above to give, in the next lemma, a linear kernel
for a biconnected reduced H-minor-free graph.

Lemma 6. Let G be a biconnected reduced H-minor-free graph with start s and
finish t. Then, G has at most (16σ2

H + 8σH + 1)OPT − 5 vertices and at most
(20σ2

H +11σH)OPT−6 edges, where OPT denotes the size of an optimal tracking
set of G.

Proof. Let T ∗ be an optimal tracking set of (G, s, t), i.e., |T ∗| = OPT . Note that
G − T ∗ is a forest, since T ∗ is an FVS of G. We assume that |T ∗| ≥ 2, since
otherwise one could check, in polynomial time, which vertex of G belongs to T ∗.
We now give some claims about the structure of G:

Claim 1: Let u1, u2 be two vertices in T ∗. There exist at most 2 trees in G−T ∗

that are adjacent4 to both u1 and u2.

Claim 2: Every tree in G − T ∗ is adjacent to at least 2 vertices in T ∗.

Claim 3: Every tree in G − T ∗ contains at most 2 vertices adjacent to the same
vertex in T ∗.

The first claim follows from Lemma 3. If there existed 3 or more trees adjacent to
both u1 and u2, then the graph G′, induced by u1, u2 and the trees, would require
at least 1 tracker in V (G′)\{u1} and 1 tracker in V (G′)\{u2}, contradicting the
feasibility of T ∗. The last claim also follows from Lemma 3 in a similar fashion.
The second claim follows from the fact that G is biconnected.

To show the bound on the size of the vertex set and the edge set of G, we
construct a new graph as follows. Let us contract each tree Tr in G − T ∗ into a
tree vertex vTr. Let F be the set of all tree vertices. Note that this operation
may create parallel edges between a vertex in T ∗ and a tree vertex, but never
between two vertices in T ∗ or F . Furthermore, we remove any edges between
vertices in T ∗. The resulting graph is bipartite, with vertex set partitioned
into T ∗ and F , and is H-minor-free (since the class of minor-free graphs is
minor-closed). By Claims 1 and 2, any 2 vertices in T ∗ have at most 2 common
neighbors, and every vertex in F is adjacent to at least 2 vertices in T ∗. Hence,
by Lemma 4,

|F | ≤ 2σH |T ∗|.
4 In this context, a tree is adjacent to v if it includes a vertex that is adjacent to v.
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As a consequence of Claim 3, there are at most 2 parallel edges between a vertex
in T ∗ and a vertex in F . Thus, by Theorem 1, the set of edges, X, in the bipartite
graph is at most

2 · σH(|F | + |T ∗|) ≤ (4σ2
H + 2σH)|T ∗|.

Notice that X is the cut set defined by (T ∗, G−T ∗), consisting of edges with
endpoints in both T ∗ and G − T ∗. Hence, by Lemma 5, |V (G − T ∗)| ≤ 4|X| − 5,
giving us:

|V (G)| ≤ (16σ2
H + 8σH + 1)|T ∗| − 5.

The edges of G consist of (a) edges in G − T ∗ (at most |V (G − T ∗)| − 1), (b)
the cut set X, and (c) edges with both endpoints in T ∗ (at most σH |T ∗| by
Theorem 1). Thus,

|E(G)| ≤ (4|X| − 6) + |X| + (σH |T ∗|)
≤ (20σ2

H + 11σH)|T ∗| − 6.


�
By Remark 4 and the application of the above lemma to each biconnected

component of a reduced graph, we obtain the following.

Theorem 2. k-Tracking admits a kernel for H-minor-free graphs of size
bounded by (16σ2

H + 8σH + 1)k − 5 vertices and (20σ2
H + 11σH)k − 6 edges.

Corollary 1. Tracking admits a O(1)-approximation for H-minor-free
graphs.

Even though we develop a (1 + ε)-approximation in the next section, the
latter corollary can be more useful in practice, when running time is a concern.

EPTAS. Given the unsuitability of bidimensionality and Baker’s technique
discussed earlier, we shall resort to the use of balanced separators. Our algorithm
relies on balanced separators, sets of vertices whose removal partitions the
graph into two roughly equal-sized parts. Ungar [33] first showed that every n-
vertex planar graph has a balanced separator of size O(

√
n lg3/2 n). This was later

improved by Lipton and Tarjan [28] to
√

8n, and Goodrich [25] showed how to
compute these recursively in linear time. The Lipton-Tarjan separator theorem
has been further refined (e.g., see [13,15]) and generalized to bounded-genus
graphs (e.g., see [16,24]) as well as to H-minor-free graphs (e.g., see [1,32]).

Theorem 3 (Minor-free Separator Theorem [1]). Let G be an H-minor-
free graph with n vertices, where H is a simple graph with h ≥ 1 vertices. Then
a balanced separator for G of size at most c1H

√
n can be found in O(hO(1)nO(1))

time, where c1H is a positive constant depending solely on h.

We use the Minor-free Separator Theorem recursively to decompose the graph
into a set R of edge-disjoint subgraphs, called regions. The vertices of a region
R ∈ R which belong to at least one other region are called boundary vertices
and the set of these vertices is denoted by ∂(R). The remaining vertices of R are
called interior vertices and are denote by int(R).
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Definition 5 (Relaxed r-division). A relaxed r-division of an n-vertex
graph G is a decomposition of G into Θ(n/r) regions, each of which has at
most r vertices, such that the total number boundary vertices is O(n/

√
r).

Computing a relaxed r-division is the first step in Frederickson’s algorithm
[23] for constructing an r-division in a planar graph, a decomposition which
additionally requires every region to have O(

√
r) boundary vertices (we won’t

need this property). Both decompositions can easily be generalized to any class
of graphs that is characterized by the existence of sublinear balanced separators,
which includes H-minor-free graphs.

Theorem 4 (Minor-free Separator Theorem (3) + Frederickson [23]).
There is an O(n lg n) algorithm that, given an H-minor-free graph G and a
positive integer r, computes a relaxed r-division of G.

Our strategy will be to (i) construct a relaxed r-division of a smaller graph,
K, which is itself an O(1)-approximate tracking set, (ii) solve optimally for each
region, and (iii) combine the solutions for each region into a solution for the
original graph with quality comparable to that of an optimal solution. This
approach has been used to obtain EPTASs for minimum FVS [6,39], maximum
independent set [29] and minimum vertex cover [8]. However, and in contrast
to these problems, the step of constructing a close to optimal solution from
the solutions of each region is not obvious. Indeed, the difficulty of this step
emerges from the very “nonlocal” structure of Tracking, which requires special
attention to the location of (s, t) in the graph, in addition to the nonlocal
structure of cycles. Our EPTAS is as follows:

1. Compute a linear kernel K of G by reducing it with Rules 1, 2, 3, such
that an optimal tracking set of K is Ω(|V (K)|) (see Corollary 1).

2. Compute a relaxed r-division R of K with r = (2c1Hc2H(c3H + 1)/ε)2, for
any choice of ε > 0 and constants c1H , c2H , c3H > 0 specified later.

3. For each region R in R, compute an optimal tracking set OPT (R) for
the subset of entry-cycles (with respect to (s, t)) which are completely
contained in R.

4. Output T =
⋃

R∈R (OPT (R) ∪ ∂(R) ∪ N (R)).
Here, N (R) := NΠ(R)(∂(Π(R))) defines an appropriate neighborhood of
the boundary vertices of R, where Π(R) is the subgraph of R consisting
of the union of each path in R that: (i) is not an edge, (ii) has ∂(R)
vertices as endpoints, and (iii) traverses no internal vertices that are
in OPT (R). We let ∂(Π(R)) := ∂(R) ∩ Π(R). See Fig. 3.

We will now give the details of the algorithm and its correctness. We refer
to the Reduction Rules defined in Sect. 2. As a reminder, after exhaustive
application of Rules 1 and 2, the graph is either a single edge between s and t,
or all its vertices have degree at least 2. Henceforth, we will assume the latter,
since a minimum tracking set is trivial in the former. Notice that none of the
reduction rules introduce trackers, so there is no lifting required at the end of
our algorithm, i.e., adding back any trackers introduced during the reduction.
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Observation 1. No entry-exit cycles are removed during Rules 1, 2 or 3, so
a tracking set of the resulting kernel K is a tracking set of the input graph G.
Therefore, any minimum tracking set of K is also a minimum tracking set of G.

Next, we explain how to compute in polynomial time optimal tracking sets
for each region in a relaxed r-division of a kernel K.

Lemma 7. � Let C(R) be the set of all entry-exit cycles in G whose vertices are
a subset of V (R), where R is a subgraph of G. Then one can compute a minimum
subset of V (R) that tracks every entry-cycle of C(R) in O(2|V (R)| · nO(1)) time.

Let us now argue that our algorithm computes a (1+ε)-approximate tracking
set. Let T =

⋃
R∈R (OPT (R) ∪ ∂(R) ∪ N (R)) be the output of the algorithm.

Lemma 8. � T is a tracking set of the input graph G.

Let us denote by OPT the size of an optimal tracking set of the input graph
G. To argue that |T | ≤ (1+ε)OPT , we will need to argue that the set of trackers
in the special neighborhoods defined by N (R), for all regions R, have small
cardinalities, i.e., roughly equal to O(εOPT ). This is the key argument to our
EPTAS, which the next lemma addresses. Its proof is not immediately obvious,
since the number of neighbors of all boundary vertices could be Ω(OPT ), a
consequence of the quadratic gap between |∂(R)| and |V (R)|.
Lemma 9. � |N (R)| ≤ c3H |∂(Π(R))|, where c3H ≥ 9σ2

H + 3σH .

Proof. (Sketch) The set of untracked cycles between 2 regions R and R′, which
must exist in Π(R) ∪ Π(R′), induces a forest on either region if we remove
∂(R) and ∂(R′). Using arguments similar to those in the proof of Lemma 6,
we can show that the bipartite graph with bipartition (F, ∂(Π(R))) has the
properties required by Lemma 4, but also that there exists O(1) edges between
a tree and a boundary vertex, where F is the set of trees in Π(R) − ∂(Π(R)).
As a consequence, we can get an appropriate bound on the number of edges in
this bipartite graph, from which the lemma follows. (See [26] for details.) 
�

R

Fig. 3. Illustration of Π(R) and of N (R) for a region R in a relaxed r-division R.
Vertices in ∂(R) are depicted in red circles. Π(R) consists of the union of all boundary-
to-boundary paths in R (solid black), which are not edges and do not traverse OPT (R)
(green crosses). The dashed lines represent paths in R − Π(R). N (R) is depicted in
blue squares. (Color figure online)
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Before proving that the output of our algorithm is a (1 + ε)-approximate
tracking set, let us first recall a result from Frederickson [23, Lemma 1], which
concerns the sum, for each boundary vertex b of the number of regions Δ(b)
containing b in a relaxed r-division R of a planar graph. Even though this
result was given in the context of planar graphs, it can easily be generalized to
any graph whose subgraphs G′ admit balanced separators of size O(

√|V (G′)|).
We denote the set of all boundary vertices by ∂(R). Further, let B(R) =∑

b∈∂(R) (Δ(b) − 1).

Lemma 10 ([23]). Let R be a relaxed r-division of an n-vertex graph whose
subgraphs G′ admit balanced separators of size at most c

√|V (G′)|. Then B(R) ≤
c · n/

√
r, for a constant c independent of r and n.

We will use the latter lemma to bound the overall number of trackers in the
next theorem.

Theorem 5. Tracking admits an EPTAS for H-minor-free graphs.

Proof. Consider the algorithm given at the beginning of the section. As a
reminder, let T =

⋃
R∈R (OPT (R) ∪ ∂(R) ∪ N (R)) be the output of the

algorithm, for a relaxed r-division R of a kernel K of G, where OPT (R) is
the optimal tracking set computed with respect to entry-exit cycles in R. By
Lemma 8, T is a tracking set. Next, we argue about the approximation ratio. By
a union bound,

|T | ≤ |∂(R)| +
∑

R∈R
|OPT (R)| +

∑

R∈R
|N (R)|.

Let n′ = |V (K)| be the number of vertices in K. Clearly, |∂(R)| ≤ B(R).
Moreover, we have that

∑
R∈R |∂(R)| ≤ 2B(R), so by Lemma 9, we have:
∑

R∈R
|N (R)| ≤ 2c3HB(R).

Let T ∗ be an optimal tracking set of K, i.e., |T ∗| = OPT (by Observation 1).
Since T ∗ is a tracking set, but not necessarily an optimal one, for all entry-exit
cycles within any region R ∈ R, we have that |OPT (R)| ≤ |T ∗ ∩ V (R)|. Thus,

∑

R∈R
|OPT (R)| ≤ OPT + B(R).

Overall, for r = (2c1Hc2H(c3H + 1)/ε)2,

|T | ≤ OPT + 2(c3H + 1)B(R)

≤ OPT + 2c1H(c3H + 1)n′/
√

r (Lemma 10, Theorem 3)

≤ OPT + 2c1Hc2H(c3H + 1)OPT/
√

r (Theorem 2, c2H ≥ 16σ2
H + 8σH + 1)

= (1 + ε)OPT .
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Step 1 of the algorithm takes O(nO(1)) time, since it consists of applying
Rules 1, 2, 3. Step 2 can be done in O(n lg n) time [23]. Step 3 takes O(2r ·nO(1))
time, by Lemma 7. Finally, step 4 takes O(nO(1)) time. Overall, these amount to
O(2O(1/ε2)nO(1)). 
�

4 General Graphs

In this section, we derive an O(lg n)-approximation algorithm for Weighted-

Tracking on general graphs, as well as an O(lgOPT )-approximation algorithm
for Tracking.

We reduce an instance (G, s, t, w′) of WeightedTracking, for a weight
function w′ : V (G) → Q, into an instance (U ,X , w) of SetCover, which asks
for the sub-collection of X of minimum total weight, whose union equals the
universe U . Here, (U ,X ) defines a set system, i.e., a collection X of subsets of a
set U , and w is the weight function w : X → Q. It is well known that there exist
greedy polynomial-time algorithms achieving approximation ratios of (1+ lnM)
or of (1 + Δ) [35,38], where M is the size of the largest set in X and Δ is the
maximum number, over all elements u in U , of sets in X that contain u.

Let C be the set of all entry-exit cycles in our input graph G, which we assume
w.l.o.g. to be reduced by Rule 1. Further, let CF be the set of all entry-exit cycles
in G, each of which contains at most 2 vertices from the subset F ⊆ V . That is,
CF := {(C, s′, t′) ∈ C : |C ∩ F | ≤ 2}. Our algorithm is as follows.

1. Compute a 2-approximate FVS F of G (see [35,38]).
2. Use the greedy algorithm of [35,38] to compute an approximate set

covering, S ⊆ V (G), for an instance (U ,X , w) of SetCover where:
(i) the universe, U , of elements to be covered is CF

(ii) the collection of covering sets, X , is a 1-1 correspondence with V (G),
where each covering set with corresponding vertex v is the subset of
CF which are tracked by v, that is,

X = {{(C, s′, t′) ∈ CF | v tracks (C, s′, t′)}}v∈V (G).

(iii) the weight function w is the weight function w′ defined for
WeightedTracking, given the 1-1 correspondence between X and
V (G).

3. Output T = S ∪ F .

We can show that |CF | = O(nO(1)). From the observation that every tracking
set F is an FVS (see Remark 2), it follows that there are at most O(nO(1)) entry-
exit cycles not tracked by F . Thus, our claim follows (details in [26]).

Theorem 6. � WeightedTracking admits an O(lg n)-approximation.

Unweighted Graphs. We show that the dual of the above set cover formulation
has bounded VC-dimension [27,34]. This immediately improves the approxima-
tion ratio to O(lgOPT ) for Tracking (unweighted version) as a consequence of
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a result by Brönnimann and Goodrich [7], which establishes an approximation-
ratio of O(d lg(dc)) for unweighted set cover instances with dual VC-dimension
d and optimal covers of size at most c.

Let (U ,X ) be a set system and Y a subset of U . We say that Y is shattered
if X ∩Y = 2Y , where X ∩Y := {X ∩Y | X ∈ X}. In other words, Y is shattered
if the set of intersections of Y with each X ∈ X contains all the possible subsets
of Y . The set system (U ,X ) has VC-dimension d if d is the largest integer for
which there exists a subset Y ⊆ U , of cardinality |Y | = d, that can be shattered.

The dual problem of an unweighted instance (U ,X ) of SetCover is finding
a hitting set of minimum size, where a hitting set is a subset of U that has a
non-empty intersection with every set in X . In our case, it corresponds to finding
the smallest subset of entry-exit cycles that covers every vertex, where a vertex
is covered if it tracks least one entry-exit cycle in the subset. This is equivalent to
an unweighted instance of SetCover with set system (V, C∗

F ), where V = V (G)
and C∗

F := {V (C) \ {s′, t′} : (C, s′, t′) ∈ CF } is the collection of sets, one for each
entry-exit cycle, of vertices which can track that entry-exit cycle.

Lemma 11. The set system (V, C∗
F ) has VC-dimension at most 9.

Proof. We show that there exists no subset Y ⊆ V of size |Y | ≥ 10 that can be
shattered by C∗

F . Since every element of C∗
F contains at most 2 vertices from F

(by definition of CF ), we cannot have more than 2 vertices from F in Y (since
we would then require an entry-exit cycle containing at least 3 vertices in F to
shatter Y ). Thus, the lemma follows if we show that no subset Y ⊆ V \ F of
size |Y | ≥ 8 can be shattered by C∗

F . Let us assume, by contradiction, that this
is possible. Then, if Y ⊆ V \ F is to be shattered by C∗

F , there must exist 2
entry-exit cycles (C1, s

′
1, t

′
1) and (C2, s

′
2, t

′
2) in CF , such that5:

– C1 traverses all vertices of Y , say in the order y1, y2, . . . , y|Y | (for all yj ∈ Y ),
– C2 traverses every other vertex of Y traversed by C1, say Y ′ =

{y2, y4, . . . , y|Y |}, but not necessarily in the same order (we assume w.l.o.g.
|Y | is even).

Consider the graph consisting of the union of the cycles C1, C2. Let us contract
every shared edge between C1, C2. Note that C1 remains a cycle that traverses
Y and C2 remains a cycle that traverses Y ′ but not any vertex of Y \ Y ′. So we
can safely assume that C1 and C2 do not share any edges. Thus, the union of
C1, C2 is a graph with |C1| + |C2| − |Y |/2 vertices and |C1| + |C2| edges. Since
both entry-exit cycles are in CF , each of C1, C2 shares at most 2 vertices with
F . Let us remove such vertices, say there’s k ≤ 4 of them. The result is a graph
with |C1| + |C2| − |Y |/2 − k vertices and, at best, |C1| + |C2| − 2k edges (the
removed vertices cannot be in Y , so they have degree 2). In order for this graph
to be acyclic (since F is an FVS by Remark 2, and our contractions preserve
cycles) we would then require |Y | < 8 (since any acyclic graph with n vertices
has at most n − 1 edges), a contradiction. 
�
5 This is illustrated in the full version of the paper [26].
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The above lemma, combined with the result of Brönnimann and Goodrich
[7] gives us the following.

Theorem 7. Tracking admits an O(lgOPT )-approximation, where OPT is
the size of an optimal tracking set.
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