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Abstract

We present a framework for designing parallel
algorithms that may ignore processor allocation.
We develop a number of fast approximation algo-
rithms, and show how to use these algorithms to
simulate any algorithm that fits this framework in
a work-preserving fashion on a randomized CRCW
PRAM. We also give several applications of our ap-
proach to parallel computational geometry.

1 Introduction

A fundamental goal of parallel computation re-
search is to design fast parallel algorithms with
small time-processor products (e.g., see [32]). That
is, given a parallel computation described by the
tasks that some P processors are to perform in
T steps, one desires that both T and T x P be
small. In fact, if T *» P matches a sequential
lower bound, then the algorithm is said to be opti-
mal [32). Sometimes, a parallel algorithm “almost”
achieves this efficiency goal in that T and W, the
sum of all the task lengths (which is usually called
the work performed by the algorithm), are small,
but T * P is not. Fortunately, Brent [9] gives a
scheme for converting any algorithm that uses W
work into an equivalent algorithm using P proces-
sors in time O(|W/P] + T). This scheme is only
a “meta-theorem” [27] for our purposes, however,
in that, in order to apply it on a PRAM, where
synchronous processors share a common memory,
one must meet two important conditions:

1. One must know n;, the number tasks active
in step 1.

2. One must be able to assign P processors to
these tasks in O({n;/P]) time.

Historically, Condition 2 (processor allocation) has
often complicated the design of what would have
otherwise been a simple parallel algorithm. Con-
sider, for example, that nearly a decade elapsed
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before a PRAM implementation of the fast paral-
lel list-merging algorithm of Valiant! [50] appeared
in the literature [7].

We propose a framework that allows the algo-
rithm designer to assume that processor allocation
is handled by the PRAM’s “operating system.”
One of the motivations for this framework is that,
while processor allocation is a challenge in PRAM
algorithms, it is not necessarily a bottleneck in
implementing algorithms on existing parallel ma-
chines (e.g., see [48]).

We show how to simulate any algorithm writ-
ten in our framework in a work-preserving fashion
on a randomized CRCW PRAM? at a very small
cost in time complexity. Moreover, as a demonstra-
tion of the power of our approach, we give several
applications to parallel computational geometry.

2 Approximation Algorithms

Qur simulation theorem depends on the fast solu-
tion to a number of approximation problems, which
we address in this section.

2.1 Approximate Density Partitioning

Let A be an n-element array with some of its ele-
ments marked as distinguished. We refer to such an
array as bichromatic, and let d(A) denote density
of A, i.e., the number of distinguished elements in
A. The first problem we address is the following:

Approzimate density partitioning: partition A into
subarrays Aj, As,..., A, such that the density of
each subarray is approximately p, where p < d(4).

The method we describe here solves this prob-
lem (deterministically) in O(1) time using O(n)
processors, and produces a partitioning such that
p < d(Ag) < ptlog? n, for each k. It makes exten-
sive use of a powerful theorem due to Ragde:

1Valiant’s model only counted comparison steps, ignoring
overhead costs such as processor allocation.
2Write conflicts can be resolved arbitrarily.



Theorem 2.1 (Ragde [38]): Given an integer
k < n'/4, one can either determine that d(A) > k
or produce a 1-to-1 mapping of the distinguished
elements in A to a k*-element array B in O(1) time
using n processors on a CRCW PRAM.

We begin our method by dividing A4 into
N = n/[logn] subarrays 4,,..., Ay of size [logn]
each. We compress each subarray _fik into a single
bit by, which is 1 if and only if 4, is non-empty
(this can easily be tested for all the subarrays in
O(1) time using O(n) processors). Let B denote
the resulting array of size N.

We initially partition B into subarrays
By, By,..., By, of size p* each, and we build a
complete binary tree T' “on top” of this partition-
ing, so that each leaf is associated with a subarray
By. We let B[v] denote the subarray of B spanning
all the descendents of v, for each internal node v
in T. With each node v in T we also associate an
array C, of size p*. In parallel for each v in T,
we attempt to write the distinguished elements in
B[v] to C, using Theorem 2.1. (This can be done
in O(1) time using O(N log N) = O(n) processors. )
We say that a node v is good if the mapping into C,
fails, but the mapping into C,, succeeds for each of
v’s descendents w. We then say that a node is a
partition node if it contains one good descendent
but its parent has at least two. The union of all
the B[v] arrays for partition nodes forms the de-
sired partition of B (if there are no partition nodes,
then we define the root as a partition node). We
may then expand this partitioning into a partition-
ing of A by reversing the compression we performed
to form B, thereby converting each B[v] into a cor-
responding A[v]. (Note that we can determine all
the good nodes and partition nodes in O(1) time
using O(N log N) = O(n) processors; hence the en-
tire method can be implemented in these bounds.)
By adding up all the nodes in T' on the fringe of
the path from w to v that contribute distinguished
elements to B[v], one can show that, for each pari-
tion node v in T, p < d(B[v]) < p*logn. This, in
turn, implies the following:

Theorem 2.2: Given an n-element bichromatic
array A, one can partition A into subarrays
Ay, Ay, ..., A, such that, for any p < d(A), p <
d(A44) < p*log® n, for each Ay, in O(1) time using
O(n) processors on a CRCW PRAM.
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Note: the above indexing of subarrays as A,
A3, and so on, is only a notational convience, for
the processors assigned to the elements of 4; do
not know the value of k, nor do they need to (for
they are all associated with the same node in T).

2.2 Approximate Compaction

In this subsection we show how to apply Theo-
rem 2.2 to solve a related approximation problem:

Approzimate compaction: map the distinguished
elements of a bichromatic array A one-to-one to an
array B of size m > (1 + a)d(4), for some a > 0.

The parameter a is referred to as the ezpansion
parameter, and is desired to be as small as possi-
ble. Of course, we can use Theorem 2.1 to solve
this problem for & > min{d(4)3,n/d(4)} in O(1)
time using n processors, but this a can be quite
large. Matias and Vishkin [35] show how to solve
it for a > 3 with a method that runs in O(log* n)
time with high probability®, using n processors on
a randomized CRCW PRAM. We solve this prob-
lem for any constant expansion factor a > 0 with a
method that almost surely* runs in O(log* n) time
using O(n/log* n) processors® in the same model
(or almost surely in O(1) time for some alternate
formulations).

2.2.1 A Leveraged Approach

Our method consists of four phases, where Phase 1
is a density partitioning step, Phase 2 is a “dart
throwing” [28] procedure, Phase 3 is a “proces-
sor throwing” procedure, and in Phase 4 we use
the successful processors from Phase 3 as a “lever”
against the unsuccessful darts from Phase 2.

Our algorithm assumes the existence of an or-
acle, D, that returns d(A) for any polylog(n)-sized
array A. It also assumes the existence of an al-
gorithm, S, that maps the distinguished elements
in a polylog(n)-sized array A to the distinguished
elements in an polylog(n)-sized array B, of size at

By “high probability” we mean that the probability is
at least 1 — 1/n° for some constant ¢ > 0.

‘By “almost surely” we mean that the probability is at
least 1 — l/c"‘ for constants ¢ > 1 and d > 0.

*We have recently discovered that this result was inde-
pendently discovered by T. Hagerup [29] using a method
different from ours.



least 3d(A), provided at least two-thirds of the el-
ements in B are distinguished.

We begin our method by applying Theorem 2.1
to try to map the distinguished elements in 4 to
an array C of size log* n. If this is successful (so
that d(A4) < log*n), then we apply S to C to map
the distinguished elements of C to B (in which case
we are done). So, let us suppose this application of
Theorem 2.1 is unsuccessful, i.e., that d(A4) > log n.

Phase 1. We apply Theorem 2.2, with p =
log n, to partition A into subarrays A4, A,,..., 4,
such that logn < d(4x) < log®n (so that r <
n/logn). We then map each A into an array Ay
of size min{log?*n, |Ax|} by Theorem 2.1.

Phase 2. We assign a processor to each ele-
ment a; in an Ai. If a; is distinguished, then the
processor for a; selects a random location b; in B,
and sets b; := a; if b; is empty (the processor has
just “thrown” a; at B.) Each processor iterates
this assignment until it succeeds or it has made h;
attempts (where h; is to be set in the analysis).

Phase 8. Call D on each A to compute my =
d(Ay), and let Cy, be an array of size amy /2. Each
entry ¢; in C} has an initially-zero field, ¢;.indez.
We assign a processor to each element in Cf, and
have this processor choose a random location b; in
B and write its id to b; if b; is empty (the processor
has just thrown “itself” at B). If the processor is
successful, then it writes j to the indezfield of entry
¢; in C}, to which it is assigned, and then drops out
of Phase 3. We repeat this procedure for s, rounds
(where h; is to be set in the analysis).

Phase 4. We apply S to map the unmapped
distinguished elements in A; to the entries of Cj
with non-zero indez fields. If this mapping is suc-
cessful, we write each remaining element a; in Ay to
the location in B whose index is stored in c;.indez,
where ¢; is the target of a; in Ck. (Note that, if
we let m}, denote the number of remaining distin-
guished elements in Ay, then this call of § will
be successful provided m; < am;/6 and at least
two-thirds, i.e., ami/3, of the entries in C} have
non-zero indez fields.)

We complete the procedure by “zeroing out”
any entries in B that still contain a processor’s id
after Phase 4. We described this algorithm to al-
low for it to fail, but one can easily modify it so
that it never fails (given m > (1 4+ a)d(4)), via
repetition, since failure is easily tested. Assum-
ing that it performs correctly, its time complexity
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is O(L + T(log* n)) using O(n + Thoy P(|4])
processors, where 7 (x) and P(x) are the time and
processor bounds for D and S.

2.2.2 Establishing Almost Certainty

Let us therefore analyze the probability that this
procedure succeeds, assuming m = (1 + a)d(4).
Since the number of processors throwing darts in
Phase 2 is d(A), the probability that a particu-
lar processor fails is pi“, where p; = 1/(1 + a)
(we assume the processor fails if its dart collides
with another). Thus, the expected value of mj
is pi"mk, for ¥ = 1,2,...,r. Similarly, since
the number of processors throwing “themselves”
in Phase 3 is 3 ;_; am;/2 = ad(A)/2, the proba-
bility that a particular processor fails is p;", where
p2 = (1+ a/2)/(1 + a). Thus, the expected value
of m{, the number of successful processors assigned
to Ay in Phase 3, is (1 — p}?)m;. By the Chernoff
bounds [11] of Raghavan® [39], we can set h; and
hy so that the probability that m} < am;/6 and
my > amy/3, for each k = 1,2,...,7, is at least
1 —1/nb for any constant by > 0 (which we es-
tablish in the full version). This, in turn, implies
that we can force the entire procedure to succeed
with probability 1 ~ 1/n® for any constant b > 0
(by taking by = b+ 1).

In fact, we can ramp this probability up further,
to be almost sure, by applying the failure sweeping
technique of Ghouse and Goodrich [22]:

Case 1: m < n!/5, In this case, we preface our
method by an application of Theorem 2.1 (which
must succeed in this case) to map the distinguished
elements of A to an array C of size n*/5, We make
O(n'/®) copies of C and B and perform our approx-
imate compaction method on each pair of copies in
parallel. The probability that our method succeeds
for at least one of these is at least 1 — 1/ nbn'/®,

Case 2: m > nl/5, In this case we perform our
approximate compaction algorithm as described
above. After it completes, however, we then ap-
ply Theorem 2.1 to map any remaining unmapped
elements from A to an array C of size m%/5, Note
that this mapping succeeds if m/, the number of
remaining unmapped elements from A, is at most

®Raghavan [39] shows that if X is the number of 1’ in
a collection of independent Bernoulli trials, then Pr(X >
(14 8)p) < [exp(&)/(l + 6)'*°]* and Pr(X < (1 -8)p) <
[exp(—8)/(1 — 8)'~°]*, where u = E(X).



m'/5, an event which (as we show in the full ver-
sion) occurs almost surely. Since there are at least
(a/(1 + a))m free positions left in B, we then as-
sign (a/(2 + 2a))m!/5 processors to each element
in C and perform h3 more dart throwing attempts,
where h3 is a constant set so that the probability
of success is at least 1 — 1 /c"m's for any constant
c>1.

2.2.3 A Suboptimal Implementation

Having established the probability bounds, let us
now give implementations for D and S, both of
which are based on solutions to the following prob-
lem:

Multiple-array approzimate compaction: given u
(compressed) arrays, Aj, As,...,A4,, each of size
at most A, map the v elements of these arrays into
an array B of size (1 + a)v, where a > 0.

Let to(n) denote the time needed to compute
d(A) and perform approximate compaction with
expansion parameter « for a bichromatic array A,
using pgc(n) processors.

Lemma 2.3: One can solve multiple-array ap-
proximate compaction with expansion parameter
a in O(t.,(p)) time on a CRCW PRAM with
O(Pac(p)log A + (v + Alogvlog A)/tac(p)) proces-
sors.

Proof: The proof is based on a reduction similar
to that used by Chandra et al. [10] for summation.
Construct an p X [log A] table L, where L[%, j] con-
tains the j-th bit of |4;|, and associate a subarray
of A; of size 27 with L[4, 7] in the natural way if
this bit is 1. (This can easily be done in O(1) time
using v+ plog A processors.) Compute [;, the num-
ber of 1’s in column j of L, and use approximate
compaction to compress column j into an array of
size (1 + a)l;. This induces a compression of the
subarrays associated with column j into an array of
size (1+a)l;29. We can then compress these arrays
into a single array, by computing the parallel prefix
sums of all the [;27 values (and then multiplying
by 1+ a). We can compute this parallel prefix in
O(1) time by the reduction of [10] to a simple ta-
ble look-up for summation, using an exponential
number of processors for each bit in the answer. In
our case, this requires O(Alogrlog ) processors,
since there are [logA] values whose sum can be
represented with [log»]| bits. O
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The proof of Lemma 2.3 involved a reduction to
density computation and approximate compaction
via the computation of a small number of prefix
sums. But the computation of prefix sums, itself,
can be used for density computation and approx-
imate compaction (in fact, we get a = 0 in this
case). Thus, we can use the method of [10] as
the density-computing oracle D, which, since it is
always applied to polylog(n)-sized subarrays, re-
quires O(n®loglogn) processors for any constant
& > 0. The proof of the following lemma uses a
similar “brute force” approach to derive an imple-
mentation for the procedure S.

Lemma 2.4: One can implement the procedure S
in O(1) time using O(n*) processors on a CRCW
PRAM, for any constant € > 0.

Proof: Recall that the problem is to map the
distinguished elements of a polylog(n)-sized array
A to the distinguished elements of a polylog(n)-
sized array B (where |B| > 3d(A4) and d(B) >
2|B|/3). Note that it is sufficient to compress
A and B, respectively, and then match-up these
two compressed arrays. To perform this compres-
sion, for, say A, we divide A into logn subar-
rays, compress each subarray recursively in par-
allel, and then merge these compressed arrays into
a single compressed array. This merging step is
exactly the multiple-array compaction problem;
and, if we perform this merge dlogn subarrays
at a time using the above brute-force prefix-sum
computation, where § is some constant such that
0 < § < ¢, then we can still achieve a running
time of O(1) time. Thus, by applying Lemma 2.3
with u = élogn, v = log°n, and A = log®n, for
some constant ¢ > 1, then our method requires
O(n’ loglogn + log® n(loglog n)?) = O(n€) proces-
sors. O

This, in turn, leads to the following:

Theorem 2.5: One can perform approximate
compaction for any constant expansion parameter
a > 0 in O(1) time with probability 1 — 1/c"1m
using O(n*¢/logn) processors’ on a randomized
CRCW PRAM, for any constantsc > 1 and € > 0.

"We note that we could have simply written the processor
bound as n®; we give the bound as we did here in order to
simplify our discussion in Section 2.3.



2.3 Density Approximation

One of the bottlenecks in the proof of Theorem 2.5
is the computation of d(4). Our method for elimi-
nating this bottleneck is to content ourselves with
an approximation to d(4). Thus, let us address
the following problem:

Density approzimation: given a bichromatic array
A, compute an approximation for d(A).

The best previous constant-time method for
solving this problem is based on a randomized
tournament paradigm (see, e.g. [28, 41, 44]), and
gives an estimate that is within a polylogarith-
mic factor of d(A) with high probability, using
O(nlogn/loglogn) processors [28]. We give a
constant-time procedure that produces an approx-
imation that is almost surely within the inter-
val [(1 — B)d(4),(1 + B)d(4)] for any consant
B > 0, which we call the estimation parameter.
Our method is based on the approximate com-
paction method of the previous subsection and the
“polling” paradigm of Reif and Sen [43].

We begin our method by attempting to map
the distinguished elements of A into an array B
of size hin®/® using Theorem 2.1, where hy is a
constant to be set in the analysis. If this mapping
fails, then we take B to be a random sample of A
of size n®/® (note that m > hyn?/® and E(d(B)) =
m/nl/® > hyn!/® in this case). We then perform
O(log ) applications of Theorem 2.5, withe =1/8
and o chosen so that (1 + a)? < 1+ 8 (e.g., take
a = $/3). Each subproblem i is an attempt to
map the distinguished elements of B to an array of
size (1+a)*(1+ a)’. Let k be the smallest index
such that this mapping succeeds. If B contains
all m distinguished elements, then we take m =
1+ a)", and if B is our random sample, then we
take m = (1 + a)*n!/°.

Theorem 2.6: Given a bichromatic array A, one
can compute an estimate m in O(1) time using
O(n) processors on a randomized CRCW PRAM,
such that, for any constant estimation parameter
B > 0, m € [(1— B)d(A),(1+ B)d(4)] with proba-
bility 1 — 1/c"lm, for any constant ¢ > 1.

Proof sketch: The time and processor bounds
follow from Theorem 2.5. Using the bounds from
Theorem 2.5 we can show that all O(logn) sub-
problems perform correctly with probability po =
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1/c31m, for any constant ¢g > 1. Thus, with
probability po, (1 +a)** < d(B) < (1+ a)ktt,
If we chose m = (1 + a)¥, ie., d(B) = d(A),
then m € [(1 — a)d(B),(1 + a)d(B)] with this
same probability by Theorem 2.5 (since 1 — a <
1/(1 + a)), which establishes the theorem in this
case. Otherwise, if we chose m = (1 + a)*nt/?,
then, by applying the Chernoff-type [11] bounds
of Angluin and Valiant® [2], we can set hy so that
d(B) € [(1 - a)d(4), (1 + a)d(4)] with probability
p=1- 1/c’1"l ’, for any constant ¢; > 1. Thus,
we have that m € [(1—a)?d(4), (1+)*d(4)] with
probability at least pop1, which establishes the the-
orem in this case. O

2.4 Optimal Approximate Compaction

In this subsection we show how to optimally per-
form approximate compaction. Our approach is
implement the oracle D using Theorem 2.6 and to
implement the procedure S using the algorithm of
Section 2.2.1 recursively.

This requires three minor modifications to our
algorithm. First, we must generalize the problem
to that of mapping distinguished elements in A to
distinguished elements in B. That is, in perform-
ing a dart throw or a processor id throw, a proces-
sor must also check if the target is distinguished,
and only attempt a dart/id throw if so. Second, we
must modify Phase 4 to allow for each estimate mj
returned by D to be an approximation for d(Ag).
Specifically, we set § = 1/5 in Theorem 2.6 when
we use it for D and take each Cj to be of size

£ amy. This forces C\ to be almost surely of size

at most ad(Az)/2 and at least ad(A;)/3, which is
sufficient for our purposes. Finally, we must mod-
ify our algorithm to allow for the failure of D or S,
since they are now randomized. We may assume,
however, that both D and S succeed with probabil-
ityl-1/ cl4l'’* for any constant ¢ > 1 (this as-
sumption is made inductively for §). Even though
this almost certainty is with respect to | Ax|, not
n, it is sufficient enough for us to apply our failure
sweeping procedure if we modify Phase 1 to use
p = (blogn)®.

They show that if X is the number of 1’s in a collection
of independent Bernoulli trials, then Prob(X < (1-8)u) <

e=%"#12 and Prob(X > (1 + 8)u) < e—tTn3,



Lemma 2.7: One can perform approximate com-
Paction for any constant expansion parameter a >
0, in time that is O(log* n), with probability 1 —
1 /c"lm for any constant ¢ > 1, using n processors
on a randomized CRCW PRAM.

Proof sketch: The time bound is based on a sim-
ple induction argument based on the recurrence
relations of Section 2.2.1 and the success of our
failure sweeping. O

This is clearly more efficient than Theorem 2.5,
but it is still not optimal. We can reduce the
number of processors, however, to make it op-
timal. Specifically, we can reduce the approxi-
mate compaction problem to multiple-array ap-
proximate compaction by dividing 4 into n/s sub-
arrays of size s each, where s = 9los’ ", and
apply the standard parallel prefix algorithm (33]
to compress each subarray. This reduction takes
O(log* n) time using O(n/ log* n) processors. Ap-
plying Lemma 2.7 with Lemma 2.3 then gives us
the following:

Theorem 2.8: One can perform approximate
compaction, for any constant expansion param-
eter a > 0, in O(log*n) time, with probabil-
ity 1 — 1/c"1m, for any constant ¢ > 1, using
O(n/log* n) processors on a randomized CRCW
PRAM.

Proof: The number of processors needed is
O(nlog* n/2"€" " L n/log* n 4+ 2los® "lognlog* n),
which is O(n/log* ), since v = n, A = 218" " angd
= n/zlog' n g

Incidentally, this theorem improves the bot-
tleneck in many of the algorithms of Matias and
Vishkin [35]; hence, it has a number of interesting
applications. For example, it implies that one can
compute a 2-ruling set® almost surely in O(log* n)
time using O(n/log* n) processors on a random.
ized CRCW PRAM.

2.4.1 Some Constant-Time Methods

We can improve the running time for approximate
compaction even further, to be almost surely O(1)

°A 2-ruling set [1 5] is a subsequence L' of an n-element
linked list L, such that the distance in L between two con-
secutive elements in L' is at least 2 and at most 3.
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using nlog(") n processors, for any constant k > 1,
by stopping the recursion early and substituting
our brute force implementations of D and S. By
a reduction to multiple-array approximate com-
paction, this, in turn, implies that one can perform
optimal approximate compaction in O(1) time if
d(A4) is O(n/log*) n), for some constant k > 1.
If we use the CRCW-bit PRAM model, however,
where one allows O(log(*) ) processors to simulta-
neously write (a 1 or 0) to different bits in a single
word [6], then we can perform optimal approximate
compaction almost surely in O(1) time for all prob-
lem instances. This result is based on the following
observation:

Observation 2.9: Given a bichromatic array A =
(a1,a3,.. .,alog(.)n), one can perform the com-
paction of A to the first d(A) locations in an array
B of size at least d(A) in O(1) time using log(*) n
brocessors on a CRCW-bit PRAM.,

Proof: Suppose a; is distinguished (if it is not,
then processor i does nothing). Processor i writes a
1 to bit i of a word W, which is initially 0, and then
reads W and performs an and of W and 2+! — 1,
assigning the result to a register r. Processor i then
writes a; to bj, where j is the number of 1’s in ».
The value of j can be found by table look-up. O

Thus, we also have the following:

Theorem 2.10: One can perform approximate
compaction for any constant expansion parameter
@ > 0 in O(1) time, with probability 1 — /e,
for any constant ¢ > 1, using n processors on a
randomized CRCW-bit PRAM.

Theorems 2.8 and 2.10 play important roles in
our simulation theorems, as does the next problem
we study.

2.5 Summation Approximation
The final problem we address is the following:

Summation approzimation: given an n-element ar-
ray A of integers in the range [0, n9), for some con-
stant d, compute an estimate s’ for s = Yria.

We show how to find an s’ such that s' ¢
[(1 = 7)s,(1 + 9)s] almost surely, for any con-
stant 7 > 1. We begin by choosing 8 so that



(1 + B)* < 1+ . For each element g; in 4 we
let col(a;) denote the value j such that (1 + B) is
the smallest power of (1 + ) greater than a;. Note
that if we add up all the (1 + ﬂ)°°l("") values, we
would get an approximation to s that is off by at
most a 1 + 3 factor. We use an approach similar
to that used to prove Lemma 2.3, in that we build
an n x O(logn) array L such that L[i,j] is 1 if
col(a;) = j. We then perform density approxima-
tion on the columns, i.e., apply Theorem 2.6, with
estimation parameter 8, and add the results using
a brute-force O(1)-time method [10]. This gives us
the approximation &', since it implies that s' is al-
most surely off from the sum of the (1 + 8)°%)
values by at most a 1+ 3 factor. This computation
clearly runs in O(1) time using O(nlogn) proces-
sors. We can reduce the number of processors to
n by using polling and an in-place version of The-
orem 2.5 (we give the details in the full version).

Theorem 2.11: Given an n-element array A of
integers in the range [0,n¢, for some constant d,
one can compute an estimate s’ such that s' € [(1—
¥)s, (1+7)s], with probability 1 — 1/c"'m , for any
constant ¢ > 1, in O(1) time using n processors on
a randomized CRCW PRAM, where s = Y7, a;.

Incidentally, besides being an important ingre-
dient in our simulation theorem (which we give
in the next section), Theorem 2.11 also leads to
improved parallel methods for a number of other
problems, including appoximate selection (which
we show in the full version).

3 Our Framework

Having presented our approximation a.lgorithms,
we now show how they may be used to simulate
algorithms that ignore processor allocation.

8.1 Previous Simulation Theorems

Several researchers [16, 17, 34, 45] have studied
the problem of producing a work-preserving sim-
ulation of a computation where all tasks are cre-
ated at the beginning of the computation and each
task performs in a non-idle fashion for a (possi-
bly unknown) number of steps and then termi-
nates. Hagerup [27] gives a simulation theorem
for a slightly more general version of the prob-
lem, where one allows for the entire computation to
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be terminated, and a new computation to take its
place (possibly with a different number of tasks), at
an overhead cost of O(loglogn/logloglogn) time.

3.2 Our Simulation Theorem

We show how to simulate an algorithm that ignores
processor allocation at a cost that is almost surely
O(log* n) time per processor allocation step on a
randomized CRCW PRAM, and is almost surely
O(1) on a randomized CRCW-bit PRAM [6]. Our
framework is synchronous, in that it allows one
to assume that all the operations for Step ¢ com-
plete before any task performs the operation for
Step 7 + 1. It also allows for all the usual PRAM
operations to be computed in O(1) time, includ-
ing arithmetic, comparisons, and accesses to shared
memory. In addition, it allows the following oper-
ations on tasks:

Halt: terminate this task.

Spawn(p): create a new task, to begin, in
the next time step, the execution of the procedure
specified by the pointer p.

Start(m,p): create n new tasks, to begin, in
the next time step, the execution of the procedures
specified by the pointer p (which could, for exam-
ple, point to an array). Only one task may perform
this operation in any given step.

In order to avoid confusing this model with the
usual PRAM model, where processor allocation is
a serious consideration, we refer to this as the V-
PRAM model. This model subsumes the previ-
ous frameworks for task management [16, 17, 23,
27, 35, 42, 45, while still allowing for synchronous
computations.

Let n; denote the number of real operations
performed by the active tasks in step ¢ of a V-
PRAM computation A that runs in time T'. The
work performed by a V-PRAM computation is the
sum of the lengths of all the tasks created during an
execution of the computation, i.e., W = ¥ ;.
Our goal is to simulate A on a PRAM in a work-
preserving fashion using P processors. The run-
ning time of our simulation is dependent upon T,
P, W, and T', the number of steps in A such that
some task performs one of the above task alloca-
tion operations. Our simulation does not require
the exact value of n;, however; we can use an ap-
proximation i; for n; such that #; < (3/2)n; almost
surely. This is sufficient, for it implies that E:{_., g
is almost surely O(W).



We can also make a simplifying assumption
based on the echo function defined on the #; values,
where, given any non-negative integer function f
defined on the domain {1,2,...,m}, we define f’s
echo function g by the recurrence relation g(i) =
max{ f(i), g(i—1)/2}, with g(1) = f(1). Note that,
for any such f and g, T, g(i) < 257, £(4).
Thus, we can use the echo function defined on the
#; values in the same way Brent uses the n; values.

Theorem 3.1: Let A be a V-PRAM algorithm
that runs in time T with W work. Then A can be
simulated by P processors on a randomized CRCW
PRAM in O(|W/P| + T + T'log* P) time, where
T' is the number of processor allocation steps in A.
Alternately, one can simulate A in O(|W/P| +T)
time on a randomized CRCW-bit PRAM. The time
bounds hold with probability 1 — T/cP'/*, for any
constant ¢ > 1.

Proof: Our proof is based on a simulation of
each step ¢ of A with P processors on a random-
ized CRCW PRAM in time that is almost surely
O([N;/P] + log* P) (or, alternately, almost surely
O([N:/P]) on a randomized CRCW-bit PRAM),
where N; is the echo function defined on the #; ap-
proximations of the n; values. Each real processor
p is assigned a packet of tasks, the size of which is
P’s load. We maintain the following invariant:

Simulation Invariant: The load of each real pro-
cessor is at most 16[N;/ P].

Our method for simulating step 7 is as follows.
We first perform all the operations of A’s step i
that do not affect the pool of processors. If there
are no other kinds of operations in this step (which
can be tested in O(1) time by an or operation),
then we are done, for N;;; = N; in this case.

We next perform the Halt operations (if there

are any to perform). Let n! denote the num-
ber of surviving tasks. Of course, we do not
know the value of n!, and don’t have time to
compute it exactly. So, we use summation ap-
proximation to compute an estimate ) such that
(1/2)n} < @} < (3/2)n! almost surely, and let
N! = max{#}, N;/2}. After performing all the
Halt operations the load for any real processor
will now be at most 32[N//P]. We redistribute
the load among real processors in a fashion simi-
lar to that used by Matias and Vishkin [35]. We
call a real processor overloaded if its load is more
than 8[N;/P]. Note that there can be at most
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N{/(8[N{/P]) < [P/8] overloaded real processors.
Use approximate compaction to map the id’s of
these processors into an array of size [P/4], which
almost surely takes O(log* P) time and O(P) work.
By then associating 4 real processors with each ele-
ment of this array and distributing the load evenly
we get that the maximum load for any real proces-
sor becomes at most 16[N//P].

We then perform the Spawn operations. Let
n! denote the total number of tasks that re-
sult, including the surviving old ones. Again,
we use the summation approximation procedure
to compute an approximation #! to n! such that
(1/2)nf < 2 < (3/2)n! almost surely, and let
N{' = max{#{, N/} (= max{n!, N;/2}). Since any
virtual processor can spawn at most one other vir-
tual processor, we have that this increases the load
of any real processor to at most 32[N!/P]. We
then redistribute the load among the real proces-
sors as above, which reduces the load of every real
processor to at most 16[ N}/ P].

We complete the simulation by performing the
Start(m, p) operation, if there is one. We assign
the m new tasks evenly to the P real processors,
increasing the load of any processor to at most
[m/P] + 16[N}'/P]. Note that n;y; = n + m.
So we set N;y; = max{a] + m, N;/2}. This
immediately implies that m < N;;; and N/
max{#n}, N;/2} < N;;;. Thus, this Start opera-
tion can increase the load of any real processor to
at most 17[N;;1/P]. So, by a redistribution as
above, we can almost surely achieve our invariant
for the beginning of step i + 1, and this completes
the simulation of step 1.

By Theorem 2.1 and our observation about
echo functions, the total time needed for the en-
tire simulation is almost surely O(|W/P| + T +
T'log* P), where T' is the number of steps where
Halt, Spawn, or Start operations were per-
formed. This completes the proof. O

Having given our framework for designing V-
PRAM algorithms and how they can be efficiently
simulated on a randomized CRCW PRAM, let us
now give an application of this approach to an im-
portant problem in parallel computational geome-
try: upper envelope construction.



4 Application: Upper Envelopes

Suppose we are given a collection of functions
F = {fiyfas-++s fn}, Where each f; : R — R
Moreover, suppose that F defines a k-intersecting
class of functions, that is, there is an integer con-
stant k > 0 such that, for any pair of functions
(fis f;)s i # 7§, there are at most k z-values such
that fi(z) = fj(z). We define the upper enve-
lope function f on F by f(z) = max}, fi(z). We
define a piece of f to be a maximal restriction of
f to an interval [2;,2z;] such that f(z) = fi(z),
for some i, for all z € [21,2;2]. A natural com-
binatorial problem arising from this definition is
the characterization of Ai(n), the maximum num-
ber of pieces of f. Atallah [3] showed that this
number is closely related to the complexity of a
class of strings known as Davenport-Schinzel se-
quences [18], which implies, by a theorem of Sze-
meredi [47], that Ax(n) is O(nlog* n) for any con-
stant k > 3 (Ax(n) is linear for k = 1,2 [3]). Since
Szemeredi’s bound was established, the bounds for
Ak(n) have been refined to @(na(n)) for k = 3 [31],
and to O(na(n)o(“(")h")) for s > 3 [46], where
a(n) is the very slow-growing inverse of Acker-
mann’s function.

We are interested in the parallel complexity of
constructing f, as it has a host of applications, in-
cluding (1) the computation of convex hulls and
closest pairs for moving point sets [3], (2) the
computation of Voronoi diagrams in parallel [13],
(3) ray-shooting data structures [14], (4) hidden-
surface elimination [42], (5) the construction of
certain types of arrangements [19, 20], and (6)
polygon containment problems [49]. The previous
method for solving this problem in parallel is due
to Boxer and Miller [8], and runs in O(log? n) time
using O(Ax(n)) processors on an CREW PRAM.

In this section we give an algorithm for con-
structing a representation of the upper envelope
f in O(logn) time with O(Ax(n)) processors in
Valiant’s parallel comparison model (where we
count intersection computations as intersections).
‘We also show how to implement our algorithmon a
CREW V-PRAM model in O(¢2(Ax(n))logn) time
with O(Mx(n)/t2(n) + p2(Ae(n))) processors, where
t2(n) and p,(n) are, respectively, the time and pro-
cessor bounds for constructing a 2-ruling set!?. By

19The best deterministic method runs in O(log® n) time
using n processors [15].
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then applying the results derived earlier in this pa-
per, we show that we can construct f almost surely
in O(lognlog* n) time using O(Ax(n)/log® n) pro-
cessors on a randomized CRCW PRAM.

Our method takes the same general approach
as the sequential divide-and-conquer algorithm
used by Atallah [3], where one divides F into
two groups, Fi {f1, fz’-“,fn/Z} and F;
{faj241s Faj2425 - - -5 fn}, Tecursively constructs the
upper envelope functions f; and f;, and then
merges the lists representing f; and f; to construct
f. Since each piece in an upper envelope is charac-
terized by its associated function f; and the inter-
val [z1, z,] upon which it equals f, this merge step
can be implemented by merging the endpoints of
the intervals defining the pieces of each upper en-
velope f; and f;. The pieces of f are determined by
intersecting the functions associated with each pair
of overlapping intervals. Since there can be at most
k intersections for each such pair, this computation
requires O(1) time per pair.

One problem with trying to parallelize this ap-
proach, however, is that we do not know a priori
which old upper envelope pieces will survive and
which ones will die after performing a merge. Also,
we do not know which pairs of overlapping inter-
vals may contribute k new pieces. Thus, if, say, we
wish to pipeline the interval merging process us-
ing Cole’s parallel mergesort procedure [12], then
it seems that we must assume that pieces do not
die. Iterating this procedure for O(logn) iterations
without compaction would require O(n'°8*) pro-
cessors, however. On the other hand, performing
compaction often enough to keep the work optimal
would require too much time!l.

We can avoid these difficulties, however, by us-
ing the parallel mergesort procedure of Goodrich
and Kosaraju [26] to pipeline this divide-and-
conquer process. Their method is based on a
linked-list representation, rather than an array rep-
resentation, as is needed by Cole’s method [12];
hence, their method does not require compaction
be performed after each merge. Applying their
method still has some difficulties, however. One
such difficulty is that they require that there be
a processor assigned to each element in the lists
being merged. Fortunately, by implementing our
generalization of their method on a V-PRAM, we

11 A pproximate compaction cannot be applied here, since
it does not preserve orders.



can ignore this issue.

We begin our algorithm by building a complete
(balanced) binary tree T with n leaves such that
the elements of F are stored in T one element per
leaf. As in [26], we view T' as the schematic for a
parallel mergesort procedure. We make the nota-
tional convention that v is an arbitrary node, z and
y are its children, and wu is its parent. We define a
list A(v) for each v to be the upper envelope of the
functions stored in descendents of v. We construct
A(v) in a pipelined fashion in a sequence of stages.
At the end of each stage ¢ we store a list A;(v) and
say that v is full when A;(v) = A(v). We pipeline
the merge at v’s children to v by maintaining a
list Ly(v) to be an approximately-uniform subse-
quence of A;(v), for all v in T, and by then defin-
ing Aiy1(v) = Ly(z) U Ly(y). By approzimately-
uniform we mean that the distance in A;(v) be-
tween two consecutive elements in L;(v) is at least
¢; and at most ¢, for constants ¢; and c;. Once a
node v becomes full, then we iteratively refine L;(v)
until we eventually have L,(v) = A;(v) = A(v).
This refinement is quite straightforward: for every
consecutive pair of elements e and f in L;(v) we
add the element from A.(v) that is half-way be-
tween e and f. Once Li(v) = A¢(v), we then per-
form the upper-envelopes merge of A(z) and A(y)
to form A(v), at which point v becomes full. Ev-
ery [logecz] = O(1) stages, the nodes at the next
higher level in T become full. This implies that the
entire computation requires only O(logn) stages.

Due to space constraints, we must postpone the
details of this process to the full version of this pa-
per. Some of the main ingrediants in the method
involve the maintenance of two additional tempo-
rary lists at v, L;(v) and L}(v), which facilitate the
maintenance of five important stage invariants. We
have already mentioned two of the most important
of these invariants in the previous paragraph, how-
ever: namely, that we maintain the definitions of
A¢(v) and L¢(v) after each stage t. Moreover, it
is the maintenance of these two invariants that are
most different from the corresponding invariants
from the mergesorting procedure of Goodrich and
Kosaraju [26] (we, of course, show how to main-
tain all our invariants in the full version). Let us
therefore address the first invariant, the definition
of Ay (v). So long as v is not full it is simply the
merge of the L;’s stored at v’s children. Thus,
we can use the method of [26] to form Aiyq(v)
so long as v is not full. Once v becomes full we
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must then use the merged list of A(z) and A(y)
to construct the upper envelope A(v), which we
use for A;y1(v). This can easily be done by a (lo-
cal) computation, where for each overlapping pair
of intervals [z1,2,] € A(z) and [y1,¥2] € A(y) we
compute the intersections of the respective func-
tions associated with these intervals and construct
the new set of (at most k) intervals this determines
in (21, 22] N [y1, ¥2]. Of course, we could also deter-
mine that some of the endpoints in {z;, 22, 31, ¥2}
are no longer endpoints in the merge. Fortunately,
for such each endpoint p we must remove, we can
easily determine the (possibly new) endpoint of an
interval in A(v) that is immediately to the left of
p. For example, if y; is made redundant, it must
be because it is covered by the function f defined
on [zy, Z5]; hence, we can examine z; and the (at
most k) new intersection points determined by f
to choose which one is immediately to the left of p.
This solves the problem of correctly constructing
A¢41(v) for all v in T, and can be done in O(1)
time given the merge of A(z) and A(y).

Unfortunately, this operation makes the main-
tainence of our last invariant, the definition of
L;11(v), much more difficult. The problem is that
the upper-envelopes merge at a node v could cause
the removal of a number of consecutive endpoints
from A;(v), so that L;(v) cannot simply be refined
to form a valid L;41(v), for it may no longer be
an approximately-uniform subsequence of A;44(v).
We get around this problem by going ahead and
refining L;(v) as described above, but follow this
by forming a 2-ruling set of any chains in this re-
fined list that violate our requirement that any
two consecutive elements in L;(v) be at distance
at least ¢; in A;(b). We leave the details of this
to the full version, as well as the “ripple” effect
this computation has through the entire pipelining
process. Suffice it to say that each stage can be
implemented in O(t3(N))) time, using O(p2(N))
processors on a CREW V-PRAM, where N is the
total size of all the A,(v) lists after any stage t. In
fact, if we discount the time required to construct
the 2-ruling set (a computation that is not counted
in Valiant’s parallel comparison model), then each
stage requires O(1) time using N processors. We
show in the full version that NV is O(Ax(n)), and
derive the following:

Theorem 4.1: Given F = {f, f2y..., fa}, a col-
lection of k-intersection functions, one can con-



struct the upper envelope f of the functions in
F in O(logn) time using O(M(n)) processors in
Valiant’s parallel comparison model. Alternately,
one can construct f almost surely in O(lognlog® n)
time using O(Mx(n)/log" n) processors on a ran-
domized CRCW PRAM.

4.1

This theorem immediately leads to improved par-
allel algorithms for a number of other problems [3,
14, 19, 20, 42]. We address some of these appli-
cations in the full version of this paper. In fact,
it even improves the sequential complexity of an
interesting polygon containment problem [49].

Implications

5 Other Applications

In addition to problems related to upper-envelope
constructions, our methods improve the parallel
running times for a number of other parallel com-
putational geometry problems. We briefly mention
two in this preliminary version.

5.1 Range Searching

In the full version we show how to apply our frame-
work and a parallel version of the data structure of
McCreight to efficiently answer three-sided range
queries with an output-sensitive number of proces-
sors on a randomized CRCW PRAM algorithm.

5.2 Hidden-Surface Elimination

The parallel method of Reif and Sen [43] for
performing hidden-surface elimination in a ter-
rain, and the method of Goodrich, Ghouse, and
Bright [25] for performing hidden-surface elimina-
tion for a rectilinear scene, are both designed for
the CREW V-PRAM model. By applying our
framework, we immediately achieve an improve-
ment of almost a logn factor in the running time
(since their simulation algorithms have an logn
time overhead).

6 Conclusion

The results of this paper fall into three dis-
tinct catagories—randomized approximation al-
gorithms, PRAM simulations, and parallel com-
putational geometry—where the results in each

catagory depend on the ones that come before.
Moreover, the dependence upon randomization
and approximation for the problems studied in
Section 2 seems quite strong, for exact versions
of all these problems can have the parity or ma-
jority problems reduced to them, implying an
Q(logn/ loglogn) lower bound on their running
time on a CRCW PRAM with a polynomial num-
ber of processors [5].

The methods of Section 2 also make use of look-
up tables. The existence of such tables, of course,
begs the question of how long they take to build.
Indeed, this issue is at the heart of the distinc-
tion between uniform and non-uniform computa-
tions [10]. Fortunately, since we make repeated use
of our approximation algorithms in our simulation
theorem, the cost of any table construction can be
amortized over the entire simulation. In any case,
the construction costs associated with the look-up
tables we need are quite small—none requires more
than O(log* n) time [10, 15].
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