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Diamonds are Forever in the Blockchain:
Geometric Polyhedral Point-Set Pattern Matching
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Abstract

Motivated by blockchain technology for supply-chain
tracing of ethically sourced diamonds, we study geomet-
ric polyhedral point-set pattern matching as minimum-
width polyhedral annulus problems under translations
and rotations. We provide two (1 + &)-approximation
schemes under translations with O(e~%n)-time for d
dimensions and O(nloge~! + £~2)-time for two dimen-
sions, and we give an O(e'~2%n)-time algorithm when
also allowing for rotations.

1 Introduction

A notable recent computational geometry application
is for tracking supply chains for natural diamonds,
for which the industry and customers are strongly
motivated to prefer ethically-sourced provenance (e.g.,
to avoid so-called “blood diamonds”). For example,
the Tracr system employs a blockchain for tracing the
supply chain for a diamond from its being mined as
a rough diamond to a customer purchasing a polished
diamond [20]. (See Figure 1.)
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Figure 1: Blockchain transactions in a diamond
supply chain, providing provenance, traceability, and
authenticity of an ethically-sourced diamond.

Essential steps in the Tracr blockchain supply-chain
process require methods to match point sets against
geometric shapes, e.g., to guarantee that a diamond
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has not been replaced with one of questionable prove-
nance [20]. Currently, the Tracr system uses stan-
dard machine-learning techniques to perform the shape
matching steps; however, we believe better accuracy
can be achieved by using computational geometry ap-
proaches. In particular, motivated by the Tracr ap-
plication, we are interested in this paper in efficient
methods for matching point sets against geometric
shapes, such as polyhedra. Formalizing this problem,
we study the problem of finding the best translation
and/or rotation of the boundary of a convex polytope,
P (e.g., defining a polished diamond shape), to match
a set of n points in a d-dimensional (d > 3) space, where
the point set is a “good” sample of the boundary of a
polytope that is purported to be P. Since there may
be small inaccuracies in the sampling process, our aim
is to compute a minimum width polyhedral annulus
determined by P that contains the sampled points. In
the interest of optimizing running time, rather than
seeking an exact solution, we seek an approximate
solution that deviates from the real solution by a
predefined quantity ¢ > 0.

Related Work. We are not familiar with any previous
work on the problems we study in this paper. Never-
theless, there is considerable prior work on the general
area of matching a geometric shape to a set of points,
especially in the plane. For example, Barequet, Bose,
Dickerson, and Goodrich [12] give solutions to several
constrained polygon annulus placement problems for
offset and scaled polygons including an algorithm for
finding the translation for the minimum offset of an
m-vertex polygon that contains a set of n points
in O(nlogn + m) time. Barequet, Dickerson, and
Scharf [13] study the problem of covering a maximum
number of n points with an m-vertex polygon (not
just its boundary) under translations, rotations, and/or
scaling, giving, e.g., an algorithm running in time
O(n3m*log(nm)) for the general problem. There has
also been work on finding a minimum-width annulus
for rectangles and squares, e.g., see [9,11,17,18].
Chan [14] presents a (1 + €)-approximation method
that finds a minimum-width spherical annulus of n
points in d dimensions in O(nlog(1/e) + e®M) time,
and Agarwal, Har-Peled, and Varadarajan [1] improve
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this to O(n + 1/e0(@)) time via coresets [2,3,19,21].
Arya, da Fonseca, and Mount [6] show how to find an &-
approximation of the width of n points in O(nlog(1/¢)+
1/e(@=1/2+) time, for a constant a > 0. Bae [10] shows
how to find a min-width d-dimensional hypercubic shell
in O(nl?/21og?~! n) expected time.

Our Results. Given a set of m points in R% we
provide an O(e~n)-time (1 +¢)-approximate polytope-
matching algorithm under translations, for d > 3, and
O(nloge™! + ¢72) time for d = 2, and we provide
an O(e'~2n)-time algorithm when also allowing for
rotations, where the complexity of the polytope is
constant.

2 Preliminaries

Following previous convention [4,5,7,8,16], we say that a
point set S is a §-uniform sample of a surface ¥ C R?
if for every point p € X, there exists a point ¢ € S
such that d(p,q) < 6. Let C C R? be a polyhedron
containing the origin. Given C, and = € RY, define
x+C ={z+y:y € C} (the translation of C by ), and
for r € R, define rC = {ry : y € C}. A placement of C
is a pair (z,7), where z € R? and r € RZ°, representing
the translated and scaled copy = + rC. We refer to
x and 7 as the center and radius of the placement,
respectively. Two placements are concentric if they
share the same center. Let C be any closed convex
body in R¢ containing the origin in its interior. The
convex distance function induced by C' is the function
do : R4 x RY — R29 where d¢(p,q) = min{r : r >
0 and ¢ € p+ rC}. Thus, the convex distance between
p and ¢ is determined by the minimum radius placement
of C centered at p that contains ¢ (see Figure 2). When
C is centrally symmetric, this defines a metric, but for
general C, the function do may not be symmetric. We
call the original shape C' the unit ball Us under the
distance function d¢. Note that do(a,c) = do(a,b) +
dc (b, ¢) when a, b and ¢ are colinear and appear in that
order. Define an annulus for C to be the set-theoretic
difference of two concentric placements (p + RC) \ (p +
rC), for 0 < r < R. The width of the annulus is R —r.
Given a d-uniform sample of points, S, there are three
placements of C' we are interested in:

e Minimum enclosing ball (MinBall): A place-
ment of C of the smallest radius that contains all of the
points in S.

e Maximum enclosed ball (MaxBall): A place-
ment of C' of the largest radius, centered within the
convex hull of S, that contains no points in S.

e Minimum width annulus (MWA): Given a set
S c R? and a convex body C, the minimum width
annulus of S is the annulus for C' of the smallest width
that contains S.

do(p.g) =22, MinBall(e)

MWA (c)

n

Figure 2: Left: a visual representation of a polyhedral
distance function and the distance between two points.
Center: The MinBall under d¢ containing all points in
S, centered at ¢. Right: The MWA of S with all points
within MinBall(c)\MaxBall(c).

Note that, following the definition of the MaxBall,
we require that the center of the MWA must also
lie within the convex hull of S. For each of the
above placements, we also refer to parameterized ver-
sions, for example MinBall(p), MaxBall(p), or MWA(p).
These respectively refer to the minimum enclosing ball,
maximum enclosed ball, or minimum width annulus
centered at the point p. Further, we use |MinBall(p)|
and |MaxBall(p)| to denote the radius of MinBall(p)
and MaxBall(p), respectively, and we use [IMWA(p)| to
denote the width of MWA (p).

Further, the ratio, F', of the MinBall over the MaxBall
of S C R? under distance function d¢ defines the
fatness of S under d¢. Also, we define the concentric
fatness as the ratio of the MinBall and MaxBalls
centered at the MWA, and we define the slimness to be
f~! =1-F~! which for concentric fatness corresponds
to the ratio of the MWA over the MinBall.

Remark 1 In order for a d-uniform sample to rep-
resent the surface, X, with enough accuracy for a
meaningful MWA | the sample must contain at least one
point between corresponding facets of the MWA. Where
corresponding facets refer to facets of the Min and
MaxBall representing the same facet of Uc. Therefore,
in the remainder of the paper, we have a d-uniform
sample and that § is small enough to guarantee this
condition for even the smallest facets.

In practice, it would be easy to determine a small
enough ¢ before sampling ¥, since only sufficiently slim
surfaces would benefit from finding the MWA and very
fat surfaces would yield increasingly noisy MaxBall.
Thus, setting d to the smallest facet of the MinBall and
scaling down by an arbitrary constant larger than the
maximum expected fatness, such as 100.

Also, note that, for a center point ¢, the problem
of finding MWA(c) has a unique solution, because a
unit ball, Ug, is convex and once the placement’s radius
grows past do(c,p), it must contain p € S. Thus, the
inner and outer radii are defined as min,egs de(c, p) and
maxpes dc(c, p), respectively. Further, let us assume
that the reference polytope defining our polyhedral
distance function has m facets, where m is a fixed
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constant, since the sample size is expected to be much
larger than m. Thus, d¢ can be calculated in O(m)
time; hence, MWA(¢) can be found in O(mn) time,
which is O(n) under our assumption.

3 Approximating the Min. Width Annulus

Let us first describe how to find a constant factor
approximation of MWA under translations. Note that,
by assumption, the center ¢ of our approximation lies
within the convex hull of S. Let us denote the center,
outer radius, inner radius, and width of the optimal
MWA as copt, Ropt, Topt, and wept.

Lemma 1 The center of the MWA, copt, is under wop
distance away from the center of the MinBall, ¢. That
is; dC(Cv Copt) < Wopt -

Proof. Recall our assumption from Remark 1. Since
some points must always exist in each facet, the MinBall
cannot shrink past any facets of MaxBall(¢). Suppose
for contradiction that dc(c,copt) > wopt- Let s be
the point where a ray projected from c through copt
intersects the boundary of MaxBall(c,,:) and let R
denote the radius of the MinBall.

R > dc(e,s) = de(c, copt) + do(copt, 8) by colinearity
by assumption
by MaxBall(copt).

> Wopt + dC (Copt7 S)

> wopt + Topt

Thus, since Wopt +Topt = Ropt, we find R > Ry, which
is a contradiction since R must be the smallest radius
of the MinBall across all possible centers. Therefore, we
have that dc(c, copt) cannot be larger than wept. O

Lemma 1 helps us constrain the region within which ¢
must be contained. Let us now reason about how these
different center points would serve as approximations.

Lemma 2 Suppose ¢ is an arbitrary center-
point in our search region, and the two directed
distances between c and cop are at most t, i.e.,
t > max{dc(c, copt),dc(copt;¢)}. Then, we have that
IMWA (c)| < wopt + 2t.

Proof. Let p be the point where the ray from c through
Copt intersects the boundary of MinBall(c,p;). In the
worst case, MinBall(¢) would need to contain p; hence,

dC (C,p) = dC(C, Copt) + dC(coptap) S t+ dC(Coptap)
R < Rype +t.
Conversely, let ¢ be the intersection point where the ray

projected from c,p; through c intersects the boundary
of MaxBall(c,p), in which case

dC (Ca Q) = dC (Copta Q) - dC (Copta C) Z dC(Coptv Q) -1
r 2> Topt — t.

Putting together these worst cases for MinBall(¢) and
MaxBall(c) implies that [MWA(c)| < wepe + 2¢. O

For simplicity, let us consider two points a, b to be t-
close (under C') whenever ¢t > max{dc(a,b),dc(b,a)}.

Lemma 3 If ¢ is the center of MinBall, then MWA(c)
is a constant factor approximation, i.e., |[MWA(c)| <
bIMWA|, for some constant b > 1, under translations.

Proof. From Lemma 1, we have that dc(c,copt) <
Wopt. 1If € and copt are wype-close, then we can directly
apply the second part of Lemma 2 to find r > 745 —wWopt
and R < Ry, such that [MWA(c)| < Ropt — (Topt —
Wopt ), thus proving that this is a 2-approximation. If d¢
is a metric, then do(copt, ¢) = de (¢, copt) and this must
always be the case. However, if dc(copt, €) > Wopt, then
we must use the Euclidean distance to find de(copt, €).
Let vector u := ¢ — copt, and let us define unit vectors
with respect to d¢ and dg, such that

. U R u
g = ———— U = ————
dC(Copt7 C) ' C dC(Cv Copt)
[iclldc(copt,c) = [lul] = [|uglldc (e, copt)

Il

do(Copts €) < ||Ub||w0pt from Lemma 1.

Under any convex distance function, HZE H is bounded
Vg .
from above by A = max,cga H, which corresponds to

finding the direction, v, of the largest asymmetry in Uc.
Thus, by Lemma 2, [MWA(c)| < (A + 1)wep. Under
our (fixed) polyhedral distance function, A is constant;
hence, MWA(c) is a constant-factor approximation. [J

(1 4 &)-approximation. Let us now describe how to
compute a (1 + ¢)-approximation of MWA.

Lemma 4 Suppose cope and c¢ are (ew/(2b))-close,
where w = [MWA(car)|, e is the center of MinBall,
and b is the constant from Lemma 3. Then, MWA(c)
is a (1 + g)-approximation of MWA under translations.

Proof. To be a (1 4 ¢)-approximation of MWA, the
width of our approximated annulus must be at most
(1 + ¢) times the width of the optimal one. Assuming
¢ and c,p; are t-close, and using Lemma 2, we require
that wepr + 28 < (1 + €)wept, t.€., t < cwep /2. Let us
then choose t < ew/(2b), knowing that w < bw,,; from
Lemma 3, which is sufficient for achieving a (1 + ¢)-
approximation. O

Knowing how close our approximation’s center must
be, we can now put together a (1 + €)-approximation
algorithm to find a center satisfying this condition.

Theorem 5 One can achieve a (1 + €)-approzimation
of the MWA under translations in O(s~%n) time.
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Proof. The MinBall can be computed in O(n)
time [15]. By Lemma 1, we have that dc(c, copt) < Wopt,
where c is the MinBall center. This implies that copt
must lay within the placement ¢ + wy,:C or more
generously in P, defined as ¢ + wC. Furthermore,
from Lemma 4, we know that being (ew/(2b))-close
t0 ¢ope suffices for an (1 + ¢)-approximation. Therefore,
overlaying a grid G that covers P, such that any point
in p € Pis (ew/(2b))-close to a gridpoint, guarantees
the existence of a point g € G for which MWA(g) is a
(1 4 ¢)-approximation.

Since P and (sw/(2b))-closeness are both defined
under d¢, we translate this to a cubic grid for simplicity.
Let @ be the smallest cube enclosing P and ¢ be the
largest cube enclosed by (ew/(2b))C. Let us now define
a grid @ with cubes of size ¢, Grid @ has points
Fb/e apart and Fib%~? gridpoints in total, where F
corresponds to the fatness of C' under the distance
function defined by the unit cube.

Let ¢ define the distance function d, where the unit
ball U, is (ew/(2b)) times smaller than ¢. The grid
G guarantees that for every point p, there exists a
gridpoint ¢ € G such that dy(p,g) < ew/(2b). Since
the unit cube is contained within the unit polyhedron,
we have that dc(a,b) < dy(a,b) Va,b; and since d,
defines a metric, p must also be (ew/(2b))-close under
dc.  Finding the gridpoint providing the (1 + ¢)-
approximation takes O(F%%~n) time,’ which, under
a fixed d¢, is O(e~9n) time. O

Faster grid-search in two dimensions. The algorithm
of Theorem 5 recalculates the MWA at every gridpoint.
However, small movements along the grid should not
affect the MWA much. We use this insight to speed up
MWA recalculations for two dimensions.

Let us first define the contributing edge of a sample
point, p € S, as the edge of C'+ g intersected by the ray
emanating from a gridpoint, g, towards p. Under this
center-point, p will only directly affect the placement
of the contributing edge. Observe that given vectors
7 € C, defined as the vectors directed from the center
towards each vertex, the planar subdivision, created by
rays for each K originating from g, separates points
by their contributing edge. For any two gridpoints,
g1 and g9, and rays projected from them parallel to

, any points within these two rays will contribute
to different edges under g; and go. We denote this
region as the vertex slab of vertex v, and the regions
outside of this as edge slabs. Points within an edge slab
will contribute to the same edge under both gridpoints,
maintaining the constraints this imposes on the MWA

IFor metrics, MinBall provides a 2-approximation, thus b=2.
For non-metrics, we can remove this constant by first using this
algorithm with eé=1 in order to find a 2-approximation in linear-
time, and using this approximation for gridding in the main step.

* sample points Lo
edge ‘ S Si
- slab | vertex icdgc

el slab glal

LR

CAg. . .
grid points g € G

Figure 3: Left: Planar subdivision defining vertex slabs
(red) and edge slabs (blue) for two candidate center-
points, and showing membership of some sample points.
Right: L, and the extreme-most points under ¢ 1, for
each region (solid) and for all regions to its left (dashed).

can therefore be achieved with the two extreme-most
points per edge slab. If we consider vertex slabs for all
g € G, we must be able to quickly calculate the strictest
constraints imposed by points in a subset of vertex slabs.
An example of the planar subdivision for two points is
shown in Figure 3 (left).

Given a grid G, we write g; ; € G to be the gridpoint
at index (i,7). Consider the set of all grid lines L,
defined by rays parallel to K4 starting at each gridpoint.
To quickly recalculate changes to edges incident on v
as we traverse through gridpoints, we need to quickly
identify which slab a sample-point p belongs to, given a
planar subdivision defined by L,,.

Lemma 6 For a specific vector U and an m x m grid,
we can identify which slab a sample point, p, belongs to
in O(logm) time with O(m?)-time preprocessing.

Proof. Consider the orthogonal projection of grid lines
in L, onto a line o7 perpendicular to 7, the order in
which these lines appear in o7 defines the possible slabs
that p could belong to. We can project a given grid line
l € L, onto E_) in constant time. After sorting these
grid lines, we can perform a binary search through the
m? points in O(logm) time to identify the slab which p
would belong to.

Using general sorting algorithms, we could sort the
grid lines in O(m?logm) time. However, since these
lines belong to a grid, we can exploit the uniformity to
sort them in only O(m?) time. Consider the two basis
vectors defining gridpoint positions 2 = g(1,0) — 9(0,0)
and j = g(0,1) — 9(0,0), and their sizes after orthogonal
projection onto v, |i1]|, and [ji|. Without loss of
generality, assume that |i,| > |j.[, in which case grid
lines originating from adjacent gridpoints in the same
row must be exactly |i | away. In addition, any region
i |-wide, that does not start at a grid line, must contain
at most a single point from each row. Furthermore,
since points in the same row are always |7, | away, they
must appear in the same order in each region.

We can therefore initially split o7 into regions i1 ]
wide. Sorting the grid lines [ € L, into their region can
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therefore be calculated in O(m?) time. Now we can sort
the m points in the region containing points from every
row in O(mlogm) time. Since each region has the same
order, we can place points in other regions by following
the order found in our sorted region, thus taking O(m?)
preprocessing time for sorting the points. O

Recall that points to the left of a given line | € L,
contribute to the edge to the left of v, i.e., all points
belonging to slabs to the left of I. We can therefore
isolate the points in these slabs causing the largest
potential change in MWA.

Lemma 7 For a vertex v € C and grid line | € L,
through gridpoint g, let Iy, and lg refer to the slabs on
the subdivision imposed by L, immediately to the left
and right of 1, respectively. Assuming l;, maintains the
points to the left of | imposing the strictest constraints
on MWA(g), and lg to the right, one can calculate
MWA(g) in O(1) time.

Proof. Finding min,es dc(g,p) and maxpes de(g, p)
can now be achieved by optimizing only over the set
of points in {l;, Ulg YveC} and all points in edge slabs.
This set would contain two points per vertex and two
points per edge, yielding a constant number of points.
Thus, MWA(g) can be found in constant time. O

Theorem 8 A (1 + ¢)-approximation of the MWA in
two dimensions can be found in O(nloge™! +¢e72) time
under translations.

Proof. For each vertex, v, we use Lemma 6 to identify
the slab for every sample point. For each slab, we
maintain only the two extreme-most points for each of
the edges incident on V. Let €1 € C denote the vector
describing the edge incident on o from the left, and vice
versa for €z € C incident from the right. For each
slab, we maintain only points which when projected
in the relevant direction, ?, cause the furthest and
closest intersections with the boundary (shown for 8
in Figure 3 (right)). With a left-to-right pass, we update
a slab’s extreme-most points relative to A 1 to maintain
the extreme-most points for itself and slabs to its left.
With a right-to-left pass, we do the same for € r and
maintain points in its slab and slabs to its right.

Thus, for each vertex, we create the slabs in O(e~2)
time, identify a sample points slab in O(loge™!) time
per sample point, and keep the extreme-most points per
slab in constant time per sample point. With O(¢~2)
time to update the slabs after processing all sample
points, we can update the slabs such that they hold
the extreme-most points across all slabs to their left or
right (relative to 1 and € g, respectively).

For each edge slab, finding the extreme-most
points is much simpler since finding mindg(g,p) and

maxdc(g,p) across all points in the edge slab will
always be based on the contributing facet.

Thus, after finding the extreme-most points in both
vertex slabs, we can calculate MWA(g) in constant
time as described in Lemma 7. Taking O(¢~2) time
to find minge MWA(g), which by Theorem 5 provides
a (14 ¢)-approximation of the minimum width annulus,
completes the proof of the claimed time bound. O

4 Approximating MWA allowing rotations

In this section we consider rotations. As with Lemma 4,
our goal is to find the maximum tolerable rotation
sufficient for a (1 + e)-approximation. Observe that
when centered about the global optimum, the solution
found under both rotation and translation is at least
as good as the solution found solely through rotation
(i.e., under a fixed center). We will therefore first prove
necessary bounds for a (1 + ¢)-approximation under
rotation only with the understanding that they remain
when also allowing for translation.

Consider the polyhedral cone around 7 and define
the bottleneck angle as the narrowest angle between a
point on the surface of the polyhedral cone and . Let 0
be the smallest bottleneck angle across all ¥ € C. Let
MWA, (c) describe the MWA centered at ¢, where C
has been rotated by angle a. Let us also use similar
notations for MinBall and MaxBall.

Lemma 9 Rotating by a causes MinBall, (¢) to grow by
at most W (and the reciprocal for MaxBall,(c)).

Proof. In the worst case, MinBall(¢) must be com-
pletely contained within MinBall,(c). Let us now
consider the triangle formed between c, the vertex v
of the original MinBall, vy, and the rotated vertex
Vo (shown in Figure 4). Since our calculations focus
towards the same vertex, we will be working with
Euclidean distances. The quantity |vg — ¢| defines the
radius r; of the original polyhedron, and ry = |v, — ¢
the radius of the rotated one. With v =7 —60 — « as
the remaining angle in our triangle and using the sine
rule, we find that

rg  siny  sin(r -6 —a)

ry  sinf sin 0
Observe that 6 is the angle maximizing this scale
difference. This applies to rotating by « in any direction
about 7, and since this direction needs not coincide
with 6, the scaled polyhedron might not touch the
original.  For MaxBall,(¢) to be contained within
MaxBall(c), the same example holds after switching
references to the scaled and original. In this case, 6
minimizes r1/rs. O

Let us now determine the rotation from the optimal
orientation that achieves a (1 4 ¢)-approximation.
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sin(r—0—a)
sin @

9

Figure 4: The scale increase necessary for a polyhedron
rotated by a to contain the original.

Lemma 10 Given a center ¢, we have that MWA,(c)
is a (1 + €)-approzimation when « is smaller than

arcsin (S;}e (1+5 + /(1 +e)2 +4f(f - 1))) — 6.
Proof. Define f as the ratio of the radius of
MinBall(copt) to wopr (2.€., fwopr = |MinBall(copt)]|)-
Note that f corresponds to the inverse of the concentric
slimness of S under d¢ over all rotations of C.

Using Lemma 9, we know that

IMWAL ()] < 527 MinBall(e)] — 529 MaxBall(c)|
sin 0 sin~y
sin~y sin 0
mfwopt - E(f_l)wopt < (I4e)wepe (1)
sin 7y sin 0
— —1) < (1 2
sin 0 sin'y(f )= (1+9) @)

To be a (1 + ¢)-approximation, we need |[MWA,(c)| <
(1+€)wopr imposing the right side of Inequality ??, its
left side follows by definition of f, and Inequality ?7?
by cancellation of wgy:. Since 6 is constant, we can
rearrange the above into a quadratic equation and solve
for sin~y.

. sin 0
siny = ET8 (1+E:|: \/(1+€)2+4f(f—1)) . (3
However, arcsin will find v < m, whereas we need the
obtuse angle m — . Thus, proving this lemma’s titular
bound, and achieving a (1 + &)-approximation. O

Let us now establish a more generous lower-bound
that will prove helpful when developing algorithms.

Lemma 11 The angular deflection required for a
(1 + &)-approzimation is larger than 0c/(2f).

Proof. Observe that v is of the form arcsin(k sin @) and
thus, in order for a = y—# to be positive, we must have
0 < m/2 and k > 1. We will prove this is the case.

1+e 1+e\? 1

k:2f+\/(2f> —?-‘rl (4)
1 1 1= 1 5
s e ®)
1+¢ 1 €

Equation (4) follows from Equation (3) after expanding.
Equation (6) follows after using Equation (5) as a
lower bound for the square root term in Equation (4)
since ¢ > 0 and f > 1. This allows us to bound

€
arcsin | | 1+ ) sin 9) by using Taylor’s series expan-

2f
sion to find (1+k)-0 < arcsin((1+k) sin @), thus proving
that the bound from Lemma 10 is greater than g—;. O

Lemma 12 For fized rotation of C, assume we have
an O(f(n))-time algorithm for the optimal minimum-
width annulus under translation. We can find o (1 +
€)-approximation of the MWA wunder rotations and
translations in O((d — 1)(4=1/2c1=d £(n)) time.

Proof. A d-dimensional shape has a (d—1)-dimensional
axis of rotation. Let us evenly divide the unit circle
into k directions. Let us also define a collection
of all possible direction combinations as a grid of
directions. For each grid direction, rotate C' by the
defined direction and calculate the MWA in O(f(n))
time. The optimal orientation must lie between the
(d—1)-dimensional cube formed by 29! grid directions.
Therefore, as long as the diagonal is smaller than 9—;,
there will always exist a grid direction within g—; of the
optimal orientation and therefore achieving a (1 + ¢)-
approximation by Lemma 11. Thus, we can achieve

d—1
a (1 + e)-approximation in O (f(n) : (%) )

time, where d, 0, and f are constant under a fixed
distance function d. O

With a fixed center, Lemma 12 can be used to
approximate MWA under rotations in O(ne?~1) time.

Theorem 13 One can find a (1 + €)-approzimation of
MWA under rotations and translations in O(ne!=24)
time for d>3, and O(ne~tloge™! +&e73) time for d=2.

Proof. Consider using an approximation algorithm
(from Theorems 5 or 8) instead of an exact algorithm as
in Lemma 12. Let us define (14¢) as the approximation
ratio necessary from the subroutines in order to achieve
an overall approximation ratio of (1 + ¢), such that
(1+&2=1+¢e Sinceé =yI+e—land0<e<1,
then ¢ must always be larger than (v/2 — 1)e, and thus,
we can always pick a value for & which is O(e) and
achieves the desired approximation. Thus, by following
Lemma 12, we can find a (1+ (v/2— 1)¢)-approximation
using the (1 4+ (v/2 — 1)e)-approximation algorithm
from Theorem 5 to find a (1 + ¢)-approximation in
O(e'=? . e79n) time. Alternatively, for two dimensions,
we can instead use the algorithm from Theorem 8 to
find a (1 + €)-approximation in O(ne !loge=! + ¢73)
time. O
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