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ABSTRACT
We present comparison-based parallel algorithms for sorting n
comparable items subject to comparison errors. We consider

errors to occur according to a well-studied framework, where the

comparison of two elements returns the wrong answer with a fixed

probability. In the persistent model, the result of the comparison

of two given elements, x and y, always has the same result, and is

independent of all other pairs of elements. In the non-persistent
model, the result of the comparison of each pair of elements, x
and y, is independent of all prior comparisons, including for x and

y. It is not possible to always correctly sort a given input set in

the persistent model, so we study algorithms that achieve a small

maximum dislocation and small total dislocation of the elements

in the output permutation. In this paper, we provide parallel

algorithms for sorting with comparison errors in the persistent and

non-persistent models. Our algorithms are asymptotically optimal

in terms of their span, work, and, in the case of persistent errors,

maximum and total dislocation. The main results are algorithms

for the binary-forking parallel model with atomics, but we also

provide algorithms for the CREW PRAM model. Our algorithms

include a number of novel techniques and analysis tools, including

a PRAM-to-binary-forking-model simulation result, and are the

first optimal parallel algorithms for the persistent model and the

non-persistent model in the binary-forking parallel model with

atomics. In particular, our algorithms haveO(logn) span,O(n logn)
work, and, in the case of the persistent model, O(logn) maximum

dislocation and O(n) total dislocation, with high probability. We

achieve similar results for the CREW PRAM model, which are the

first optimal methods for the persistent model and the first optimal

results for the non-persistent model with reasonable constant

factors in the performance bounds.
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1 INTRODUCTION
Given a list, L, of n distinct elements, we study the problem of

efficiently sorting L in parallel when comparisons can have random

errors. In this framework, which has been extensively studied [6,

10, 13–15, 19, 21–23, 25, 29, 35], when a sorting algorithm performs

the comparison of two elements, x and y, a random adversary

flips a coin that is “heads” with fixed probability, independent of

other pairwise comparisons, and he returns the correct result of the

comparison if and only if the coin comes up “tails”. In the case of

persistent errors [6, 13–15, 22], the adversary flips the coin once for
each pair of compared elements, (x,y), and always returns the same

result for the comparison of x and y. In the case of non-persistent
errors [10, 19, 21, 23, 29, 35], however, the adversary flips the coin

independently for each comparison, even for the same x and y.
Motivation for sorting with comparison errors comes from

multiple sources, including quantum computing [21] and applied

cryptography [11, 24]. For example, quantum comparison gates

and cryptographic comparison protocols can fail with known

probabilities [11, 21, 24, 38]. In both cases, reducing the noise from

comparison errors is expensive, and the framework advanced here

offers an alternative, possibly more efficient approach, where a

higher error rate is tolerated while still achieving the goal of sorting

or near-sorting with high probability. Moreover, parallel sorting

algorithms with comparison errors imply an efficient number of

rounds of computation/communication in a protocol, since parallel

steps corresponds to such rounds. Other applications of sorting

with comparison errors include ranking sports teams via pairwise

matches [6] and ranking objects in social networks via group A/B

testing [37], both of which are inherently noisy.

Of course, with non-persistent errors, one can simply repeat

each comparisonΘ(logn) times and take the majority of the results,

which will be correct with high probability.
1
Thus, with non-

persistent errors, the challenge is to design a sorting algorithm

that correctly sorts L without incurring a multiplicative logarithmic

overhead.

With persistent errors, however, it is impossible to always

correctly sort. Indeed, given

(n
2

)
distinct comparison results that

can be arbitrarily faulty, the problem of finding a permutation

that minimizes the number of contraditory comparisons, i.e., the

permutation of the input elements that has the highest probability

1
We say that an event regarding n objects occurs with high probability if it occurs

with probability at least 1 − 1/n.

355

https://doi.org/10.1145/3558481.3591093
https://doi.org/10.1145/3558481.3591093
https://doi.org/10.1145/3558481.3591093
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3558481.3591093&domain=pdf&date_stamp=2023-06-17


SPAA ’23, June 17–19, 2023, Orlando, FL, USA Michael T. Goodrich and Riko Jacob

to produce the observed comparisons, is equivalent to the feedback

arc problem, which is known to be NP-complete [12]. We don’t

persue this approach, however, and instead follow the formulation

of Geissmann, Leucci, Liu, and Penna [13–15], which is based on a

dislocation distance metric. Define the dislocation of an element, x ,
in a list, L, as the absolute value of the difference between x ’s index
in L and its index in the correctly sorted permutation of L. Further,
define themaximumdislocation of L as themaximum dislocation

that some element in L has, and define the total dislocation of L is

the sum of the dislocations of the elements in L. In [13–15], a lower

bound is presented, that shows, for persistent comparison errors,

that a maximum dislocation of O(logn) and a total dislocation of

O(n) is optimal.

In this paper, we are interested in parallel algorithms for sorting

with comparison errors, in both the persistent and non-persistent

error models. The models of parallel computation that we consider

are the parallel random access machine (PRAM) and binary-forking

models. The PRAM is a shared-memory model where processors

operate synchronously, and it has variants that are distinguished by

how simultaneous memory accesses are handled (see, e.g., [18, 20]),

including (i) allowing for concurrent reads and concurrent writes

(CRCW), according to some write conflict-resolution method (e.g.,

arbitrary), (ii) a more-realistic variant allowing for concurent

reads but requiring exclusive writes (CREW), and (iii) a more-

restrictive variant requiring exclusive reads and exclusive writes

(EREW). The PRAM model can be viewed as a hardware-inspired

model, in that it defines the actions of parallel processors. In

contrast, the binary-forking model can be viewed as a software-

inspired parallel model, in that it is a loosely-synchronous shared-

memory model that mimicks how parallelism is often provided in

programming languages for multicore shared-memory machines,

where computational threads are created with a fork operation

and synchronzied back into one by a join, e.g., see [1, 5, 8, 17].

The binary-forking model allows for asynchronous concurrent

memory reads and supports two submodels based on whether

asynchronous concurrent writes are allowed through the use of

atomic operations, such as test-and-set (see, e.g., [1, 5]), or whether
such atomic operations are disallowed (see, e.g., [8, 17]).

In both parallel models, costs are measured in terms of work
(the total number of executed instructions) and span (the longest

sequence of logically dependent instructions), the latter of which is

also known as parallel time in the PRAM model. By known lower

bounds (see, e.g., [5, 18, 20]), an optimal parallel comparison-based

sorting algorithm in either the CREW PRAM or binary-forking

models must have Ω(n logn) work and Ω(logn) span. In this paper,

we are interested in algorithms that are asymptotically optimal in

terms of span, work, and, in the case of persistent errors, maximum

and total dislocation.

1.1 Prior Results
The non-persistent error model traces its roots to a classic problem

from 1961 by Rényi [33] of posing yes/no questions to someone

who lies with a given probability. The literature on this topic is too

voluminous to completely review here, however; hence, the reader

is referred to a survey by Pelc [30]. Notable work in this space

includes work by Pippenger [31] on computing Boolean functions

with probabilistically noisy gates and by Yao and Yao [39] on sorting

networks built from noisy comparators. Braverman and Mossel [6]

introduced the persistent-error model, where comparison errors

are persistently wrong with a fixed probability, p < 1/2 − ε ,

and they achieved a running time of O(n3+f (p)) time for sorting.

Klein, Penninger, Sohler, and Woodruff [22] improve the running

time to O(n2), but with O(n logn) total dislocation w.h.p. The

sequential running time for sorting in the persistent-error model

optimally with respect to maximum and total dislocation was

subsequentially improved to O(n2), O(n3/2), and ultimately to

O(n logn), in a sequence of papers by Geissmann, Leucci, Liu, and

Penna [13–15]. In terms of the relevant prior parallel results, Feige,
Raghavan, Peleg, and Upfal [10] provide a randomized parallel

algorithm for sorting with non-persistent errors that, with high

probability, runs in O(logn) parallel time and uses O(n logn) work
in the CRCW PRAM model, and Leighton, Ma, and Plaxton [23]

show how to achieve these bounds in the EREW PRAM model.

Both of these algorithms make extensive use of the AKS sorting

network [2, 3], however, which implies that their asymptotic

performance bounds have very large constant factors. We are not

familiar with any optimal parallel algorithm for sorting with non-

persistent errors that avoids using the AKS sorting network or is

for the binary-forking parallel model. We are also not familiar with

any previous efficient parallel algorithm for sorting with persistent

errors. Optimistically parallelizing the best sequential algorithm

for sorting with persistent errors, by Geissmann, Leucci, Liu, and

Penna [14], seems to require at least Ω(log3 n) span; hence, this
approach would not achieve an optimal parallel sorting algorithm.

1.2 Our Results
In this paper, we describe parallel sorting algorithms in the CREW

PRAM and binary-forking parallel models that have O(logn) span
and O(n logn) work w.h.p., in the presence of either random

persistent or non-persistent comparison errors according to a fixed

probability. In the case of non-persistent errors, our algorithms

correctly sort w.h.p., and in the case of persistent errors our algo-

rithms return a permutation of the input that achieves maximum

dislocation of O(logn) and total dislocation of O(n) w.h.p.
Our algorithms are inspired by the box-sort algorithm [28, 32],

which is a type of parallel quick-sort that is also known as

distribution-sort [34] or sample-sort [5, 8]. At a high level, box-

sort involves choosing a sample, S , of n1/k elements at random

(e.g., for k = 2 or k = 3), sorting S by brute-force, and performing a

binary search for each unchosen element, x , in parallel to determine

the “box” x belongs to, where a box is defined by each pair of

consecutive elements in the sorted copy of S . Box-sort completes

by distributing the unchosen elements to their respective boxes

(which is admittedly a non-trivial step) and recursively sorting each

box in parallel.

Implementing an algorithm inspired by box-sort while dealing

with comparison errors presents a number of interesting challenges,

for which we present novel techniques to overcome. For example,

brute-force sorting is not even possible with 100% accuracy with

presistent errors. More importantly, it is not clear how to efficiently

perform noisy binary searching w.h.p. with either persistent or

non-persistent errors for subproblems (defined at the later stages
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of the algorithm) that are much smaller than the size of the original

input list. Finally, simple recursion for subproblems seems like it

could “lock in” elements far from their proper location in a sorted

output, so simple recursion also appears to be out.

We overcome these challenges by developing a number of

tools, to design a parallel algorithm that has O(logn) span using a

sequence of rounds (each a parallel algorithm), each of which signifi-

cantly reduces the maximum dislocation of the list being sorted. For

example, one of our tools is a parallel noisy multi-way search that is

guaranteed to come close to the proper location of a query element,

x , using a reasonably small number of processors/threads. We also

give a parallel error-reduction technique that uses parallel sorting-

with-small-radius to reduce a maximum dislocation from a bound,

k , to k7/8 w.h.p. This parallel sorting-with-small-radius is done on

annotations rather than original elements; hence, it can be done

deterministically and error-free. For the CREW PRAM model, for

example, we can utilize optimal deterministic parallel sorting, such

as the parallel merge-sort algorithm by Cole [7], here. However,

for the binary-forking model, which is our primary interest, we

are not aware of any published optimal deterministic error-free

parallel sorting algorithms. The best prior-work results appear

to be the classic odd-even merge-sort [4], which has O(log2 n)
span and O(n log2 n) work, a determinsitic method by Cole and

Ramachandran [8], which hasO(logn log logn) span andO(n logn)
work, and the O(logn)-span randomized algorithm by Blelloch,

Fineman, Gu, and Sun [5], none of which are sufficient for our

purposes. We overcome this challenge by providing a simulation

result that implies an optimal deterministic error-free sorting

algorithm in the binary-forking model (with atomic operations).

2 BUILDING BLOCKS
2.1 Rank Estimation
Suppose we are given a list, L, of n distinct comparable elements. By

a slight abuse of notation, since the elements in L are distinct, we

may simultaneously view L as a set and as an indexed list.
2
Given

an element, x , which may or may not be in L, define rank(x, L)
to be the number of elements in L smaller than x . If the list L is

understood by context, then we may simply use rank(x) instead of

rank(x, L). Thus, if x is the smallest element in L, then rank(x) = 0,

and if x is the largest element in L, then rank(x) = n − 1. In other

words, rank(x) is equal to the index of x in the correctly sorted

listing of L ∪ {x}. Also, note that if x = L[i], i.e., x is the element at

index i in L, then the dislocation of x in L is | rank(x) − i |.

Lemma 2.1 (Rank estimate from comparison count). Assume
we perform the comparisons of one element x with n other elements xi .
Let r be the true rank of x , i.e., the number of comparisons that
would turn out “smaller” if there were no errors. Assume S out
of the n comparisons come out “smaller” in the persistent-error
model with error probability p < 1/2. If we compute a maximum
likelihood estimate of the (0-based) rank r of x in S as rn (S) =
min{n,max{0, (S−np)/(1−2p)}}, then, for any t ≥ 1, Pr(|rn (S)−r | ≥
t) ≤ 2 exp(−2(t2(1 − 2p)2)/n).

Proof. Note that E[S] = r (1−p)+ (n − r )p = r − rp +np − rp =
r (1 − 2p) + np. Let S ′ denote the sum of indicator variables Xi with

2
Throughout this paper we assume list indexing starts at 0.

value 0 or 1/(1 − 2p), such that if xi < x , then Xi is 1/(1 − 2p) iff
there is a true comparison for xi , and if xi > x , thenXi is 1/(1−2p)
iff there is a false comparison for xi . Thus, S

′ = S/(1 − 2p); hence,
E[S ′] = r + np/(1 − 2p). Insisting on rn (S) being at most n and

at least 0 can only move it closer to r . Hence, instead of rn (S),
for our analysis, we may conservatively use R′ = r ′n (S) = (S −

np)/(1 − 2p) = S/(1 − 2p) −np/(1 − 2p) = S ′ −np/(1 − 2p), thereby
only strengthening the result. Thus, by linearity of expectation,

E[R′] = E[S ′] −np/(1− 2p) = r +np/(1− 2p) −np/(1− 2p) = r . We

may then apply a Hoeffding bound (see appendix) as follows:

Pr

(
|R′ − r | ≥ t

)
= Pr

(����S ′ − (
r +

np

1 − 2p

)���� ≥ t

)
≤ 2 exp

(
−

2t2

n/(1 − 2p)2

)
.

◀

2.2 Deterministic Error-Free Sorting in the
Binary-Forking Model

For the remainder of this paper, we assume that we are working

in the version of the binary-forking model that supports atomic

operations, such as test-and-set; see, e.g., [1, 5]. We are not aware

of an optimal determistic error-free sorting algorithm for this

model, given that the algorithm of by Cole and Ramachandran [8]

(which does not use atomic operations) has O(logn log logn) span
and the O(logn)-span algorithm by Blelloch, Fineman, Gu, and

Sun [5] (which does use atomic operations) is not deterministic. In

Appendix B, we prove the following simulation result.

Theorem 2.2. If A is an EREW PRAM algorithm where each
memory cell is written to and subsequently read at most once, such
that A runs in T time using P processors andW work, then one can
simulate A in the binary-forking model (with atomic operations)
with O(T + log P) span and O(W ) work.

This gives us the following result, which we will use as a

subroutine in our algorithms for the persistent and non-persistent

error models.

Corollary 2.3. We can deterministically sort n elements (with
error-free comparisons) in O(logn) span and O(n logn) work in the
binary-forking model (with atomic operations).

Proof. Cole’s EREW PRAM parallel mergesort algorithm can be

described so that each memory cell is written to and subsequently

read at most once (see, e.g., § 5 in [7]), with a running time of

O(logn) using O(n) processors. The proof follows by Theorem 2.2.

◀

Given that our main results are for the binary-forking parallel

model, for the remainder of this paper, we describe our algorithms

generically and state their performance in both this model and in

the CREW PRAM model. In this unified exposition, we sometimes

make the assumption that there is a thread for every element of

an array (or every kth element by index). For example, this means

that a computation filling an array starts the corresponding threads.

Using the simulation ideas from Theorem 2.2, we assume these

started programs and their threads stop and put their state into the

memory cell if an entry of the array is not computed yet.
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2.3 Noisy Searching
Another tool we use is noisy searching an approximately sorted list.

We begin by reviewing a previous result for noisy binary search.

Theorem 2.4 (from [14]). Let S be a sequence ofn elements having
maximum dislocation at most d ≥ logn and let x < S . Under the
persistent error model, with p < 1/32, an index rx such that rx ∈

[rank(x, S) − αd, rank(x, S) + αd] can be found in O(logn) (serial)
time with probability at least 1 −O(n−6), where α > 1 is an absolute
constant.

In this section, we prove a theorem (2.7) that generalizes and

extends noisy binary search to the parallel setting. Let S be a

sequence of n elements having maximum dislocation at most d ,
a parameter λ with d ≥ λ ≥ logn and let x < S . Here, the lower
bound logn simplifies the exposition as taking floors or ceilings

is going to be irrelevant for asymptotic considerations, so, for the

sake of simplifying the analysis, we assume d divides λ. In addition,

suppose we have at least λ1+ε processors (i.e., threads) assigned

to x , where ε > 0 is any fixed constant. Our goal is to use these

processors to perform a search in S to determine an estimate for

rank(x, S).
Our method is as follows. We begin by conceptually organizing

S into a sequence of contiguous chunks, each of size λ, according
to the ordering of the elements in S , and numbering the chunks

left-to-right as 1, 2, . . ..3 For each chunk,C , let range(C) denote the
interval, [a,b], which we call the range ofC , such that a is the true

smallest element in C and b is the true largest element in C . Let
S ′ denote the subsequence of chunks numbered with a multiple

of 3⌈d/λ⌉, e.g., if d = λ, then the chunks are numbered 3, 6, 9, and

so on. Note that the ranges of the chunks in S ′ are disjoint, by

the assumed dislocation. That is, each element in a chunk in S ′ is
actually less than every element in a higher-numbered chunk in S ′.

We perform a parallel search on S ′ that is based on majority

comparisons with whole chunks, succeeding with high probability,

as made precise in the following lemma. See Figure 1.

1 2 3 4 5 6 7 111098 141312

3 6 9 12

S:

S’:

range of chunk 3 range of chunk 6 range of chunk 12range of chunk 9

x:
Assign l1+e processors/threads to x and search for x in S’

Figure 1: Our approach to noisy parallel searching, for the
case when d = λ.

Lemma 2.5. Suppose p ≤ 1/4e is the probability of erroneous
comparisons. If x is less than every element in a chunk, C , or x is
greater than every element in C , then a majority of comparisons of x
with elements in C with |C | = λ will reflect this fact with probability
at least 1 − 2

−λ/2.
3
If n is not a multiple of λ, then we pad the last chunk with +∞ values.

Proof. Let X denote the number of false comparisons of x with

the elements in C , and note that E[X ] = λp. Thus, since these

comparisons aremutually independent, and noting that (1/2p) ≥ 2e ,
by a Chernoff bound (see appendix), we have the following:

Pr (X ≥ λ/2) = Pr (X ≥ (1/2p)λp) ≤ 2
−λ/2.

◀

In the parallel search, we maintain two boundary chunks r , l ,
such that with high probability l < x < r . Initially, l = 0 and

r = |S ′ | + 1. In each search-step, we equidistantly select λε chunks,
and perform, using λ1+ε threads, all comparisons of elements in

chunks with x . Lemma 2.5 guarantees that majority comparisons

with chunks that actually are bigger or smaller come out correctly

with high probability. In contrast, chunks that contain x can have

an arbitrary majority, and we expect to see such chunks once the

search has progressed close to the dislocation of S . Hence, the rule
to update l is to set it to the highest numbered chunk such that all

selected chunks left of it came out as “smaller” in majority. The

rule for r is symmetric. If the number of selected chunks between l
and r is not more than two, stop the search and return the average

position in S between r and l . The number of such search-steps is at

most h = ⌈
log(n/3λ)
ε log(λ/2) ⌉. One search-step can be computed inO(log λ)

parallel time or span, using λ1+ε processors on the PRAM, or work

λ1+ε in the non-atomic binary fork-join model.

Lemma 2.6. Let S be a sequence of n elements having maximum
dislocation at most d ≥ λ ≥ logn, where λ is a parameter, and let x <
S . Under the persistent error model, with p ≤ 1/4e , an index rx with
rx ∈ [rank(x, S) − 4d, rank(x, S) + 4d] can be found with probability
at least 1 − 2

−λ/2(hλε ). Let h = ⌈
log(n/3λ)
ε log(λ/2) ⌉ and ε > 0 be any fixed

constant. In the CREW-PRAM, the algorithm uses λ1+ε processors for
O((1/ε) log(n/λ)) time-units. In the binary-forkingmodel with atomic
operations, the algorithm has span O((1/ε) log(n/λ)) and O(hλ1+ε )
work.

Proof. The definition of h is the maximal number of search-

steps in the preceding discussion. The overall span is the number

of search-steps times the span per search-step, including forking

and joining λ1+ε threads per search-step, i.e.,

log(n/λ)

ε log λ
· log λ =

log(n/λ)

ε
.

The success probability stems from a union bound overall compar-

isons of x with chunks as computed in Lemma 2.5. The method itself

does not actually require atomic operations, so any requirements

for atomic operations would only come from synchronization of

this parallel search method with other operations. ◀

In the following we use the parameter N to denote the size of

the original instance, such that we can both refer to the size n of

the subproblem we are working on, and the notion of with high

probability for the overall instance.

Theorem 2.7. Let S be a sequence of n elements having maximum
dislocation at most d ≥ (1 + 2c) logn and let x < S . Let N ≥

max(n, (logn)4) be a parameter. Under the persistent error model,
withp ≤ 1/4e , an index rx with rx ∈ [rank(x, S)−4d, rank(x, S)+4d]
can be found with probability at least 1 − N−c . In the CREW-PRAM,
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the algorithm uses O((logN )2) processors for O(logn) steps. In the
binary-forking model with atomic operations, the algorithm has span
O(logn + log logN ) and O((logn)(logN )2) work.

Proof. In Lemma 2.6, choose λ = (1 + 2c) logN and ε = 1.

Observe h = ⌈
log(n/3λ)
ε log(λ/2) ⌉ ≤ logn. Then 2−λ/2(hλε ) ≤ N−c (logn)2√

N
≤

N−c
. ◀

2.4 Sorting with Small Radius
Recall that if L is a list of distinct elements and x is in L, then
rank(x, L) is equal to x ’s index in a sorted ordering of L. The
following lemma shows that sorting a list by good rank annotations

for its elements can achieve a good bound on the list’s maximum

dislocation.

Lemma 2.8. Let L be a list of n distinct elements, and suppose we
have an annotation, Rx , for each element x in L, such that |Rx −

rank(x, L)| < k . Then sorting L by Rx values results in a list with
maximum dislocation less than 2k , i.e., | rank(L′[i], L) − i | < 2k , for
each i = 1, 2, . . . ,n, where L′ is the list of elements from L sorted by
Rx values.

Proof. Consider the element x at rank r = rank(x, L) and let

us determine what is the maximal number of elements that can

have an annotation smaller than Rx . To maximize this number,

we can assume that the annotation of x is maximal, i.e., Rx =
r + k − 1. Precisely the elements with rank at most r + 2k − 1 can

have an annotation less than r + k ; hence, the highest rank of x
in the annotation-sorted sequence is r + 2k − 1. By a symmetrical

argument, the lowest rank of x in the annotation-sorted sequence

is r − 2k + 1. ◀

The following lemma shows that we can quickly sort the

elements of L by their Rx values in parallel, if L has maximum

dislocation bounded by k .

Lemma 2.9. Let L be a list of n distinct elements, such that
| rank(L[i]) − i | < k , and suppose we have an annotation, Rx , for
each element x in L, such that |Rx − rank(x, L)| < k . L can be
(deterministically) sorted in parallel by the Rx values. In the CREW-
PRAM, the algorithm uses n processors for O(logk) steps. In the
binary-forking model with atomic operations, assuming there are
P = |L|/k threads available, the algorithm has O(logk) span and
O(n logk) work.

Proof. Divide L into contiguous chunks of size k each. By

assumption, there is one thread per chunk, and the calculation

of the start- and end-index of the chunk is deterministic.

For each chunk, C , sort the elements of C together with the

three chunks to the left of C and the three chunks to the right of

C , by Rx values (breaking ties by current position in L), using a

deterministic parallel sorting algorithm, which runs in O(logk)
time and O(k logk) work, as detailed in Corollary 2.3.

4
Consider

the resulting list as split by the original 7 chunks, and use the fourth

(middle) chunk as output for C .
With respect to the correctness of this algorithm, we show that

this algorithm is equivalent to sorting the entire list L as a whole

4
We pad the beginning of L with 2k −∞ values, and we pad the end of L with 2k +∞
values, so the required neighboring chunks for any chunk C always exist.

by Rx . Consider a chunk, C = L[i : i + k − 1]. The algorithm is

equivalent to treating an element y = L[j] with j < i − 2k as having

Ry = −∞, and for j > i + 3k − 1 as Ry = +∞, sorting the whole

sequence with the result L′ and outputingC ′ = L′[i : i +k − 1]. The

algorithm is correct, if the rank in L′ of an x ∈ C ′
is the rank in the

sorted sequence L̂ where elements are sorted by Rx . For x = L̂[j]
by Lemma 2.9 | rank(x, L) − j | < 2k .

Now, starting from L̂, we can perform all changes one by one. The

algorithm is correct, if none of the changes affects the position of an

element x in L̂[i : i + k − 1], i.e. rank(Rx , L) ∈ [i : i + k − 1]. Let y =
L[j] = L̂[h] be an element whose Ry value is changed to −∞, i.e.,

j < i−3k . Then by the assumed dislocation of L, | rank(y, L)− j | < k ,
rank(y, L) < k + j , and by the above argument |h − rank(y, L)| ≤ 2k
i.e. h ≤ 2k + rank(y, L), and we can conclude h ≤ 2k + k + j <
3k + i − 3k = i , i.e., the position of y in L̂ is to the left of Ĉ . Similarly,

if the value Ry is changed to +∞, the position of y in L̂ is to the

right of Ĉ . Hence, L[i : i +k − 1] = L̂[i : i +k − 1], and the algorithm

is correct. ◀

3 NOISY-BOX-SORT
In this section, we describe how to repeatedly reduce the maximum

dislocation of a list via a series of parallel algorithms, so as to

implement a type of noisy-box-sort, which nearly sorts a list of n
elements in O(logn) time with quasi-linear work, in the presence

of persistent errors. The whole section is dedicated to the proof of

the following theorem, which is the main result of this paper:

Theorem 3.1 (Noisy-Box-Sort). For an array with N elements,
we can sort the array with comparison errors in the persistent error
model with p ≤ 1/32, such that the maximal dislocation is O(logN ),
and the total dislocation is O(N ) with probability 1 − N−1.5. In the
CREW-PRAM, the algorithm uses N processors for O(logN ) steps. In
the binary-forking model with atomic operations, the algorithm has
span O(logN ) and O(N logN ) work.

Because some of our algorithms operate on subsets of a larger

list of elements, in the discussion that follows, as before, we use N
to denote the size of the original input list and n ≤ N to denote the

size of a subset we might be operating on at any given point.

3.1 Structure of the overall algorithm and
general considerations

In Section 3.2, we describe an approximate parallel sorting algo-

rithm, A, that has span O(logN ) but uses O(N log
2 N ) processors.

To sort with a linear number of processors, we choose a random

sample ofO(N /log2 N ) elements and approximately sort themwith

A in span O(logN ). Then for every element, x , not in the sample,

we assign a single processor to x and perform a (serial) noisy binary

search for x in the approximately sorted sample, as described

in Section 3.3. This gives us an approximately sorted list of the

input elements with polylogarithmic dislocation, in span O(logN )

with N processors. Given this list, as explained in Section 3.4,

we use a parallel version of the algorithm behind Theorem 2.4,

together with a parallel version of RiffleSort [14, 15], to reduce the

maximum dislocation to O(logn) with high probability. Finally, as

detailed in Section 3.4.7, we finish with a parallel and local version
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of WindowSort [14, 15], from which we inherit the dislocation

guarantees of the final result.

Clearly, any result on sorting with errors needs an assumption on

how big the error probability might be. Throughout our exposition,

we assume that the error probabibilty p is known a priori (so to

speak at compile time), and that p < 1/32. This assumption is

inherited from [14, 15] becausewe use theirWindowSort as the final

step. As is argued there, the assumption can be relaxed to p < 1/16.

To simplify the exposition, we only use milder assumptions on p
if this does not incur any additional considerations and is hence

more natural for the flow of the argument.

3.2 Achieving Polylogarithmic Dislocation
with Superlinear Work

In this section, we describe a parallel approximate sorting algorithm,

which runs inO(logN ) time usingO(N log
3 N ) work and achieves

a dislocation of (c logN )4. One iteration of the main loop of this

algorithm is characterized by the following.

Lemma 3.2. For a list, L, of n distinct elements with maximum
dislocation k , we can sort L with persistent comparison errors, error
probability p < 1/2, such that the maximal dislocation is at most

2

√
k (1+c lnN )

1−2p with probability 1 − nN−c . In the CREW-PRAM, the
algorithm uses kn processors for O(logk) steps. In the binary-forking
model with atomic operations, the algorithm has span O(logk) and
O(kn logk) work.

Proof. We assign k processors to (fork k threads for) each

element x = xi = L[i] and perform all comparisons of ’distance

at most k’: let i− = i − k and i+ = i + k , only if this would

cross the boundary of the array, keep the number 2k of elements

different from i and place the interval at the (left or right) end of

the array. Perform the erroneous comparisons with the elements

xi− , . . . , xi+ in O(1) parallel time. Collect the count of how many

elements are reported smaller than x , denoted by the value ax .
On the PRAM, this takes O(logk) parallel time using a balanced

binary tree communication scheme. In binary fork-join, the span

is O(logk) stemming from forking and joining. Compute Rx =
i− + r

2k (ax ), as defined in Lemma 2.1, with the guarantee that,

for rx the real rank of xi , P[|Rx − rx | ≥ t] ≤ 2 exp(
−2(t (1−2p))2

2k ).

Solve 2 exp(
−(t (1−2p))2

k ) = N−c
for t :

t 2(1−2p)2

k = 1 + c lnN ,

t =

√
k (1+c lnN )

1−2p . Sort all elements according to Rx in O(logk)

parallel time as detailed in Lemma 2.9, using only one thread

per k elements (deterministically selecting the first by index). By

Lemma 2.8, the dislocation of the resulting array is 2t . The high
probability statement follows from a union bound over the error

event over the n elements. ◀

An overhead in processors of the dislocation is prohibitive if used

on the list directly. The following algorithm avoids this problem

using a type of sampling technique. It is the main technical lemma

of this paper.

Lemma 3.3 (The Polynomial Progress Lemma). For an array

(storing a list) with n ≥ 4 elements and dislocation k ≥

(
8c lnN
(1−2p)2

)
4

,
we can sort the array with persistent comparison errors, for error

probability p < 1/2, such that the maximal dislocation of any element
is ≤ k7/8 with probability 1 − N−c for N ≥ max(n, (logn)4). In the
CREW-PRAM, the algorithm uses n log2 N processors for O(logk)
steps. In the binary-forking model with atomic operations, assuming
there are already n/

√
k threads, the algorithm has span O(logk +

log logN ) and work O(n(logk)(logN )2).

Proof. Partition (statically by index) the input array into

contiguous blocks of length

√
k (using one thread per block), and

independently sample one element in each block uniformly. The

dislocation in the original array was k , in the sample it is hence
√
k + 2 ≤

√
2k . Using the algorithm of Lemma 3.2, approximately

sort the sample in O(logk) parallel time, resulting in the list L.

This requires

√
k processors per sampled element, which is overall

linearly many processors. The resulting new array of samples has,

by Lemma 3.2, with probability N 1−c
, a dislocation of at most

2

√
√
2k (1+c lnN )

1−2p ≤ 2

√
2c lnN
1−2p k1/4 =: d .

For each non-sampled element,x , fork one thread in spanO(logk).
Let Lx be the subarray of L that contains all the sampled elements

that where at distance at most k in the original array. Observe

that |Lx | ≤ 4k : by the dislocation k , these elements can have a

true position that is 3k different from the position of x , and the

new dislocation d ≤ k . Perform a noisy parallel search for x in

Lix as detailed in Theorem 2.7, leading to a position in L that

is off by at most 4d positions in L. This takes O(logk) steps on
n(logN )2 PRAM processors or span O(logk + log logN ) and work

O((logk)(logN )2) in binary forking. Label each element with the

rank of this predecessor times

√
k (and the original position as

tiebreaker) to sort. This label has a radius polynomial in k and

hence the algorithm of Lemma 2.9 takes O(logk) span (or PRAM

steps), because there is one thread per element available.

More precisely, the dislocation of element x is given by a set D
of elements that occupy the positions between x and its true rank.

We argue that the probability that |D | ≥ k7/8 is small. Among

the elements of D at most 4d can be sampled (by the guarantee

of the noisy binary search). By the dislocation guarantee of the

initial array, all elements of D must be within rank 3k of x in the

original array. Hence, the relevant sampling process consists of at

most n′ = 3

√
k independent random experiments, each selecting

one of some subset of elements with a certain probability. Because

each element is sampled with a probability of 1/
√
k , the expected

number of sampled elements in D is k7/8/
√
k = k3/8. We apply

a Hoeffding bound (the lower bounding one) on these

√
k many

0-1 random variables, with the bound t = E[]/2, such that the fail

event of the Hoeffding bound is implied by the failing to sample

sufficiently many elements, i.e. k3/8/2 > 4d = 4 · 2

√
2c lnN
1−2p k1/4

which rewrites as k1/8 > 16

√
2c lnN
1−2p , or k ≥

(
8c lnN
(1−2p)2

)
4

, as assumed

in the lemma. The failure probability is hence exp(−t2/n′) =

exp(−(k3/8/2)2/3
√
k) = exp(−k1/8/36) < c logN for k1/8/36 >

ln(c logN )which holds (with a large margin) by the previous lower

bound on k . ◀

Repeating the above algorithm results in an array with polylog-

arithmic dislocation.

360



Optimal Parallel Sorting with Comparison Errors SPAA ’23, June 17–19, 2023, Orlando, FL, USA

Theorem 3.4 (The Polylogarithmic Dislocation Theorem).

For an array with n ≥ 4 elements, we can sort the array with
persistent comparison errors, error probability p ≤ 1/32, such that the
maximal dislocation is (c lnN )4, with probability 1−nN−c forN ≥ n.
In the CREW-PRAM, the algorithm uses O(n log2 N ) processors for
O(logn) steps. In the binary-forking model with atomic operations,
the algorithm has span O(logn) and O(n(logn)(logN )2) work.

Proof. The unsorted array has dislocation n = k . Run the

algorithm of Lemma 3.3 r = O(log logn) times with the sequence

of dislocations being ki = n(7/8)
i
and kr ≤ (c lnN )4. Initially,

fork n/
√
k0 threads, as needed by the algorithm of Lemma 3.3. At

the end of the final sorting step for ki , join all the threads that

belong to one chunk of size

√
ki+1 into one, and use this thread

as required by the next iteration of that algorithm. At the end

of the last round of the algorithm, join all threads. This leads to

a span of O(logn +
∑
i (log logN + logki )) = O(logn) because

(log logn)(log logN ) = O(logn) and because kr−1 conforms to the

lower bound on k in the Lemma, by p ≤ 1/32. ◀

We should at this point say something about synchronization,

because joining completely at the end of a round and forking

completely for the next round would exceed the claimed span.

Instead of doing complete joins and forks, therefore, we do

synchronization on a localized basis onO(k)-sized groups of chunks,
and use atomic operations for the boundaries between groups to

coordinate the synchronizations, so as to keep the span for each

round to be O(logk + log logN ).

3.3 Sampling and Approximately Sorting the
Non-sampled Elements

To avoid the polylogarithmic overhead in the number of proces-

sors or threads, as would be required by a direct application of

Theorem 3.4 on the entire array, we apply this theorem only on a

random sample of the elements in the array. For the non-sampled

elements perform a noisy binary search, as in Theorem 2.4, using

one processor per element. This takes O(logN ) parallel time using

O(N logN )work and achieves a maximum dislocation ofO(log6 N )

w.h.p.

Theorem 3.5 (Optimal Work with Polylogarithmic Dislo-

cation). For an array with N ≥ 4 elements, we can sort the array
with persistent comparison errors, error probability p ≤ 1/32, such
that the maximal dislocation is 4α (logN )6, with probability at least
1−O(N−6). In the CREW-PRAM, the algorithm uses N processors for
O(logN ) steps. In the binary-forking model with atomic operations,
the algorithm has span O(logN ) and O(N logN ) work.

Proof. Let S be the sample resulting from choosing each

element independently with probability (1/logN )2. Forking and

joining threads takes O(logN ) span. The expected size of the

sample is E[|S |] = N /(logN )2, and with high probability, |S | ≤
2N /(logN )2, by the Chernoff bound

Pr(|S | > 2E[|S |]) = Pr(X − µ ≥ δµ) < e−
δ 2µ
3 ≤ e

− N
3(logN )2 ≪ N−6 .

Use (logN )2 processors per element to sort the sample up to a

dislocation of (logN )4 using the algorithm of Theorem 3.4. Use

one processor per non-sampled element to perform a noisy binary

search as in Theorem 2.4. This takes O(logN ) parallel time. Sort

the non-sampled and sampled elements together by annotating the

non-sampled elements with the index of the outcome of the noisy

binary search and the sampled elements annotated with their index.

We call this process to flatten the outcome of the binary search into

the sampled elements. All of this can be done with span O(logN ).

We analyze the dislocation of an element x in this list. To this

end, we consider the worst case that x ends in a position with the

highest possible index. Then x is sorted into the highest numbered

bucket allowed by Theorem 2.4, which is off by αd = α(logN )4.

Additionally, all elements in the next α(logN )4 higher true buckets

could contribute to the dislocation of x by being misclassified by

the binary search as being in their smallest allowed bucket. To

bound the number of elements in these buckets, we consider the

probability that among 4α(logN )6 + b (consecutive) elements, less

than b = 2α(logN )4 are sampled. The expected number of sampled

elements is µ ≥ 4α(logN )4, so we look at a Chernoff bound with

δ = 1/2:

Pr(X ≤ (1 − δ )µ) ≤ e−
δ 2µ
2 = e−

4α (logN )4

8 ≪ N−6

Hence, whp, the dislocation of x is 4α(logN )6. ◀

3.4 From Polylogarithmic Dislocation to
Logarithmic Maximal Dislocation

In this section, we describe how to go from an array with poly-

logarithmic maximum dislocation to one with optimal O(logN )

dislocation. Achieving this efficiently in parallel turns out to be

non-trivial, however, and we perform this dislocation reduction by

dovetailing various sampling and merging steps, together with

a parallel “failure-sweeping” technique [10, 16, 26], which we

spell out in detail in Algorithm 1. Disregarding the filtering of

misclassified elements, the structure of the algorithm resembles

RiffleSort [13–15].

The discussion in this section assumes that the input array has

O(logd N ) maximum dislocation.

3.4.1 Reduction to Polylogarithmic-Size Inputs for Algorithm 1. The
phrasing of Algorithm 1 assumes that it operates on independent

chunks of size n = O(logd+1 N ). Similar to the sorting algorithm

for small radius of Lemma 2.9, we partition the array that has

dislocation (logN )d into chunks of size (logN )d+1. To each chunk,

we add (logN )d neighboring elements from each of the neighboring

(up to 2) chunks, so-called shadow elements. As we will argue for,

Algorithm 1 sorts these chunks of n ≤ (logN )d+1 + 2(logN )d

elements such that the average dislocation is constant, and the

probability that any element exceeds a dislocation of c logN is at

most N−c
. Note that n is small compared to N and that we are

willing to use O(logN ) parallel time.

Observe that each element is in one or two chunks. This leads

to one or two rank estimates from the sorting: If an element has

rank r within the sorted chunk (including shadow elements), the

rank in the overall sorted can be estimated as r plus the number

of elements to the left of the chunk (including shadow elements).

By the assumptions about the dislocation within the chunks, for

all elements that are at least c logN from the chunk boundary,

the dislocation guarantee carries over. For other elements, there
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Algorithm 1: to reduce maximum dislocation to optimal

from O(logd N )

Input :Array A of size n = O(logd+1 N )

Output :Array A is sorted with optimal dislocation

1 foreach xi ∈ A in parallel do //place xi in Uдi and

hence S<дi
2 Choose дi , independently, from geometric distribution

up to k , with |Sk | ≤ c logN , and place xi intoUдi

3 Initialize F = ∅ //Consider Sk approximately sorted

4 for j = k down to j = 1 do //merge Uj , Sj, reduce

dislocation to c logN
5 foreach xi ∈ Uj do
6 Perform c

√
logN steps of serial noisy binary search

for xi into Sj
7 //Error probability is ≪ n−c

8 Determine rank of xi within 4c logN neighbors Li , j
in Sj using 2

j
processors

9 if rank(xi , Li , j ) is outside the 2c logN -center
then move xi fromUj to F

10 FlattenUj and Sj into Sj−1 by outcome of binary search

11 for h = 30c logN down to h = 1, step h = h/2 do
12 foreach xi ∈ Sj−1 do determine rank of xi within h

neighbors, 2
j
processors

13 Sort Sj−1 by extrapolated rank

14 foreach xi ∈ F do
15 Perform c logN steps of serial noisy binary search for xi

into S0

16 Flatten F and S0 into S by outcome of binary search

//Finish with Windowsort of [14, 15]

17 for h = 30c logN down to h = 1, step h = h/2 do
18 foreach xi ∈ S do determine rank of xi within h

neighbors, use one processor

19 Sort S by extrapolated rank

20 return S

might be c logN elements that would be relevant for the rank, but

not having been compared to, potentially adding c logN to the

dislocation. If there is a single such estimate, like for most of the

elements, we adjust this rank estimate to not be in the shadow. If

there are two such estimates, we use the average of the two – as

each of them has a guarantee, the average has as well. Now use the

algorithm of Lemma 2.9 to sort according to this estimated rank,

in parallel time O(log logN ), resulting in a maximal dislocation of

2c logN with high probability.

3.4.2 Sampling: Line 2 of Algorithm 1. For every element xi ,
we choose дi from the geometric distribution with probability

1/2 (where P(0) = 0, P(1) = 1/2, . . .) and collect the elements

by these choices: Define Uj = {xi | дi = j} (Unsorted) and

Sj = {xi | дi > j} (Sorted, as maintained by the algorithm)

with the property E[|Sj |] = E[|Uj |] = n/2j for j > 0. Define

k = (d + 1) log logN − log(4c lnN ) = Θ(log logN ) and observe

E[|Sk |] = (logN )d+1/2(d+1) log logN−log(4c lnN ) = 4c lnN . We

think of Sk not only as a set but also as a subsequence. Because

the input array has dislocation (logN )d , if the sample was taking

precisely every 2
k
-th element, the dislocation in Sk would be

constant (actually 0). In our algorithm, we will keep the invariant

that the dislocation is at most c logN with high probability. For Sk ,
it is true deterministically, just because of its size.

3.4.3 Balanced Sizes of Sj and Uj , Mainly Line 8 of Algorithm 1.
Further, the probability that any Sj or Uj is more than twice its

expected size is bounded by a Chernoff bound (see appendix): For

a chunk C with n = |C |, we have µ = E[|Sj |] = E[|Uj |] = n/2j ≥

4c lnN . We use a Chernoff bound with δ = 1/2 to show that it is

up to a factor of 2 within this:

Pr(|Sj | > 2E[|Sj |]) = Pr(X − µ ≥ δµ) < e−
δ 2µ
3 ≤ e(−4c lnN )/4 =

N−c .

Lemma 3.6. With probability 1 − N−(c−1) in all chunks and all j
we have |Sj | ≤ 2n/2j and |Uj | ≤ 2n/2j , where n is the size of the
chunk.

3.4.4 Round j of the Algorithm, Body of Line 4 of Algorithm 1. As
an invariant, the array Sj is approximately sorted with disloca-

tion c logN . We present an algorithm that takes O((logN )2−j +

log logN ) parallel time for round j. There are p = n = |C |
(elements in the chunk) processors available. By Lemma 3.6, both

|Sj | < 2n/2j and |Uj | < 2n/2j , such that in round j there are 2j−1

processors available per element. In sorting complexity O(logn) =
O(log logN ), we assign 2

j−1
processors to each element.

Before we use several processors per element, we use a single

processor to perform a “noisy binary search” as in Theorem 2.4 for

O(logn) rounds. This takes O(logn) = O(log logN ) time, and with

success probability 1− |Uj |
−6
, determines a rank up to αd + logn ≤

2αc logN , where d is the current dislocation c logN and α is the

constant of Theorem 2.4.

For each element in Uj , the 2
j−1

processors compare to the

4αc logN neighboring (outcome of the noisy binary search) el-

ements of Sj , and extrapolate a rank from the outcome as in

Lemma 2.1. If the extrapolated rank is more than 2αc logN away, we

consider the element “bad” and place it into the set F . This happens
with probability at most U −6

j , which means that the expected

number of bad elements in round j is at mostU −5
j (in the following

calculations, basically a 0). Observe that the event of being bad is

independent for each element of Uj ; hence, by a Chernoff bound

(see appendix),

P (|Sn − E [Sn ]| ≥ t) ≤ 2 exp

(
−
2t2

Uj

)
.

To have the leeway to apply a union bound, we choose the

acceptable error as tj such that t2/Uj = (c + 1) logN , i.e., tj =√
Uj (c + 1) logN . Bad elements are “swept” into the set F , which

we can afford if the number of bad elements is small. By a geometric

sum, this leads to the following bound on the size of F :

Lemma 3.7. |F | = O(
√
nc logN ) = o(n), w.h.p.

3.4.5 Flattening the Dislocation. Assumewe have the almost sorted

sequence Sj with dislocation c logN and the set of elements Uj ,
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where each element is assigned to a bucket/position in Sj that is
correct up to an additive 2c logN , as described above.

In a first sorting step, we “flatten” the buckets, i.e., we assign

the bucket number (and a random/arbitrary tie-breaker) to each

element, and sort the whole sequence. This takes O(logn) =
O(log logN ) parallel time (observe: O((logn)2) would be good

enough as well, so we could even use one of the easier algorithms).

Now, we want to bound the dislocation of this sorted sequence. We

start by analyzing the “true buckets”:

Lemma 3.8. Let S ′i be the true sorted sequence of Si , and let bj
be the number of elements from Ui that truly have rank j in S ′i ,
bj = |{x ∈ Ui | j = |{y ∈ S ′i | y < x}|}|. Assume that Ui and S ′i are
chosen independently for each element with probability 1/2. Then the
probability that a particular set of c lnN consecutive buckets contains
more than 8c lnN elements is at most N−c .

Proof. Assume that the set of c lnN consecutive buckets con-

tains more than 8c lnN elements. Consider the m ≥ 8c lnN
elements in the buckets together with internal bucket separators

from Si . In the random experiment, at most c lnN elements must

have been chosen to be in Si , where the expected value was 1/2m.

Here, it is important that the choice of being in Ui or Si is uniform
(prob 1/2) and (perhaps more importantly) independent between

different elements. We use a Chernoff bound (see appendix)

Pr(X ≥ (1 − δ )µ) ≤ e−
δ 2µ
2 ,

with µ = 1/2m and δ = 3/4 leading to
δ 2µ
2
= 9

16

1

2

8

2
c lnN =

9

8
c lnN ≥ c lnN , and hence e−

δ 2µ
δ ≤ N−c

. ◀

Thus, the assumptions of the following lemma are fulfilled with

high probability for D = c logN for the right c .

Lemma 3.9. Suppose the dislocation in Si is at most D, the error
in each noisy binary search is at most D, and that for any set of D
consecutive true buckets, the number of elements in these buckets is
at most 7D. Then dislocation in the flattened sequence Sj is at most
30D.

Proof. Any element xk ∈ Uj is placed in a bucket at most

2D bucket-positions away from its true bucket: One D for the

dislocation in Sj , and another, additive D, for the noisy binary

search. This also implies, that all elements in a bucket have their

true bucket at most 2D buckets away.

We bound the dislocation of an element xi (true index) in the

flattened sequence: If xi ∈ Sj , the dislocation of Sj implies that its

dislocation is at most D elements of Sj and the content of the D − 1

Uj -buckets in between them. The number of true elements in these

buckets is, by assumption, at most 8D. Additionally, true elements

from another 2D buckets (D each to the left and to the right) could

have been included, giving an overall maximal dislocation of 8·3D =
24D.

If xi ∈ Uj , it lands in a bucket at most 2D buckets from its true

bucket. These can contain, together with their boundaries, at most

16D elements. Additionally, 14D elements can have switched into

buckets on the wrong side (and into the bucket itself). Hence, the

dislocation is at most 30D. ◀

3.4.6 Final Merge of the Failed Elements, Lines 14–19 of Algorithm 1.
By Lemma 3.7, the size of F is whp o(n). Hence, the final merging by

searching, flattening and dislocation reduction works in the same

way (actually easier) than the previous rounds of the algorithm.

3.4.7 Final Parallel WindowSort. Finally, in Line 17 of Algorithm 1,

we finish with a parallel and local version of WindowSort. This

means that we use a geometrically (factor 1/2) decreasing sequence

of window sizes, starting from the whp maximal dislocation

2c logN . Because the only randomness in WindowSort is in the

comparisons with persistent errors, the output of our parallel

version of WindowSort is the same as of the serial version, and

by the original analysis in [14, 15], the total dislocation is O(N )

with high probability. As discussed in Section 3.1, this requires

the error probability to be at most 1/16. For each window size, we

(a) compute for each element its noisy rank in the window, and

estimate a (global) rank from this, and (b) sort by this rank. Step (a) is

implemented by a single processor per element in time proportional

to the window size. Because the window size is geometrically

decreasing, this totals to O(logN ) parallel steps. Step (b) is done

by sorting with small radius as detailed in Theorem 2.9. There are

O(log logN ) rounds, and each takes O(log logN ) parallel time, so

this is (easily) O(logN ) parallel time (span). The requirement of

having sufficiently many threads available is easily achieved.

The high probability bound for the maximal dislocation is 1 −

O(N−4). In the failing case, we can observe that the total dislocation

is at most N 2
, leading to a contribution to the expected total

dislocation of O(1/N 2) = O(1).

4 AN OPTIMAL PARALLEL ALGORITHM FOR
NON-PERSISTENT ERRORS

Theorem 4.1. Given a list, L, of n distinct elements, we can sort L
in O(logn) span and O(n logn) work, w.h.p., in the CREW PRAM or
binary-forking model (with atomic operations).

Our algorithms given above for the persistent-error model also

work in the non-persistent error model. In this section, we show

how to start with a list with logarithmic maximum dislocation and

fully sort it optimally in parallel in the non-persistent model. In

particular, we first apply the parallel algorithm of the previous

section and then perform a “clean-up” algorithm we describe below

to completely sort the input. This clean-up algorithm itself can

experience failures in sorting subproblems, but we can apply a

“failure-sweeping” technique [10, 16, 26], wherewe detect the failing

subproblems, compact the elements in such subproblems, and then

apply additional resources to sort the elements in these failing

subproblems.

Suppose we have a list L of n distinct elements such that L has

maximum dislocation at most d = c logn, where c ≥ 4 is a constant.

Further, suppose that the result of each comparison of two elements

x and y in L is false with probability p ≤ 1/4e , independent of all
other comparisons, even for previous comparisons of x and y.

Our method for completely sorting L in this model in parallel is

as follows.

(1) Divide L into chunks of consecutive elements of size d .
For each chunk, C , in parallel, sort C together with its

immediately smaller and larger chunks (i.e., we sort each
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such set of 3d elements in parallel), and output the middle set

of d elements. Note that if all these sorts are done correctly,

then the entire list will be sorted. Our method for doing

each of these sorts is to use a modified version of the well-

known parallel odd-even mergesort algorithm [4], which has

O(log2 d) span and O(d log2 d) work, in either the CREW

PRAM or binary-forking model. The modification is that

rather than perform each comparison in the algorithm just

once, we assign ⌈d/log2 d⌉ processors to the comparison

and perform the comparison independently for each such

processor, taking the answer to be the majority of the results

(each majority can be determined in O(logd) span and

O(d/log2 d)work). Thus, the sort we perform for each chunk

has O(log3 d) span and O(d2) work. That is, the total span
needed for this step is O(log3 d) = O((log logn)3) and the

total work is O((n/d)d2) = O(nd) = O(n logn).
(2) For each chunk, C , let LC denote the sublist of size 3d that

was output from the previous step. For each LC , in parallel,

performO(d) comparisons between each consecutive pair of

elements to confirm that they are in the correct order. If the

majority of such comparisons for any consecutive pair of

elements LC reports these elements as out-of-order, then we

markC as a “failure.” This step requiresO(d) = O(logn) span
andO(d2)work per chunk, so the total work isO((n/d)d2) =
O(nd) = O(n logn).

(3) Compact the elements in each LC such that C is marked

as a “failure” into an array of size 3⌈n/d⌉, i.e., so we can

accommodate up to ⌈n/d2⌉ chunks marked as “failures.” (We

show that with high probability this is always possible to

do.) The span for this step is O(logn) and the work is O(n).
(4) For each failure chunk, C , we repeat the sorting algorithm

of Step 1, except this time we apply d processors for each

comparison, taking the result as the majority of the d
outcomes. Thus, the sort we perform for each “failure” chunk

has O(log3 d) span and O(d2 log2 n) work. That is, the total
span needed for this step is O(log3 d) = O((log logn)3)
and the total work is O((n/d2)d2 log2 d) = O(n log2 d) =
O(n(log logn)2).

Let us conservatively bound the probability that the sort we

perform for a chunk is a failure by the probability that any one

of its O(d log2 d) comparisons is wrong, i.e., that a majority of the

⌈d/log2 d⌉ processors assigned to this comparison got it wrong.

By a Chernoff bound (see appendix), such a comparison is wrong

with probability at most 2
−d/(2 log2 d )

, sincemu = ⌈d/log2 d⌉p and

p ≤ 1/4e . Thus, the probability that a chunk is a “failure” is p
f
=

ad2(log2 d)2−d/(2 log
2 d )

, by a union bound, where a is a constant.

Note that the check to see if a chunk is a failure simply tests if it is

sorted or not, based on performing 3d tests involving d independent

comparisons. The probability that a majority of such comparisons

wrongly reports that two out-of-order elements are in the correct

order can be bound by a Chernoff bound. Let X denote the number

of in-order comparison results for a pair of out-of-order elements.

Then µ = dp, and

Pr

(
X ≥

d

2

)
= Pr

(
X ≥

µ

2p

)
≤ 2

−d/2 ≤ n−2.

Thus, with high probability, all the chunk tests for failure are correct.

Finally, note that failures of chunks are mutually independent. Thus,

we can use another application of a Chernoff bound to bound the

probability that more than ⌈n/d2⌉ chunks are “failures.” In this case,

letX denote the number of failure chunks and note that µ = ⌈n/d⌉p
f
.

Thus,

Pr

(
X ≥

n

d2

)
= Pr

(
X ≥

µ

p
f
d

)
≤ 2

−n/d2

,

since p
f
d = ad3(log2 d)2−d/2 log

2 d ≤ 1/2e . Thus, with high

probability, the algorithm is correct.
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A TAIL BOUNDS
LetX1,X2, . . . ,Xn be independent random variables such that ai ≤
Xi ≤ bi . Consider the sum of these random variables, Sn = X1 +

· · · + Xn . Then Hoeffding’s theorem states that, for all t > 0:

P (|Sn − E [Sn ]| ≥ t) ≤ 2 exp

(
−

2t2∑n
i=1(bi − ai )2

)
where the bi − ai = 1, i.e. the sum is n.

Suppose X1,X2, . . . ,Xn are independent random variables tak-

ing with in {0, 1}. Let X be their sum and let µ = E[X ]. Then for

any δ > 0, the following Chernoff bound holds:

Pr(X > (1 + δ )µ) <

(
eδ

(1 + δ )1+δ

)µ
.

There are also simplified Chernoff bounds, e.g., see [9, 27]:

Pr(X ≤ (1 − δ )µ) ≤ e−
δ 2µ
2 , 0 ≤ δ ≤ 1,

Pr(X ≥ (1 + δ )µ) ≤ e−
δ 2µ
2+δ , 0 ≤ δ ,

Pr(|X − µ | ≥ δµ) ≤ 2e−
δ 2µ
3 , 0 ≤ δ ≤ 1.

Pr(X ≥ R) ≤ 2
−R , R ≥ 2eµ .

B AN EREW SIMULATION RESULT
It is often possible to describe a parallel algorithm so that each of its

memory cells is written to and subsequently read at most once [36].

For example, one can often index memory cells by “rounds” or

super-steps in a parallel algorithm, and reference memory cells

by address-index pairs, copying values from previous rounds as

needed. For example, Cole’s parallel mergesort algorithm [7] can

be described this way.

Theorem B.1 (Same as Theorem 2.2). If A is an EREW PRAM
algorithm where each memory cell is written to and subsequently
read at most once, such that A runs in T time using P processors and
W work, then one can simulate A in the binary-forking model (with
atomic operations) with O(T + log P) span and O(W ) work.

Proof. We assume that initially each memory cell,Mj , used by

A, contains an input data value or a null-data value, ⊥. We begin

by forking P threads, in O(log P) span, to associate a thread, Tp ,
with each processor, and we simulate step i > 0 in parallel for each

processor thread Tp as follows:

• If p performs no read or write in step i , then Tp simply

performs the internal computation for p in step i of A, and

Tp continues to step i + 1.
• If p performs a read of a memory cell,Mj , in step i , then Tp
atomically checks if Mj = ⊥, and if Mj , ⊥, then Tp reads

Mj and continues to step i+1; otherwise,Tp writes Rp toMj ,

where Rp is the state of p’s registers (including p’s identity
and p’s program counter) and Tp dies.

• If p performs a write to a memory cell,Mj , in step i , thenTp
atomically checks ifMj = ⊥, and ifMj = ⊥, then Tp writes

its indended value to Mj ; otherwise, Tp reads Rp′ from Mj
and then Tp writes its indended value to Mj . In the latter

case, before Tp continues to step i + 1 it forks the thread Tp′ ,
initializing its register set to Rp′ .

The span for this simulation isO(T + log P), given the dependencies

between memory cells and processor threads, since we spend O(1)
span per interaction between a memory cell and processor per step

ofA, after the initial forking of P processor threads, which requires

O(log P) span. In addition, the work isO(W ), since we performO(1)
work per step performed by a processor in A. ◀

By the way, atomic operations are essential for achieving this

result as we do, since it is impossible to simulate Cole’s parallel

mergesort algorithm with less than Ω(logn log logn) span in the

nonatomic binary-forkingmodel, due to a lower-bound of Goodrich,

Jacob, and Sitchinava [17] from SODA’21.

365

https://doi.org/10.1006/jcss.1997.1470
https://doi.org/10.1109/SNPD.2007.367
https://doi.org/10.1016/0304-3975(89)90077-7
https://doi.org/doi.org/10.1016/S0304-3975(01)00303-6
https://doi.org/doi.org/10.1016/S0304-3975(01)00303-6
https://doi.org/10.1109/SFCS.1985.41
https://doi.org/10.1109/SFCS.1985.41
https://doi.org/10.1137/0214030
mathscinet.ams.org/mathscinet-getitem?mr=0143666
mathscinet.ams.org/mathscinet-getitem?mr=0143666
https://doi.org/10.1145/1162349.1162352
https://doi.org/10.1145/1162349.1162352
http://arxiv.org/abs/2202.01446
https://doi.org/10.1109/CLUSTER.2015.20
https://doi.org/10.1109/CLUSTER.2015.20
https://doi.org/10.1145/2783258.2788602
https://doi.org/10.1109/SFCS.1982.38
https://doi.org/10.1109/SFCS.1982.38
https://doi.org/10.1137/0214009

	Abstract
	1 Introduction
	1.1 Prior Results
	1.2 Our Results

	2 Building Blocks
	2.1 Rank Estimation
	2.2 Deterministic Error-Free Sorting in the Binary-Forking Model
	2.3 Noisy Searching
	2.4 Sorting with Small Radius

	3 Noisy-Box-Sort
	3.1 Structure of the overall algorithm and general considerations
	3.2 Achieving Polylogarithmic Dislocation with Superlinear Work
	3.3 Sampling and Approximately Sorting the Non-sampled Elements
	3.4 From Polylogarithmic Dislocation to Logarithmic Maximal Dislocation

	4 An Optimal Parallel Algorithm for Non-persistent Errors
	References
	A Tail Bounds
	B An EREW Simulation Result



