Planar Separators and
Parallel Polygon Triangulation®

Michael T. Goodrichf

Abstract

We show how to construct an O(y/n)-separator decomposition of a planar graph
G in O(n) time. Such a decomposition defines a binary tree where each node
corresponds to a subgraph of G and stores an O(y/n)-separator of that subgraph.
We also show how to construct an O(n)-way decomposition tree in parallel in
O(logn) time so that each node corresponds to a subgraph of GG and stores
an O(n'/?*¢)-separator of that subgraph. We demonstrate the utility of such a
separator decomposition by showing how it can be used in the design of a parallel
algorithm for triangulating a simple polygon deterministically in O(logn) time
using O(n/logn) processors on a CRCW PRAM.

Keywords: Computational geometry, algorithmic graph theory, planar graphs,
planar separators, polygon triangulation, parallel algorithms, PRAM model.

1 Introduction

Let G = (V, E) be an n-node graph. An f(n)-separator is an f(n)-sized subset of V' whose
removal disconnects (G into two subgraphs GG; and (3 each of size at most 2n/3 [37]. Typ-
ically, separator finding is used to drive divide-and-conquer algorithms [7, 38], where one
finds an f(n)-separator of GG, dividing ¢ into GG; and G2, and then recurses on each ;. Such
a recursive decomposition is called an f(n)-separator decomposition of G [7]. It produces a
binary decomposition tree for (G, where each node v is associated with a subgraph G, of GG
and an f(|G,])-sized subset of the nodes of G, that decompose (G, into two pieces, which
are of size at most 2|7, |/3 each and are associated with v’s children.

This decomposition tree often corresponds to the calling structure of a divide-and-conquer
algorithm for (G, where, in order to optimize the running time of the “marry” step in this
algorithm, one desires that the separators be as small as possible. Of course, if GG is a tree,

then this is easy, for there is a node, called the centroid, that is itself a separator [10], and

*This research was announced in preliminary form in Proc. 24th ACM Symp. on Theory of Computing,
1992, 507-516.

TThis research was supported by NSF Grants CCR-9003299 and IRI-9116843, and by NSF/DARPA Grant
CCR-8908092. Author’s address: Dept. of Computer Science, The Johns Hopkins University, Baltimore, MD
21218. Email: goodrich@cs.jhu.edu.

its removal disconnects G into trees that may then be recursively decomposed. Moreover,
one can construct a centroid decomposition of such a G in O(n) time sequentially (e.g., see
[27]) or in parallel in O(logn) time using O(n/logn) processors [15].

If, on the other hand, G is a planar graph, then, in what is now a classic result in
algorithmic graph theory, Lipton and Tarjan [37] show that G has an O(y/n)-separator
that can be found in O(n) time. This, of course, immediately leads to an O(nlogn)-time
algorithm for constructing an O(\/n)-separator decomposition of such a graph G, a result
that has been used to solve a number of problems in VLSI layout, computational geometry,
and algorithmic graph theory (e.g., see [7, 11, 20, 36, 38]).

In this paper we show how to construct an O(y/n)-separator decomposition of a pla-
nar graph G in O(n) time. Our method is based on a recursive emulation of Lipton and
Tarjan’s algorithm, except that we use additional data structures to implement each level
of the recursion in o(n) time so as to achieve an optimal O(n) running time for the entire
decomposition. These data structures include standard binary search trees (such as red-
black trees [28, 43]) as well as the more-sophisticated link-cut tree data structure of Sleator
and Tarjan [42, 43]. Throughout the recursive decomposition we maintain the breadth-first
spanning (BFS) tree [2, 17] of each individual piece the graph, so as to avoid the recom-
putation of BFS trees as would be required by simple recursive applications of Lipton and
Tarjan’s algorithm. We implement this BFS tree maintenance by augmenting the individual
pieces with “deactivated” nodes “left over” from previous levels in the recursion. To achieve
fast running times for locating separators we also maintain the inverse of each BFS tree,
which is the tree formed by the graph-theoretic duals of the non-tree edges. Indeed, this tree
interlacing technique of maintaining a spanning tree and its inverse to speed up dynamic
graph maintenance is central to our method. Incidentally, this technique seems to be quite
powerful, as it was also employed recently by Eppstein et al. [19] for fast maintenance of dy-
namic minimum spanning trees and by Goodrich and Tamassia [26] for maintaining dynamic
planar subdivisions for fast planar point location.

Interestingly, our tree interlacing approach also leads to improved methods for finding
many-way separators in parallel. In this case, the problem is to find a small-sized separator
that divides (G into O(n®) disjoint subgraphs, each of size O(rn'~¢). We show that a many-way
O(n'/?*¢)-separator can be found in O(logn) time using O(n/logn) processors assuming
one is given a BFS tree as part of the input (otherwise, it requires O(logn) time using
O(n?) processors [31, 32]). Our model of computation is the parallel random access machine
(PRAM), the synchronous shared-memory parallel model in which simultaneous concurrent
reads or writes are either allowed or disallowed, depending upon the submodel designation.
This contrasts with the fastest previous parallel algorithm, due to Miller [39], which finds an
O(y/n)-sized binary (cycle) separator in these same bounds. Note that one could iteratively

use Miller’s method to find a separator similar to ours, but this would require O(log®n)

time. There is also a parallel separator-finding method due to Gazit and Miller [23] that
has a more efficient processor bound than our method, but it runs in O(log®n) time (hence,
would run in O(log® n) time to find a separator such as ours).

Our O(n?) processor bound might seem excessively high, but, by following an approach
similar to that used in the sequential algorithm by Chazelle [11], we show how to use this
inefficient algorithm to design an optimal parallel method for polygon triangulation: the
problem of augmenting a simple polygon P with diagonals so that each internal face in
the resulting planar subdivision is a triangle [22]. This problem was first studied in the
parallel setting by Aggarwal et al. [1], and is a problem with many applications (e.g.,
see [11, 25, 27]). Our method runs in O(logn) time using O(n/logn) processors in the
deterministic PRAM model where simultaneous concurrent reads and writes are allowed
(the CRCW PRAM model [31, 32]), where we assume concurrent write conflicts are resolved
arbitrarily. This matches the work bound of the best sequential method, due to Chazelle [11],
and improves the previous parallel method, due to Clarkson, Cole, and Tarjan [12], which
runs in O(log nloglognlog™n) expected time and has an expected O(n) work bound on a
randomized CRCW PRAM. It also improves the previous best deterministic methods, which
run in O(logn) time using O(n) processors® [24, 46].

As mentioned above, our triangulation method is based on an approach similar to that
used in the sequential method of Chazelle [11]. Specifically, we use a divide-and-conquer
approach to construct a submap of P, that is, a partitioning of P into subpolygons of size
O(n®), for some ¢ < 1, which are then refined to form a triangulation. Our method differs
from Chazelle’s approach in some important ways, however. For example, Chazelle is able to
use the sequential contour tracing paradigm to traverse polygonal chains while performing
“local” ray shooting operations, whereas our method depends upon the design of a parallel
method for “global” ray shooting operations (this is where many-way separators come in).
Another important difference is that our method is based on an n®-way divide-and-conquer
paradigm, whereas Chazelle’s method is based on the simpler binary divide-and-conquer
paradigm. This allows us to achieve our O(logn) running time, but this also requires that
the “marry” step in our divide-and-conquer method be more complicated than that of a
slower binary approach.

In the next section we present our linear-time method for finding a separator decomposi-
tion of a planar graph. In Section 3 we show how to use some of the insights in our sequential
method to design an efficient parallel many-way separator-finding algorithm. In Section 4

we show how to triangulate a simple polygon, and we conclude in Section 5.

!These methods are optimal, however, if P is allowed to contain polygonal holes, which we do not allow.

2 Separator Decomposition

Suppose we are given an n-node plane graph G, i.e., an n-node graph embedded on a sphere
so that no two edges cross [8]. Moreover, let us assume that each face, including the external
face, has three edges—we refer to such a graph as being triangulated. We also assume that
G is simple, i.e., no two edges e and f are incident upon the same vertices.

We assume that (G is represented so that the adjacencies for any vertex v are stored in
cyclic order around v in a circular doubly-linked list. For example, GG could be represented
using the “winged edge” structure of Baumgart [4], the “quad edge” structure of Guibas
and Stolfi [29], or the “doubly-connected edge list” structure of Muller and Preparata [40,
41]. In this section we present our linear-time method for constructing an O(y/n)-separator

decomposition of G.

2.1 Our Approach

Before we give our method, however, let us review the approach taken by Lipton and Tar-
jan [37], which we will emulate. Let 7' be a rooted BFS tree for G. Let L(¢) denote the set
of nodes at level ¢ in 7', and let F(e) denote the fundamental cycle determined by 7' and
some non-tree edge e. It is easy to see that any L(z) is a separator, since T is BFS tree, and
any F(e) is a separator, since 7' is a spanning tree for an embedded planar graph. Lipton
and Tarjan’s separator theorem [37] can be viewed as an elegant method for pitting these
two kinds of separators against each other in order to find an O(y/n)-sized separator.

For completeness, we present a simplified version of their approach here. Let [; be the
level in 7' such that Y01 [L(i)] < n/2 but Y0y |L(7)| > n/2. Search up T at most \/n levels
from [; to locate a level Iy < {; (which must exist) such that |L(ly)| < y/n. Similarly, search
down T from [; at most y/n levels to locate a level [> [; such that |L(ly)| < y/n. “Cut” T at
the levels [y and 3, dividing it into three “pieces”, G, GGy, and G3. (See Figure 1.) Cutting
the nodes at a level involves the removal of all nodes on that level together with all of their
incident edges, of which there can be at most O(n), since G’s being planar implies that |E]|
is O(n) [8]. If the middle piece, G5, is of size at most 2n/3, then we're done. So suppose
|G3| > 2n/3. Create a new root r and join r to all the roots of subtrees created when we
cut T at ly. This creates a spanning tree Ty of G5 that has depth at most 2y/n. Lipton and
Tarjan show that there is a fundamental cycle F(e) in Gy (whose size must be O(y/n)) that
separates (G5 into two graphs of size at most 2n/3. Adding this cycle to the nodes in L(ly)
and L(l3) gives us an O(y/n)-separator for (7, and all this can easily be implemented in O(n)
time. This approach, of course, results in a running time of O(nlogn) for constructing a
separator decomposition of (.

We show how to reduce the running time for finding such a separator decomposition to

}

sizeisat least 1/2

distanceisat most ./n

Figure 1: The levels cut for a O(y/n) separator.

O(n). We achieve this improvement by retaining more information from recursive call to
recursive call, so as to implement each level of the recursion in o(r) time. To achieve this

we augment 7" and G with a few data structures.

2.2 The Underlying Data Structures

For each level ¢ in the BFS tree T' we store the nodes of L(7) in a dynamic binary search
tree B(t), ordered from left to right in the order that their corresponding nodes in 7" would
be visited in an in-order traversal of 7. We also maintain a dynamic search tree B that is
built upon the B(#)’s, stored by increasing level numbers. The specific data structure one
uses is not crucial (e.g., a red-black tree [28, 43] will do) so long as, in addition to the usual

operations of Search, Insert, and Delete, it also supports the following operations:

e Split(B,x): split the tree B into two trees, By and B, such that every element in B;

is less than = and every element in B, is greater than or equal to z.

e Join(By, B): join the trees By and B; into one, provided that each element in By is

less than every element in B,.

In each internal node p in B(¢) (or B) we store the number of the leaf descendents of p.
Maintaining this information for the B(z)’s subject to the above operations can easily be
done in O(log n) time per operation (e.g., see [2, 17, 43]).

In addition to its adjacency information, we represent 7' using the link-cut tree data
structure of Sleator and Tarjan [42, 43]. This data structure represents an arbitrary rooted
tree, such as T', as a collection of paths joined by edges not on any of these paths. The extra
edges are not considered to be on the paths, so we refer to the edges on the distinguished

paths as solid and the other edges as dashed. The solid paths are stored in binary search

Compress
_>

u Expand i
-

y

Figure 2: The operations Compress and Fzpand.

trees, with each dashed edge (v,w) being represented as a pointer from the root of the tree
for the v to the record for w in the tree for the solid path to which w belongs. Sleator
and Tarjan show how to implement this structure to support O(log n)-time execution of the

following operations:
o Cut(T,e): separate T' at an edge e € T' into two trees T} and T5.

o Link(Ty,v,Ty): join trees T1 and Ty into a single tree by making the root of 75 a child

of v.

e Path-query(v): produce a binary search tree representation of the path from v to
the root (which may then be searched using any standard binary-search tree query

method).

In addition, as shown by Eppstein et al. [19], this data structure also supports the following

operations (see Figure 2):

o Compress(u,w): compress the edge (u,w) in 1" so as to identify v and w as a single
vertex, v. The parent of w becomes the parent of v and the children of u and the

children of w (except for u itself) become the children of v (with the same relative

in-order ordering).

e Fapand(v,z,y): expand the node v into two nodes v and w, such that w is the parent
of w, with w taking all of v’s children between = and y, inclusive, and u taking v’s

other children.

Figure 3: The BFS tree T and its inverse D.

We also augment the binary trees representing solid paths so that we can compute the
number of nodes on a path, strictly to the left of a path, or strictly to the right of a path in
O(log n) time. This is easily accomplished by associating appropriate values with the leaves
of our solid trees and summing these values in internal nodes. Given this modification, it
is a simple matter to compute the number of nodes inside, outside, and on a fundamental
cycle determined by some non-tree edge (v, w) in O(logn) time.

Finally, we also represent a spanning tree of the graph-theoretic dual of GG. In particular,
as mentioned in the introduction, we maintain a tree D such that each edge of D is the
graph-theoretic dual of a non-tree edge in GG. (See Figure 3.) As with 7', we maintain D
using the link-cut tree data structure of Sleator and Tarjan [42, 43].

We initialize our recursive computation by constructing each of these data structures.
This includes the construction of the BFS tree T', its graph-theoretic inverse, D, the L(¢) level
lists, as well as the underlying data structures that include the link-cut tree representations
of T"and D, and the binary search trees B and the B(z). This can all be done in O(n) time
(see [26, 28, 42, 43]).

2.3 Separating G into G, G, and Gj

Our method for performing recursive separator, then, is to use these structures to find
an O(y/n)-separator and then remove the separator vertices while maintaining these data
structures in the resulting “pieces.” In order for this approach to run in O(n) time over all
the recursive calls we require that each separation step run in o(n) time. To achieve this
requirement we will perform the separation of G so as to maintain the data structures B,
T, and D in the resulting subgraphs. We do this by removing some, but not necessarily all,
vertices in (G that belong to the separator. We refer to the separator vertices that remain in
a subgraph as “deactivated” vertices.

We must take care, however, that the total size of all the subgraphs still be linear. We
fulfill this requirement by forcing the total number of edges in all the subgraphs to be at
most that of the original graph. Unfortunately, this requires that we relax our assumption
about (¢ being a simple triangulated plane graph (for this will only be guaranteed to be true
for the initial 7). Instead, we will inductively assume only that G is a triangulated plane
graph, i.e., each face is a triangle. Interestingly, a familiar property for simple plane graphs,

still holds for non-simple triangulated plane graphs:

Lemma 2.1: Let G = (V,E) be a possibly non-simple triangulated plane graph. Then
|E| =3|V|—6.

Proof: The proof is essentially the same as that for the similar relationship that holds for
simple plane graphs (e.g., see [8] (p. 144)). O

So, let us begin our method by assuming inductively that we are given the above B, T,
and D structures representing (G. Let n denote the number of active vertices in G, let k
denote the number of deactivated vertices in GG. If k£ > n, then we perform a simple traversal
of GG to remove all the deactivated vertices in GG together with their adjacencies. Since GG is a
triangulated plane graph, such a traversal of G takes O(n+ k) = O(k) time (by Lemma 2.1).
In this case, we then re-triangulate all the (simple) plane graph components, constructing
the B, T, and D structures for each, and proceed on each independently. Thus, for the
remainder of this discussion, let us assume that £ < n and, since GG is a triangulated plane
graph, that the number of edges in G is O(n).

We search in B to locate the level [; (as defined in Section 2.1) in O(logn) time, and,
from there, we iteratively search in B to locate the levels Iy and I3 in O(y/n) additional time.
Having found [y and [, we must separate T' (and (&) by removing the nodes at levels [y and
[y, creating Gy, (G5, and (5. Of course, we must also create the underlying data structures
for G, G4, and G, as well (i.e., By, By, Bs, Th, Ty, 15, Dy, Dy, and Ds).

This separation step can be viewed as “cutting” G along the edges that join the vertices

at levels [y and [, respectively, dividing GG into three parts. Let us concentrate on the

operations for the nodes in L(ly), as the method for the nodes in L(l;) is similar. Given an
embedded plane graph (G, as described above, we create By, GGy, T4, and D; as follows.

Step 1: Creating B; and ;. We perform a Split in B at the node for level [y, and
remove all the nodes of B(ly). This creates By and a binary tree B’ that can then be split
into By and B3 by a similar operation. To maintain the adjacency information in G we split
v into two (non-adjacent) nodes v’ and v”, so that v’ retains all of v’s adjacencies to nodes
on levels [y and [y — 1 and v” retains all of v’s adjacencies to nodes on levels [y and [y + 1.
We do not include any edges of the form (v’,v”), however. The nodes on levels 0 to [y — 1,
together with the v’ nodes, form the nodes of (¢; and the nodes on levels [y + 1 and greater,
together with the v” nodes, form nodes of the remaining piece of G (which will later be cut
into Gy and G3).

Analysis of Step 1. Assuming that the adjacency list for each v in L(ly) is represented
as a circular doubly-linked list, and we have separate pointers to the sublist of adjacencies
to nodes on level [y — 1, the sublist adjacencies to nodes on the level [y, and the sublist of
adjacencies to nodes on the level [y + 1-—we can perform all of these operations in constant
time per node visited, plus an O(logn) charge for the search in B. Thus, this step can be
implemented in O(y/n + ko) time, where kg is the number of deactivated vertices in L(lp).

Step 2: Compressing the separator vertices in G;. In this step we compress each
edge connecting v’ vertices in L(lp). We mark the remaining vertices as “deactivated” vertices
(there will be one for each connected component in the subgraph induced by L(ly)), and we
do not count such vertices in the number of vertices of GG;. It is important to note that the
number of edges in (G; does not increase, but the result is that Gy is a fully-triangulated
plane (multi-) graph (except that there may now be some faces having only two edges). (See
Figure 4.) If any such edge compression should create two parallel tree edges (on the same
face), then we arbitrarily pick one of these parallel edges to no longer be a tree edge (so that
we maintain 77 as a tree), and we remove the non-tree edge from ;. Similarly, if we create
two parallel non-tree edges, then we remove one of them arbitrarily. This maintains G as a
triangulated plane graph, and is also illustrated in Figure 4.

Analysis of Step 2. Assuming adjacency lists are partitioned as we needed for the analysis
of Step 1, this step can be implemented in O(myg) time, where mg is the number of edges in
the subgraph of G induced by the nodes in L(lp).

Step 3: Creating 77 and 7’. To create T; we perform a Cut on the edge from v to
its parent in 7', for each v € L(ly). This separates 7j from the nodes of Gy U G3. Let us
therefore consider each such v node on level [y as the (deactivated) root of a subtree of 7" in
GGy U G, i.e., we view each as a v” node. Unfortunately, there may be many such v” nodes,
implying that we do not have a single BFS tree for the nodes of G3 U GG3. But we need such
a BFS tree to implement the separation of (G5 and G3. Thus, we artificially form such a

BFS tree by merging all the v” nodes into a single node r (much as we did in Step 2), which

TN AN

G —

Dl

Figure 4: Separating (& at ly and compressing the nodes of L(ly) in each resulting piece.

10

becomes the root of a new BFS tree T” for all of G3 U 5. Moreover, as Lipton and Tarjan
show [37], the resulting graph, GG, remains a plane graph. And, as was the case in Step 2,
we get that G is a plane (multi-) graph, which in this case has the same number of edges as
the original G’ (although some faces may now have only two edges). (See Figure 4.) As in
Step 2, we remove any non-tree edges that become parallel to tree edges as a result of this
compression, so as to maintain G’ as a triangulated plane graph.

Analysis of Step 3. First, we observe that cutting 7} from T requires O(y/n + ko) Cut
operations and the root-merging process can be implemented using O(\/n + ko) Link and
Compress operations. Thus, the construction of 7} and 7" can be implemented in O((y/n +
ko)logn) time.

Step 4: Creating D;. Of course, performing all the above changes to G and T neces-
sitates that we update our representation for D, the inverse of T', so as to create D; and a
dual spanning tree D’ that can then be split into Dy and Ds. Certainly, for each non-tree
edge e of GG removed in constructing GG and 73 (including multi-edges), we must perform
the corresponding Cut operation along the edge of D dual to e, and remove any isolated
nodes this creates. (See Figure 4.) In addition, during the compression of ly-level edges in
(1 in Step 2 we must connect the appropriate parts of Dy via Link operations (note that we
actually only need to do this when we create a parallel tree edge in 7} that is then removed).
Finally, each parallel edge removed in Step 3 requires a Cut and a Link to update the dual
tree D'.

Analysis of Step 4. We perform at most O(mg) Cut and Link operations. Thus, the
running time for this step is O(mglogn).

This completes our cutting operation along level [;. By a similar operation we may cut
G’ along level [; so as to create By, Bz, G, G5, Ty, T3, and D3, and D3. The only caveat
is that Gy, G5, and (3 may contain extra deactivated nodes and edges incident upon these
nodes (and possibly even multiple edges), but we may nevertheless keep the total number of
edges to be at most the number in G.

Let ny, no, and n3 denote the number of active nodes in Gy, G5, and G5, respectively.
Clearly, ny + ny + ng < n and m; is O(n;) for ¢ = 1,2,3. Note at this point that we have
n1 < n/2 and nz < n/2. We are not done with the construction of our separator, however,
if ny > 2n/3.

2.4 Finding a Fundamental Cycle in G,

If ny > 2n/3, then we must emulate the second step in the approach of Lipton and Tar-
jan [37]—that of finding a separating fundamental cycle F(e) in G, i.e., a fundamental cycle
that minimizes the maximum number of nodes either inside or outside the cycle. Indeed,

the search for such a cycle is the motivation for the maintenance of a link-cut representation

11

of the tree D. In this case we are interested in D;. For each node v in Dy we let e(v)
denote the edge in GGy that is dual to the edge from v to its parent in Dy. Given any edge
e(v) we can use the link-cut representation of 73 to compute the number of nodes of G5
strictly inside F(e(v)), on F(e(v)), and strictly outside F(e(v)) in O(logn) time. Moreover,
using the method of Goodrich and Tamassia [26], we may locate a centroid node v in Dj in
O(log n) time. This centroid location is implemented by a simple search in the solid path in
D, containing the root [26], and does not require any modifications to the standard link-cut
tree representation [42]. Using the information obtained from the queries in T3, we can then
perform a (temporary) cut at v and recurse on the appropriate subtree of Dy. By repeating
this procedure O(logn) times we will find a fundamental cycle F(e) in GGy that minimizes
the maximum number of nodes either inside or outside the cycle. We then reverse these
temporary cuts so as to reconstruct Dy. The total time for this search is O(log® n).

By construction, the total number of nodes on this cycle F(e) is O(y/n). The computation
that remains, then, is to cut Gy along F(e), and update the underlying data structures for
the two remaining pieces, G, and G%. We do this as follows:

Step 1: Splitting B; into B) and BY. The cycle F(e) intersects each level of T3 in at
most two nodes. Moreover, since each B([) is stored in in-order, F(e) divides B(l) into at
most three pieces, two of which are exterior to F(e), and one of which is interior to F(e).
These pieces can be formed by performing a Split in Bz({(v)) for each node v in F(e), where
[(v) denotes v’s level. This may be followed by a Join operation for each [to join the two
exterior pieces for level [, creating at most two trees, Bj(l) and BY(l), for each level I. We
may then construct the tree B} (resp., BY) by combining all the Bj(I)’s (resp., By(I)’s).
The total time needed to implement these operations is O(y/nlogn). We do not include the
nodes of F(e) in the resulting trees (although, as we show in the next step, these nodes will
remain, albeit as deactivated nodes).

Step 2: Splitting (G; into) and (Y. We divide (3 along the edges of F(e) making
each node on F(e) a deactivated node in both G and G, in a manner similar to that used
in the previous subsection. In addition, so as to maintain the same number of edges in each
piece, we compress each pair of nodes on F(e) that are on the same level in T;. We perform
this compression in G, as well as in G (viewing (3 as being drawn on a sphere makes the
compressions in these two graphs symmetric operations). (See Figure 5.) Also, as in the
previous subsection, any time we create two parallel edges we simply remove one of them.
This step is easily accomplished in O(y/n) time, since each vertex stores its adjacencies in a
doubly-linked circular list.

Splitting 75 into 7 and 7). Creating the BFS trees for G, and G7 is accomplished
by performing O(v/n) Ezpand, Compress, Cut, and Link operations. We perform an Ezpand
operation for each node v on F(e) to expand v into an edge (v’,v”) so as to separate its

adjacencies on or inside F(e) (which go with v) from its adjacencies outside F(e) (which go

12

Figure 5: Separating (3 along F(e) compressing the nodes of F(e) at the same level in each

resulting piece.

13

with v”). We then perform a Cut for each such expanded edge (v, v"), and we link each node
v” with w”, such that w was the parent of v in 75,. Finally, we compress the nodes on the
same level on F(e), each of which can be done with a Cut, Link, and Compress operation.
An example pair of resulting trees is illustrated in Figure 5 using bold edges. The total time
for all of this is O(y/nlogn).

Splitting D, into D) and D). In this case, our final update operation of splitting D,
into D} and DY is quite trivial. We simply cut Dy at the dual to e. (See Figure 5.) This
take O(logn) time and completes the construction of the separator.

As in the previous subsection, we left some deactivated nodes and some of their adjacen-
cies in order to efficiently perform the separation of (G5 into G, and G;. Note, however, that
the number of edges in G, and G is the same as the number in Gs.

Our method for constructing a separator decomposition, then, is to recursively iterate

the above procedures for each of the resulting pieces.

2.5 Analysis

Let us therefore analyze the total running time of this method. First, note that deactivated
nodes are not counted in our search for a separator; so our separator will still be of size
O(y/n) and will still separate the active nodes in G into two pieces whose number of active
nodes is least n/3 and at most 2n/3, where n denotes the number of active nodes in G.

We will use an “accounting” argument in our analysis. In particular, any time we mark
a node v as deactivated, then we imagine that we give v [logn] credits, each of which is
worth O(1) computation steps. Since we are allowing at least O(y/nlogn) time for our
separation running time, this accounting trick only increases the running time charged to
a separation computation by a constant factor (since there are only O(y/n) nodes receiving
such credits). So, consider the case where k > n and we must “purge” away the deactivated
nodes. In this case we spend O(k) time, all of which can be charged to the credits “stored”
by deactivated nodes, for after this operation completes there are no deactivated nodes left.
So, next consider the time spent for an ly-level separation. It takes O(mglogn) time, where
mg is the number of edges of G induced by the nodes in L(ly) (note that /n + ko < mo,
since (G is connected). Clearly, each of the kg deactivated nodes in L(ly) were deactivated
in a fundamental-cycle separation (at a higher level in the recursion). Moreover, because
of the way we compress nodes after a fundamental-cycle separations, the adjacencies of any
deactivated node in L(ly) is a subset of the adjacencies for at most two nodes in the original
graph. Since this is an induced subgraph of a simple plane graph, we have that mg is
O(v/n + ko). Thus, the time needed for an ly-level separation is actually O((y/n + ko) logn).
But we may inductively assume each deactivated node in L(ly) contains logn credits, each

worth O(1) computation steps. Thus, we may account for the running time of this ly-level

14

separation as being O(y/nlogn). A similar argument establishes a similar bound for an
[5-level separation. Since we have already established that a fundamental-cycle separation
takes O(y/nlogn) time, we may therefore characterize the running time of our method by

the following recurrence relation:
T(n)<T(n')+T(n")+ by/nlog n,

where b > 0 is a constant, n’ + n” < n, and n/3 < n’ < n” <2n/3. We may easily show by
induction that

T(n) < en — cy/nlogn,

for some constant ¢ > 0 (where the negative term is added to make the induction easier).

This gives us the following theorem:

Theorem 2.2: Given an n-vertex simple triangulated plane graph G, one can construct an

O(\/n)-separator decomposition of G in O(n) time.

Incidentally, this theorem immediately implies that one can perform the VLSI embedding
of a planar graph in O(n) time using the algorithms of [7, 36]. Moreover, in a manner similar
to the approach of Lipton and Tarjan [37], it is straightforward to generalize our methods to
weighted graphs. In this case one is given a planar graph G with nonnegative vertex weights
summing to W, and one desires a decomposition based on the recursive construction of a
O(\/n)-weighted-separator, i.e., a separator of size O(y/n) that divides GG into two pieces of
weight at most 2W/3. We leave the details to the reader, but note that one possibility would
be to modify our method so that in addition to dividing based on the number of nodes in
one can also be dividing by weights associated with the nodes in G (e.g., one can follow a
separation based on node counts by a separation based on weights). This approach can be

used to derive the following theorem:

Theorem 2.3: Let G be an n-vertex simple triangulated plane graph with nonnegative
vertex weights. Then one can construct an O(/n)-weighted-separator decomposition of G

in O(n) time.

3 Many-Way Separators

Interestingly, our tree-based approach to finding planar separators also carries over into the
parallel setting. In this section we give our method for finding small-sized separators that
divide G into many similarly-sized subgraphs. In particular, our method finds a separator of
size O(n'/?*) that divides G into O(n¢) subgraphs of size O(n'~¢). Assuming we are given a
BF'S spanning tree as part of the input, our method runs in O(logn) time using O(n/log n)

15

processors in the deterministic PRAM model where concurrent reads are allowed but writes
must be exclusive (the CREW PRAM model [31, 32]). If we are not given the BF'S spanning
tree, then our method runs in O(logn) time using O(n®) processors on a CRCW PRAM
(e.g., see [31, 32] for a method for constructing a BFS tree in these bounds).

3.1 Many-way Trees

Since our method produces a separation of G into many subgraphs it gives rise to a de-
composition tree that is not binary. So, before we describe our method, let us make a few
observations about non-binary trees. Let T be a balanced rooted tree, and, for each node v
in T, let n, denote the number leaves in T' that are descendants of v (including v itself if it
is a leaf). We say that 7" is a globally f(n)-way tree if each node v has at most f(n) children,
and we say that T is a locally f(n)-way tree if each node v has at most f(n,) children. Note
that the height of a globally f(n)-way tree is O(logn/log f(n)), whereas the height of a
locally f(n)-way tree is determined by the recurrence h(n) = h(n/f(n)) + 1. For example,
given a constant 0 < € < 1, if F} is a globally n®-way tree and F; is a locally n®-way tree,
then Fi has height O(1/¢) = O(1) whereas F3 has height ©(loglogn).

An important property of a balanced tree T'is that it allows for a canonical representation
for intervals. In particular, let the leaves of 7' be numbered left-to-right 1,2,...,n, and let
each internal node v of T' be associated with the interval [a, b] that spans v’s descendents. As
in the (binary) segment tree data structure of Bentley and Wood [5], we say that an interval
[c,d] covers a node v if [¢, d] contains the interval for v but does not contain the interval for
v’s parent. An interval [¢, d] can therefore be represented by the union intervals in 7' that
it covers. Note that any interval [c,d] can cover at most O(f(n)logn/log f(n)) nodes in a
globally f(n)-way tree and at most a number in a locally f(n)-way tree that is determined
by the recurrence g(n) = g(n/f(n)) +2f(n). Continuing our example, note that an interval

[¢,d] can cover at most O(n®) nodes in either Fj or F.

3.2 Constructing Many-way Separators

Let T be a BFS spanning tree for GG, and let 0 < ¢ < 1/2 be a given constant. We begin
our method for constructing an O(n'/?*¢)-sized many-way separator for G in parallel by
constructing each L(z) in the form of an array representing a listing of the nodes on level ¢,
ordered by increasing in-order numbers?. We refer to this computation as the construction

of a level linking of T', which we can do efficiently by the following lemma.

2We assume the adjacencies for any node v in T are cyclically ordered, and this in-order number is

consistent with this ordering.

16

Lemma 3.1: Let 7' be an n node rooted tree. One can construct a level linking of T' in

O(log n) time using O(n/logn) processors on a CREW PRAM.

Proof: Using the Euler-tour technique on trees [31, 32, 45], we construct a list L of the
nodes in 7' listed in the order they would be traversed in a recursive tree traversal (such
as the in-order traversal), so long as the children of a node v are “visited” according to
their cyclic ordering around v. It is important to note that a node in L is included each
time it would be visited in such a traversal, not just when it would be assigned its, say,
in-order number. With each node v in this list we associate its level number I(v), which
can be computed by another application of the Euler-tour technique, along with calls to the
well-known list ranking [3, 14] and parallel prefix [34, 35] techniques® (see also [31, 32]). All
of this can be implemented in O(logrn) time using O(n/logn) processors. Let v be a node
in T', and let vge and vy,e respectively denote the first and last copies of v in L. Notice that
v’s left neighbor in L(7) corresponds to the node left of vgst in L that is nearest to vg and
has level label at least as large as [(vjast). Similarly, v’s right neighbor in L(z) corresponds
to the node right of v, in L that is nearest to v),g and has level label at least as large as
[(viast). The problem of locating all such neighbors for every node in L is known as the all
nearest larger values problem, can, as shown by Berkman et al. [6], this can be solved in
O(log n) time using O(n/logn) processors on a CREW PRAM. Linking each node v to its
neighbors in L(7) gives us a linked-list representation of each L(z). A final application of list

ranking [3, 14], then, gives us each L(7) represented in an array. O

Given the L(7) lists we build a binary tree B “on top” of these lists, as we did in the
previous section. Let s; denote the number of nodes on levels 1,2,...,7. The tree B allows
us to perform “binary searches” on the s; values. We allocate O(n®) processors to the task
of finding each level i such that the interval (s;_1, s;] contains a multiple of [r'~¢]. Call such
levels starter levels. We then assign O(n'/?) processors to each starter level i to locate the
levels ¢ and " nearest to ¢ such that ' and " contain at most 2[y/n] nodes. Call these
levels the cutter levels. Note that such levels must exist within a distance of y/n/2 of each
starter level, by a simple pigeon-hole argument. We have to take a bit of care here to avoid
concurrent writes, which could occur if the computations for different 2’s simultaneously
discover the same cutter level. This difficulty is easily overcome, however, by limiting the
search for the cutter level nearest to level ¢ to the interval of levels spanned by #’s predecessor
and successor starter levels. Given the cutter levels, we disconnect GG along the nodes of each
of these levels, removing each node at such a level, as well as all its adjacencies. This can be

implemented in O(log n) time using O(n/log n) processors, and it decomposes G into O(n*)

subgraphs G, Gy, ..., G,,, such that each (; either has size O(n'~¢) or depth O(n'/?).

3Recall that a list ranking determines for each node z in a linked list A the rank of z in A, and a parallel

prefix sum determines for each element # in an array A the sum of the elements that precede z in A.

17

Let n; denote the number of nodes in G;. If n; is O(n'~¢), then we are done. So, suppose
n; is over this threshold. That is, GG; has depth O(nl/Q). We treat each such G in parallel.
Let [; denote the top level of GG;. We create a “dummy” node r and make each node v on
level [;, which is currently the root of a subtree in G;, be a child of r. This representation
gives us a BFS tree, T;, for this augmented (7;, and can easily be constructed in O(logn)
time using O(n;/logn) processors, given the array L(l;). We then construct the inverse of
T;, which we denote D; (as in Section 2.2). This too can easily be constructed in O(logn)
time using O(n;/logn) processors.

Note that a centroid of I); determines a non-tree edge e of (G; that in turn determines
a fundamental cycle F(e) that has at most 2n;/3 nodes either inside or outside* F(e). We
therefore form a centroid decomposition of D; using the accelerated centroid decomposition
method of Cole and Vishkin [15], which can be implemented for ; in O(logn) time using
O(n;/logn) processors. This gives us a binary decomposition tree A such that each node u
in A corresponds to a node in (G; that forms a centroid of the piece of T; one gets by cutting
T; at the nodes associated with p’s ancestors. For each p in A, we can determine a non-tree
edge e, in GG; that in turn determines a fundamental cycle F(e,) in G;. Each such F(e,)
contains in its interior (or exterior) a constant fraction of the number of nodes in the piece
of Gi; one gets by “cutting out” the fundamental cycles associated with p’s ancestors. Thus,
there is a level [in A of size O(n®) such that the nodes on level [and higher determine
a decomposition of G; into O(n) pieces, each of size at most [r'~¢|. Since G; has depth
O(n'/?) the total size of all these fundamental cycles is O(n'/?*¢). Collecting the nodes
on these cycles with the nodes on the cutter levels, then, gives us our separator. Let us,

therefore, summarize our results so far with the following lemma:

Lemma 3.2: Supposed one is given an n-node embedded planar graph GG, a BFS spanning

1/2+E)—SjZ€

tree T on (G, and a parameter 0 < ¢ < 1/2. Then one can construct an O(n
separator of G that divides G into O(n*) subgraphs of size O(n'~¢). This construction can

be implemented in O(logn) time using O(n/logn) processors on a CREW PRAM.
[teratively applying this lemma immediately gives us the following theorem:

Theorem 3.3: Supposed one is given an n-node embedded planar graph G and a param-
eter 0 < ¢ < 1/2. Then one can construct a globally O(n¢)-way O(n'/**¢)-size separator
decomposition of G in O(logn) time using O(n®) processors on a CRCW PRAM.

“The alert reader will note that F(e) actually bounds the number of ¢riangles on either side of it. This
causes no difficulties, however, since the number of nodes inside or outside of F(e) is bounded by the number
of triangles that are respectively inside or outside F(e) (indeed, the number of nodes may be significantly

smaller than the number of triangles).

18

Proof: The method is a straightforward recursive application of the previous lemma. The

large processor bound comes from the best known bound for constructing a BFS tree in

O(log n) time (e.g., see [31, 32]). O

We give a non-trivial application of this result in the following section.

4 Parallel Polygon Triangulation

Suppose we are given a simple polygon P. The problem we address in this section is that
of augmenting P with diagonal edges so as to decompose P’s interior into triangles. Before
we give our method, however, let us first address a problem that will arise repeatedly in our
method.

4.1 Point Location in a Jordan Tessellation

Suppose we are given an m-edge Jordan tessellation .J of the plane, that is, a subdivision
of ®? with simple, closed curves (where we two curves to share a portion of their do allow
two. Suppose further that each edge in the Jordan tessellation is a piece-wise linear curve,
and let n denote the total number of linear pieces in J. (See Figure 6.) Given a point p, a
horizontal ray-shooting query for p is to determine the first point of J, called the shadow of
p, that is hit by a horizontal ray emanating from p. We assume that we have the following

ray-shooting oracle:

o Ray-shooting oracle. There is an oracle that allows us to perform a horizontal ray shoot
against a single Jordan curve in O(logn) time using p(n) processors (where p(n) is a

measure of the “complexity” of the Jordan curves that make up .J).

In a fashion analogous to a sequential structure used by Chazelle [11], in this subsection we
show how to use the parallel separator decomposition theorem (3.3) to design a data structure
that allows for arbitrary horizontal ray shooting queries to be performed in O(logn) time
using O(p(n)m'/?*¢) processors.

Let D be the graph-theoretic dual of J, that is, the graph formed by associating a vertex
with each face of J and adding an edge (v,w) for each pair of faces whose boundaries
overlap. (See Figure 6.) Apply Theorem 3.3 to D to produce a globally m*-way separator
decomposition tree T' for D, for some constant 0 < ¢ < 1/2. The height of this tree is
O(1/e) = O(1). In addition to the separator stored at each node v, we also store at v the
O(m!/**¢) Jordan curves that are dual to the nodes of D stored at v.

Given a horizontal ray 7, we perform a ray shoot for i as follows. Using O(p(n)m/?+¢)

processors we perform a ray shoot against all the Jordan curves stored at the root of 7. This

19

o
il

Figure 6: A Jordan Tessellation and its dual graph (excluding the external face).

20

takes O(logn) time, by assumption, and returns the horizontal shadow of the head of i on
each curve stored at the root of 7. We then compute the shadow point nearest to the head
of 7, and determine the subregion we traverse just before hitting this point. This takes an
additional O(logm) time using O(m'/?*¢) processors (without using concurrent writes), and
it informs us of the child w of v in T" at which we may now recurse to complete the ray shoot
for 7. If w is not a leaf, then we repeat this test at w. Since there are O(1) levels in T', this

procedure clearly runs in O(log n) time. Therefore, we have the following theorem:

Theorem 4.1: Suppose one is given an m-edge planar Jordan tessellation J. Suppose
further that there exists an oracle that can perform a horizontal ray shooting query for a
single Jordan curve in J in O(logn) time using p(n) processors. Then one can construct
a data structure for J in O(logn) time using O(m?®) processors on a CRCW PRAM that
allows O(p(n)m'/?**¢) CREW PRAM processors to perform horizontal ray shooting queries
in J in O(logn) time, where € is any constant such that 0 < e < 1/2.

This theorem plays an important role in our method for polygon triangulation, which we

now describe.

4.2 Our Polygon Triangulation Algorithm: An Overview

Suppose we are given a simple polygonal chain® P. Following elegant conventions used by
Chazelle [11], as well as Kirkpatrick, Klawe, and Tarjan [33], we view the edges of P as
having two distinct sides and we view P as being embedded in a sphere. A submap of P
is the planar (i.e., spherical) subdivision that is determined by adding edges, called chords,
from some distinguished vertices to their shadow points, defined by performing horizontal
ray shooting operations from each distinguished vertex in both directions, counting only
chords as dual to edges. Because of the two-sided nature of P’s boundary, a horizontal ray
only hits one side of an edge. Indeed, we store the shadow points on P in two lists, the
shadows on the “left” side and the shadows on the “right” side, both of which are ordered
along P. By adopting the convention that P is embedded in a sphere, we view horizontal
ray shooting operations that “miss” P as actually wrapping around the sphere and hitting
P from the other side. (See Figure 7.)

Following Chazelle’s approach [11], our method for constructing a triangulation of P is
to construct a submap of P and then refine that submap into a trapezoidal map, that is,
the decomposition formed by adding an edge from each vertex of P to its shadows on P’s
boundary. By a well-known result of Fournier and Montuno [21], constructing a trapezoidal

map is linear-time equivalent to polygon triangulation. Indeed, several recent triangulation

5We describe our method assuming a possibly open polygonal chain, since our method is based upon

applying recursion to the edges of this chain.

21

Figure 7: A 5-granular conformal submap and its dual tree.

algorithms (e.g., [11, 33, 44]) actually produce a trapezoidal map and then apply this result
to construct a triangulation. In our case, we will construct a trapezoidal map and then apply
an algorithm due to the author [24] to convert this trapezoidal map into a triangulation in
parallel.

So, let us begin our discussion by describing the specific kind of submap we construct in
the first phase of our algorithm. Let S be a submap of P, and let D be the graph-theoretic
dual of S. Because of the two-sided nature of P, there are no edges in D that correspond
to adjacencies that cross the boundary of P; hence, D is a tree. Following the terminology
of Chazelle [11], we say that S is conformal if D has degree at most 4. Each region R in S
(and its associated node in D) is assigned a weight, where the weight of a region R is the
maximum number of polygon edges on any arc in R, whereby arc we refer to a maximal
continuous portion of P’s boundary. S is y-granular if each of its regions has weight at most
~ and compressing any edge e in D incident upon a node of degree 3, by removing the chord
dual to e, would create a node with weight more than . (See Figure 7.) As the following

lemma shows, conformality and granularity imply an “even distribution” of regions:

Lemma 4.2 (Chazelle [11]): A y-granular conformal submap of an n-edge polygonal
curve P has O(n/~ + 1) regions and each region is bounded by O(~) edges.

We concentrate on submaps whose granularity is a function of n, namely, we are interested

in n®-granular conformal submaps, where 6 is some constant such that 0 < § < 1. In addition

22

to the adjacency information for the nodes, arcs, and edges in such a submap, we require
that it be augmented with a few important data structures. In particular, we say that
an n’-granular conformal submap is fully augmented if it has the following data structures

associated with it:

e A (binary) centroid decomposition tree for D. We have a binary centroid decomposition
of D, the dual spanning tree D of S.

o A ray-shooting data structure. We have a data structure that allows for horizontal ray

shooting in S to be performed in O(log n) time using O(n®") processors.
g g g

o A chain-cutting data structure. We have a data structure that allows for chain-cutting
operations to be performed in O(log n) time using O(n®) processors, for some constant
0 < e < 1. Given a subchain P’ of P, a cutting of P’ is a partitioning of P’ into O(n*)
chains Ji, Ja, ..., J; such that each J; has an associated fully augmented n’-granular

conformal submap, where n; = |J,|.

Given an n-edge simple polygon P, the first phase in our algorithm is to construct a fully
augmented n’-granular conformal submap of P, for some constant 0 < § < 1, in O(log n)
time using O(n/logn) processors. Our method is based on an n-way divide-and-conquer
merge where 0 < € < 1 is a constant to be determined in the analysis®.

The structure of our algorithm is as follows:

I=¢ each

1. We begin our algorithm by dividing P into subchains Py, P, ..., P, of size n
(so m is O(n®)) and recursively constructing a (fully augmented) nf-granular submap

S; of each P; in parallel, where n; = |F;|.

2. We merge all the submaps Sy, S,...,5,, into a single submap S’, which may not
be conformal nor n’-granular. We implement this step by performing horizontal ray
shooting queries for every chain endpoint in an S;. This step requires O(logn) time

1—6-|—52-|—26)

using O(n processors.

3. We refine S’ into a conformal submap S” by adding extra chords as necessary. We im-
plement this step by dividing each region in S’ into O(n>®) chains with fully augmented

63 . .
n® -granular conformal submaps, and then performing a parallel search for each pair
of such chains to try to find a vertex on one chain that horizontally sees an edge on

1—64+6%46* +85)

the other. This step requires O(logn) time using O(n Processors.

5So as to relieve the suspense a bit, let us foreshadow here that ¢ = 1/80 and § = 7/10 will prove to be

acceptable values for these algorithmic parameters.

23

4. We contract S” into an n®-granular conformal submap S by removing chords as neces-
sary. We implement this step by a recursive procedure based on a centroid decompo-

sition of the dual tree for S” that runs in O(logn) time using O(n'~%+4¢) processors.

5. We conclude by constructing a ray shooting data structure for S and decomposition
tree for the dual graph of 5. We need not explicitly construct a chain-cutting data
structure for S, however, for the recursion tree for our algorithm can be used for such
operations. This is because our recursion tree is a locally n®-way tree, which implies,
by an observation from Section 3.1, that any subchain of P covers O(rn®) nodes in
our recursion tree. This step runs in O(logn) time using O(n**~%) processors, and
produces a structure that allows ray shooting queries to be performed in O(logn) time

using O(n1=9/2+8"43¢) hrocessors.

Let us, therefore, describe in detail how we implement each of these steps. Since Step 1

is the divide-and-recurse step, we begin with Step 2.

4.3 Merging Submaps

So, suppose we have a polygonal curve P that has been divided into m = O(n) subcurves
Pi, Py, ..., P, of size O(n'~¢) each, such that, for each P;, we have a fully augmented n®-
granular conformal submap S;, where n; = |FP;|. In this section we describe how to merge all
the submaps into a single submap in parallel.

For each endpoint p of a chain FP;, we perform a horizontal ray shoot with respect to each
of the O(n*) other chains to determine the shadow point(s) for p with respect to P. The
segments from all such p’s to their shadows define the chords in this new submap, S, of P.
For any such point p, this computation takes O(logn) time and, since each P; has a fully
augmented submap, it requires O(n52) processors’ for each of the O(n¢) ray shooting queries

for p. Thus, since there are O(n'~%*¢) such endpoints, this step requires
O(n1—5+52+25) (1)

processors in total. We then sort the shadow points with respect to their ordering around
P to determine all the adjacencies between endpoints and shadow points, and also between
consecutive shadow points. This can be implemented in O(logn) time using O(n'=%*)

processors [13] (which is clearly dominated by (1)).

Lemma 4.3: The number of Jordan curves (arcs) bounding any region in S’ is O(n*).

“For notational simplicity, we will often use n in place of max{n; : i = 1,2,...,m}, even though this
quantity is O(n'=¢). This convention will have only a marginal, albeit pessimistic, effect on our processor
bounds, but it will allow us to avoid complicating the exponents in our analysis with a lot of inconsequential

“l — €” terms. For example, the true processor bound here is O(n(1_5)52).

24

Proof: Chazelle [11] shows that in any submap, S, the Jordan curves (not counting chords)
bounding a region R appear in the order they occur on P. Thus, if R is a region in 5,
R’s boundary contains a (possibly empty) collection of arcs from P, followed by a (possibly
empty) collection of arcs from P,, and so on, until it terminates with a (possibly empty)
collection of arcs from FP,,. Since the submaps for each of the P;’s were conformal, each such

P; can contribute at most O(1) arcs. Therefore, the total number of curves on R’s boundary

is O(n®). O

At this point in the algorithm we have a submap consisting of O(n!=°*¢) regions, where
each region R is bounded by O(n¢) chains of weight O(n®) each (because of the granularity

of the recursively-computed submaps). This submap may not be conformal, however.

4.4 Achieving Conformality

So we must refine the submap S’ to make it be conformal. Let R be a region in the
submap. By the chain-cutting structure, we can divide each chain in R into O(n®) sub-
chains, Cy, Cy, . .., of size O(n®) each, such that each such subchain C; has a fully augmented
n‘sz—granular submap built upon it. In fact, we make yet another application of chain-cutting,
so as to divide each subchain C; into O(n¢) smaller chains, ¢, ¢y, . .., of size O(n®") each,
such that each ¢; has a fully augmented n‘sg—granular submap built upon it. This, of course,
implies that each region R has been partitioned into O(n®) chains, each of which has a
centroid decomposition tree and a ray-shooting data structure to go with it.

For each ¢; we wish to determine if there is a vertex on ¢; that can horizontally see
some edge on ¢, for each other ¢;. We call each such chord a wvalid chord. To locate all
the valid chords, we perform a globally O(n®)-way search down the centroid decomposition
tree B;, for ¢;, to drive a search for a visible edge on c¢;, which we perform for each ¢ in
parallel. Of course, B; is a binary tree, so we implement this by searching elogn levels
down the decomposition tree for ¢; and performing a “probe” for each of the O(r®) nodes on
that level. The probe that we must perform in this case is that we have a horizontal chord
ab, determined by a centroid in B;, and we wish to find the first edge in R that is hit by
the ray ab (with a as the head). Given such a chord ab, we perform a ray shooting query
against each of the O(n*) subchains in R. Each such ray-shooting query requires O(log n)
time using O(n54) processors (because of the ray-shooting structure that accompanies each
¢t). By a local test with respect to this shadow point, we can determine which node in
the decomposition tree from which to continue our search for a visible edge of ¢, (which we
determine for each ¢ in parallel). This local test is similar to a binary-search test given by
Chazelle [11] and is based on the fact that the edges bounding R occur in the same order
they occur on P’s boundary. We leave the details of this test to the reader.

25

In searching down B; for some ¢;, we must perform O(1) rounds of local tests, where a
single round consists of O(n°) ray shooting queries being performed in parallel. The total
overhead in setting up these searches requires only O(log n) time, and after performing these
O(1) probes, each of which requires O(logn) time, we will reach a leaf in B;. Performing
these internal-node probes for all the O(r*¢) chains in R requires O(n54+45) processors. Upon
reaching a leaf node v in B; in the search for a valid chord to ¢;, we must then perform a
ray shooting query for each vertex on the chain associated with v. There are O(n‘sg) vertices
on this chain, and each requires O(7z54+35) processors to answer its query. Therefore, we
can implement the leaf-level searches for all the O(n*®) chains in R in O(logn) time using
O(n63+54+65) processors. This implies that we can implement all the searches (for both the
internal-node and the leaf-node ray shooting queries) in O(logn) time using O(n® +%*+7)
processors. Performing the ray shooting queries for all the regions in S’, therefore, requires

O(log n) time using
O(n1—6+63+64+85) (2)
processors in total.

Lemma 4.4: Adding all valid chords to S’ using the above method creates a submap 5"

1—5—}—45)

that is conformal and contains at most O(n arcs.

Proof: Suppose there is region R in S’ with whose boundary contains the sequence of curves
€1,¢2,...,¢, with [> 4. Chazelle [11] shows that in such a region there are a pair of curves c¢;
and ¢ on R that contain two mutually horizontally-visible points with |k — j| > 1. But our
method finds all pairs of curves ¢; and ¢ with two mutually horizontally-visible points and
adds a chord for such a pair. Therefore, no such R can exist in S’. As for the total number
of arcs, note that before we added all of these extra chords, we had O(n!=%*¢) regions in
our submap. Moreover, by Lemma 4.3 and the fact that we decomposed each region twice
using the chain-cutting structure, each region in this submap had O(n®) arcs. Since each
region is topologically equivalent to a circle and the added chord topologically equivalent to

non-intersecting chords in this circle, the total number of extra chords we can add per region

is O(n®). O

4.5 Achieving n’-Granularity

Having constructed a conformal submap S”, we must then turn it into an n®-granular submap
S. We do this by recursion on a centroid decomposition of the dual tree D" of S”. That is,
we find a centroid edge e in D", disconnect D" at e, recursively contract the two subtrees

this creates, and then (by a local test) determine if we should compress e (by removing the

26

chord dual to €). After a preprocessing step that computes a centroid decomposition of D"

in O(log n) time [15], this can easily be implemented in O(logn) time, using
O(n1—6+4e) (3)

Processors.
So, we now have an n’-granular conformal submap. We have only to augment it with

the necessary data structures.

4.6 Augmenting the Submap

Recall that our submap must be augmented with a centroid decomposition tree for D, a
ray-shooting data structure, and a chain-cutting data structure. Now that we have D, the

dual tree for S, the first of these is fairly straightforward to construct in O(log n) time using
O(n'™*/log 1) 1)

processors [15].

The second structure, used for ray shooting queries, requires a little more effort, however.
Each chain in S consists of O(n’) edges; hence, by the chain-cutting structure, each such
chain can be partitioned into O(n¢) subchains of size O(n’) each, such that each subchain has
a fully augmented n®’- granular conformal submap. In fact, each such subchain can be further
partitioned into O(n°) chains of size O(n®) each, such that each has a fully augmented n®-
granular conformal submap. This implies that we can perform a ray-shooting query against
any Jordan chain in S in O(logn) time using p(n) = O(n54+25) processors. Actually, if one
desires a more formal characterization of the running time of a query, then one can let 7,(n)
denote its running time, where T}, (n) < T,(n®) + blogn, for some constant b > 0, which
implies that 7},(n) is O(logn).

This gives us a collection of Jordan chains for which we would like to apply Theorem 4.1
to derive a point-location structure, but that theorem requires that we view S as a Jordan
tessellation; hence, we must merge the list of shadow points on the “left” side of P with
the list of shadow points on the “right” side of P so as to produce a dual graph G for S
(viewed as a Jordan Tessellation). Because S is an n’-granular conformal submap, (i has size
O(n'~%); hence, applying Theorem 4.1 to the Jordan tessellation induced by G to construct

a ray shooting data structure for S (in O(logn) time) requires
O(n*0=) (5)
processors. This structure allows ray shooting queries to be answered in O(log n) time using
O(n(l—é)/2+64+3e) (6)

27

processors, also by Theorem 4.1. Note that in order to satisty the induction invariant for the
ray shooting query, we must choose the appropriate values for € and 6 so that (6) is O(n‘sz).
Assuming such values can be chosen (which we show below), this completes our construction
of an n’-granular conformal submap of P.

Let us, therefore, analyze the time and processor bounds for this method. The time
bounds are determined by the recurrence relation 7'(n) = T'(n'~¢)+blog n, for some constant
b > 0, which implies that 7'(n) is O(logn). If we desire that our merging procedure uses
only O(n'~*) processors for some constant 0 < a < 1, then the processor bounds specified

above in Equations (1)—(5) imply the following non-redundant® constraints for € and é:

1—64+6"4+2 < 1 (7)
1—64+684+68"+8 < 1 (8)
3(1-6) < 1. (9)

Moreover, we need to satisfy the induction invariant that the ray shooting data structure ac-

companying our submap requires only 0(7152) processors, which, by the above claim, implies
that

(1 —68)/2+ 8"+ 3e < 6° (10)

There are, in fact, an infinite number of possible assignments for € and ¢ that satisfy Equa-
tions (7)-(10). For example, one possibility is to set e = 1/80 and 6 = 7/10. Thus, we have
the following:

Lemma 4.5: Suppose one is given an n-vertex polygonal chain P partitioned into O(n®)
subchains Py, P,,..., P, such that each P; has an associated fully augmented n{-granular
submap (where n; = |P;|), for some positive constants 6 and e that satisfy Equations (7)—(10).
Then one can construct a fully augmented n’®-granular conformal submap for P in O(log n)
time using O(n'~?) processors in the CRCW PRAM model, for some constant o > 0.

Using this lemma to drive our divide-and-conquer algorithm, then, gives us the following

theorem:

Theorem 4.6: Given an n-vertex polygonal chain P, one can construct a fully augmented
n®-granular conformal submap for P, for some positive constant 0 < § < 1, in O(logn) time
using O(n/logn) processors in the CRCW PRAM model, by the above n®-way divide-and-

conquer algorithm.

8Equations (3) and (4) are subsumed by the other constraints.

28

Proof: We have already established the time bound. If we let W(n) denote the work
performed by our algorithm then W(n) < 3 W (n;) + bn'~*logn, for some constants b > 0
and 0 < a < 1, where n; is O(n'~¢). For the base case, when n is below some constant, then
we construct a fully augmented n’-granular submap for P using the sequential algorithm of
Chazelle [11]. This implies that W (n) is O(n). Having established the work bound to be
O(n), we may then make a simple application of Brent’s Theorem [9] (which is also known as
the work-time scheduling principle [31]) to establish the processor bounds. In order to apply
this theorem we must be able to satisfy two conditions: (1) we must be able to determine
the number “real” computations being performed in each step, and (2) we must be able to
map these computations to the O(n/logn) processors we are using in the simulation. In
this case we can satisfy these conditions by either an ad-hoc method based on the recurrence
relation for W(n) or by applying the duration-unknown task scheduling method of Cole and
Vishkin [14] or Cole and Zajicek [16]. O

4.7 The Trapezoidal Map

Of course, we wish to construct a trapezoidal map, not merely an n’-granular conformal
submap. That is, we desire the subdivision of P determined by the chords produced by a
horizontal ray shooting operation from each vertex on P. In this section we show how to use
the procedures outlined above to refine such a submap into a trapezoidal map. Our method
runs in O(logn) time using O(n/logn) processors on a CRCW PRAM.

We begin by constructing a fully augmented n°-granular conformal submap S using the
algorithm of the previous section. In fact, let us view this as a preprocessing step. Each
region R in S consists of O(1) polygonal chains Cy,Cy, ..., (), each of which contains O(n?®)
edges. Because we have constructed a fully augmented submap, we can apply the chain-
cutting structure to partition each such C; into O(n®) subchains of size O(n®) each, such
that each subchain has an associated n®’-granular conformal submap. We may therefore
apply Lemma 4.5 to construct an n62—granular conformal submap of R. Our algorithm,
then, iteratively applies chain-cutting and Lemma 4.5 to the newly created regions until we
have a trapezoidal map for P. If we view this iterative algorithm as a recursive procedure,
then we may characterize the running time as 7'(n) = T'(r®) 4+ O(log n), which implies that
T(n) is O(logn). Also, the work bound is characterized by W(n) = > W(n;) + n'~*logn,
for some constants b > 0 and 0 < o < 1, which implies that W(n) is O(n). Thus, we have

the following theorem:

Theorem 4.7: Given an n-vertex simple polygon P, one can triangulate P in O(logn) time

using O(n/logn) processors in the CRCW PRAM model.

29

Proof: Apply the above algorithm to produce a trapezoidal map of P, and then apply the

result of the author [24] to refine this into a triangulation. O

An immediate consequence of this theorem is that it eliminates the bottleneck computa-
tion in the algorithm of Goodrich et al. [25] so that one can now preprocess a polygon P in
O(log n) time using O(n/logn) processors so as to answer shortest path queries inside P in

O(log n) time using a single processor.

5 Conclusion

We have given optimal algorithms for sequentially constructing planar separator decomposi-
tions and triangulating a simple polygon in parallel, both of which are problems with many
applications. Indeed, our planar separator result has been used recently by Eppstein et
al. [18] in improved methods for dynamic planar graph algorithms, and our parallel poly-
gon triangulation result has been used recently by Hershberger [30] for improved parallel
computational geometry algorithms.

Although our methods for solving these two problems are quite different, they are both
based upon similar paradigms. One of these paradigms is the dynamic maintenance of a
planar graph using a spanning tree and its inverse. Indeed, this tree interlacing technique
has already proved useful for solving a number of other problems as well [19, 26]. The
second main paradigm our two algorithms share is that they both employ the divide-and-
conquer technique, but in a slightly non-standard way. In particular, in addition to the usual
subproblem information passed to recursive calls, both of our algorithms also pass rather
sophisticated data structures already built on the elements that comprise these subproblems.
This technique is certainly not new to this paper, for it is used in such methods as Chazelle’s
algorithm for polygon triangulation [11] and the centroid decomposition algorithm of Guibas
et al. [27], but its use in this paper provides further evidence of its power. It is sure to appear

again in future divide-and-conquer algorithms.

References

[1] A. Aggarwal, B. Chazelle, L. Guibas, C. O’Dﬁ111aing, and C. Yap, “Parallel Computational
Geometry,” Algorithmica, 3(3), 1988, 293-328.

[2] A.V. Aho, J.E. Hopcroft, and J.D. Ullman, Data Structures and Algorithms, Addison-Wesley
(Reading, Mass.: 1983).

[3] R.J. Anderson and G.L. Miller, “Deterministic Parallel List Ranking,” Lecture Notes in
Computer Science, 319: 3rd Aegean Workshop on Computing, AWOC' 88, Springer-Verlag,
1988, 81-90.

[4] B.G. Baumgart, “A Polyhedron Representation for Computer Vision,” Proc. 1975 AFIPS
National Computer Conf., 44, AFIPS Press, 1975, 589-596.

30

[5]

[20]
21]
[22]
23]

[24]

J.L. Bentley and D. Wood, “An Optimal Worst Case Algorithm for Reporting Intersections
of Rectangles,” IEEFE Trans. on Computers, C-29(7), 1980, 571-576.

O. Berman, D. Breslauer, Z. Galil, B. Schieber, and U. Vishkin, “Highly Parallelizable Prob-
lems,” Proc. 21st ACM Symp. on Theory of Computing, 1989, 309-319.

S.N. Bhatt and F.T. Leighton, “A Framework for Solving VLSI Graph Layout Problems,” J.
Comp. and Sys. Sci., 28(2), 1984, 300-343.

J.A. Bondy and U.S.R. Murty, Graph Theory with Applications, North-Holland (New York:
1976).

R.P. Brent, “The Parallel Evaluation of General Arithmetic Expressions,” J. ACM, 21(2),
1974, 201-206.

B. Chazelle, “A Theorem on Polygon Cutting with Applications,” Proc. 23rd IFEE Symp.
on Foundations of Compuler Science, 1982, 339-349.

B. Chazelle, “Triangulating a Simple Polygon in Linear Time,” Disc. and Comp. Geom., 6,
1991, 485-524.

K.L. Clarkson, R. Cole, and R.E. Tarjan, “Randomized Parallel Algorithms for Trapezoidal
Diagrams,” Int. J. of Computational Geometry and Applications, 2(2), 1992, 117-134.

R. Cole, “Parallel Merge Sort,” SIAM J. Comput., 17(4), 1988, 770-785.

R. Cole and U. Vishkin, “Approximate Parallel Scheduling, Part I: The Basic Technique with
Applications to Optimal Parallel List Ranking in Logarithmic Time,” SIAM J. Comput.,
17(1), 1988, 128-142.

R. Cole and U. Vishkin, “The Accelerated Centroid Decomposition Technique for Optimal
Parallel Tree Evaluation in Logarithmic Time,” Algorithmica, 3, 1988, 329-346.

R. Cole and O. Zajicek, “An Optimal Parallel Algorithm for Building a Data Structure for
Planar Point Location,” J. Par. and Disl. Comput., 8, 1990, 280-285.

T.H. Cormen, C.E. Leiserson, and R.L. Rivest, Introduction to Algorithms, MIT Press (Cam-
bridge, Mass.: 1990).

D. Eppstein, Z. Galil, G. Italiano, T. Spencer, “Separator Based Sparsification for Dynamic
Planar Graph Algorithms,” Proc. 25th ACM Symp. on Theory of Compuling, 1993.

D. Eppstein, G.F. Italiano, R. Tamassia, R.E. Tarjan, J. Westbrook, and M. Yung, “Main-
tenance of a Minimum Spanning Forest in a Dynamic Planar Graph,” J. of Algorithms, 13,
1992, 33-54.

G.N. Frederickson, “Fast Algorithms for Shortest Paths in Planar Graphs, with Applica-
tions,” SIAM J. Comput., 6, 1987, 1004-1022.

A. Fournier and D.Y. Montuno, “Triangulating Simple Polygons and Equivalent Problems,”
ACM Trans. on Graphics, Vol. 3, No. 2, April 1984, pp. 153-174.

M.R. Garey, D.S. Johnson, F.P. Preparata, and R.E. Tarjan, “Triangulating a Simple Poly-
gon,” Information Processing Letters, 7(4), 1978, 175-179.

H. Gazit and G.L. Miller, “A Parallel Algorithm for Finding a Separator in Planar Graphs,”
Proc. 28th IEEFE Symp. on Foundations of Compuler Science, 1987, 238-248.

M.T. Goodrich, “Triangulating a Polygon in Parallel,” J. of Algorithms, 10, 1989, 327-351.

31

[25]

M.T. Goodrich, S. Shauck, and S. Guha, “Parallel Methods for Visibility and Shortest Path
Problems in Simple Polygons,” Proc. 6th ACM Symp. on Computalional Geometry, 1990,
73-82.

M.T. Goodrich and R. Tamassia, “Dynamic Trees and Dynamic Point Location,” Proc. 23rd
ACM Symp. on Theory of Computing, 1991, 523-533.

L. Guibas, J. Hershberger, D. Leven, M. Sharir and R. Tarjan, “Linear Time Algorithms for
Visibility and Shortest Path Problems Inside Triangulated Simple Polygons,” Algorithmica,
2, 1987, 209-233.

L.J. Guibas and R. Sedgewick, “A Dichromatic Framework for Balanced Trees,” Proc. 19th
IEFEE Symp. on Foundations of Compuler Science, 1978, 8-21.

L.J. Guibas and J. Stolfi, “Primitives for the Manipulation of General Subdivisions and the
Computation of Voronoi Diagrams,” ACM Transactions on Graphics, Vol. 4, 1985, 75-123.

J. Hershberger, “Optimal Parallel Algorithms for Triangulated Simple Polygons,” Proc. 8th
ACM Symp. on Computational Geometry, 1992, 33-42.

J. JaJ4, An Introduction to Parallel Algorithms, Addison-Wesley (Reading, Mass.), 1992.

Karp, R.M., and Ramachandran, V., “Parallel Algorithms for Shared-Memory Machines,” in
Handbook of Theoretical Computer Science, Vol. A: Algorithms and Complexity, ed., J. Van
Leeuwen, The MIT Press (Cambridge, Mass.), 1990, 869-942.

D.G. Kirkpatrick, M.M. Klawe, and R.E. Tarjan, “Polygon Triangulation in O(nloglogn)
time with Simple Data Structures,” Proc. 6th ACM Symp. on Computational Geomelry,
1990, 34-43.

C. Kruskal, L. Rudolph, and M. Snir, “The Power of Parallel Prefix,” Proc. 1985 IEEF Int.
Conf. on Parallel Proc., 180-185.

R.E. Ladner and M.J. Fischer, “Parallel Prefix Computation,” J. ACM, 1980, 831-838.

C.E. Leiserson, “Area-Efficient Graph Layouts (for VLSI),” Proc. 21st IEEE Symp. on Foun-
dations of Computer Science, 1980, 270-281.

R.J. Lipton and R.E. Tarjan, “A Separator Theorem for Planar Graphs,” SIAM J. Appl
Math., 36(2), 1979, 177-189.

R.J. Lipton and R.E. Tarjan, “Applications of a Planar Separator Theorem,” SIAM J. Com-
put., 9(3), 1980, 615-627.

G.L. Miller, “Finding Small Simple Cycle Separators for 2-Connected Planar Graphs,”
J. Comp. and Sys. Sci., 32, 1986, 265-279.

D.E. Muller and F.P. Preparata, “Finding the Intersection of Two Convex Polyhedra,” The-
oretical Computer Science, Vol. 7, No. 2, October 1978, 217-236.

F.P. Preparata and M.I. Shamos, Computational Geometry: An Introduction, Springer-
Verlag, New York, NY, 1985.

D.D. Sleator and R.E. Tarjan, “A Data Structure for Dynamic Trees,” J. Comput. and Sys.
Sci., 26, 362-391, 1983.

R.E. Tarjan, Data Structures and Network Algorithms, STAM, Philadelphia, PA, 1983.

R.E. Tarjan and C.J. Van Wyk, “An O(nloglog n)-time Algorithm for Triangulating a Simple
Polygon,” SIAM J. Compul., 17, 1988, 143-178.

32

[45] R.E. Tarjan and U. Vishkin, “Finding Biconnected Components and Computing Tree Func-
tions in Logarithmic Parallel Time,” SIAM J. Comput., 14, 1985, 862-874.

[46] C.K. Yap, “Parallel Triangulation of a Polygon in Two Calls to the Trapezoidal Map,” Al-
gorithmica, 3, 1988, 279-288.

33

