
Manipulating Weights to Improve Stress-Graph
Drawings of 3-Connected Planar Graphs

Alvin Chiu, David Eppstein, and Michael T. Goodrich

Dept. of Computer Science, Univ. of California, Irvine, USA

Abstract. We study methods to manipulate weights in stress-graph
embeddings to improve convex straight-line planar drawings of 3-
connected planar graphs. Stress-graph embeddings are weighted versions
of Tutte embeddings, where solving a linear system places vertices at a
minimum-energy configuration for a system of springs. A major drawback
of the unweighted Tutte embedding is that it often results in drawings
with exponential area. We present a number of approaches for choosing
better weights. One approach constructs weights (in linear time) that
uniformly spread all vertices in a chosen direction, such as parallel to
the x- or y-axis. A second approach morphs x- and y-spread drawings
to produce a more aesthetically pleasing and uncluttered drawing. We
further explore a “kaleidoscope” paradigm for this xy-morph approach,
where we rotate the coordinate axes so as to find the best spreads and
morphs. A third approach chooses the weight of each edge according to its
depth in a spanning tree rooted at the outer vertices, such as a Schnyder
wood or BFS tree, in order to pull vertices closer to the boundary.

Keywords: Tutte embedding · convex drawing · vertex spreading.

1 Introduction

Sixty years ago, Tutte provided what is arguably one of the first graph drawing
algorithms [16]1. Given a simple, undirected 3-connected planar graph, G, Tutte’s
algorithm produces a straight-line, planar drawing of G such that each face is
convex. Tutte’s algorithm produces such a drawing of G by solving a set of linear
equations that determine the x- and y-coordinates of points to which the vertices
of G are assigned. Intuitively, the equations are based on “pinning” the vertices
of the outer face of G to the vertices of a convex polygon, and then considering
all the edges of G to be springs with an idealized length of 0. Solving the set of
equations amounts to finding a minimum-energy configuration for the springs
given the pinned vertices of the outer face [4, 13].

One unfortunate drawback of Tutte’s algorithm is that it can produce drawings
with exponential area or exponentially small edge lengths, depending on the

1 Proofs of Fáry’s Theorem, that any simple, planar graph can be embedded in the
plane without crossings so each edge is drawn as a straight line segment, came
earlier [7, 15, 17], but these proofs do not give specific coordinates for the vertices;
hence, it is not clear they can be called “graph drawing algorithms.”

ar
X

iv
:2

30
7.

10
52

7v
2 

 [
cs

.C
G

] 
 3

0 
A

ug
 2

02
3



(a) Input graph (b) Tutte (c) xy-morph

Fig. 1: Tutte drawings can have exponential area.

normalization of coordinates. Indeed, Eades and Garvan [5] show that this
undesirable result occurs even for the planar graphs formed by connecting two
outer vertices to each vertex of a simple path and to each other, as shown in
Figs. 1a and 1b. Intuitively, the idealized springs representing graph edges have
equal stress, which, in turn, “pull” groups of springs into unsightly vertex clusters.

Hopcroft and Kahn [11] generalize Tutte’s algorithm to spring systems with
different stress weights. In this framework, which we explore in this paper, we
assign a stress weight, wu,v, to each edge, (u, v), of G.2 We begin as in the Tutte
framework by “pinning” the vertices of an outer face, f , to be the vertices of a
convex polygon, and we then formulate two linear equations for each internal
vertex, u, of G, as follows:∑

(u,v)∈E

wu,v(xu − xv) = 0, and
∑

(u,v)∈E

wu,v(yu − yv) = 0, (1)

where pv = (xv, yv) is the point to which vertex v is assigned. Note that for a
vertex, v, on the outer face, we pin pv = (x∗

v, y
∗
v); hence, xv = x∗

v and xv = y∗v are
constants in our linear system. As Hopcroft and Kahn [11], as well as Floater [9],
show, if the stresses, wu,v, are all positive, except possibly for the edges of the
outer face, then the resulting drawing is a planar straight-line drawing with
each face being convex. In this paper, we experimentally explore the aesthetic
improvements to a Tutte embedding that can be achieved by manipulating the
stresses in such stress-graph drawings of 3-connected planar graphs.

Related Prior Results. We are not familiar with any prior work on the
manipulation of the weights in stress-graph drawings strictly for the purpose
of improving the aesthetic qualities. Nevertheless, the general technique of

2 Tutte’s approach can be viewed as being for the case when wu,v = 1 for each edge.

2



manipulating stresses in stress-graph drawings is not without precedent. For
example, Hopcroft and Kahn [11] and Eades and Garvan [5] give conditions
for stresses so that the resulting drawing is the projection of a 3-dimensional
convex polyhedron onto the plane. Chrobak, Goodrich, and Tamassia [3] further
explore this approach, claiming to produce a 3-dimensional realization of a 3-
connected planar graph as the 1-skeleton of a 3-dimensional convex polyhedron
with vertex resolution Ω(1) and with linear volume.3 Indeed, their approach
comes close to ours, in that they first compute weights for a weighted Tutte
drawing with good vertex resolution (using a flow-based approach) and then
apply the Maxwell–Cremona correspondence to lift this drawing to a convex
polyhedron. Their method does not necessarily result in aesthetically pleasing
drawings or convex polyhedra, despite the good spacing for the x-coordinates.
Researchers have also explored interpolating between stress-graph drawings to
morph from one layout to another. For example, Floater and Gotsman [10] use
interpolation of the weights for two convex embeddings to morph between them,
albeit with vertex movements that are represented implicitly. They also devise
a method to obtain weights that will produce a given drawing. Erickson and
Lin [6] morph between two convex via unidirectional morphs, where vertices
move parallel to the direction of an edge. Kleist et al. [12] turn drawings of planar
3-connected graphs into strictly convex planar drawings with similar morphs.

Our Results. We propose several methods of weight manipulation. In the first,
we simplify (and correct) the approach of Chrobak, Goodrich, and Tamassia [3]
for finding drawings in which vertices have uniformly distributed coordinates.
Instead of using iterated flows, we find suitable weights in linear time by counting
certain paths in an st-orientation of the graph. Our implementation fixes the
outer face as a regular polygon; in an appendix we show that an alternative choice
allows all vertices, including outer face vertices, to have uniform x-coordinates.
We experiment with a modified version of this method that produces two planar
straight-line drawings that evenly spread the x-coordinates and the y-coordinates,
respectively. We then construct a morph that averages the weights of the x- and
y-spread drawings. The idea is that this morph will have fairly even spacing on
both directions, e.g., as shown in Fig. 1c and Figs. 2a to 2d. We also explore a
“kaleidoscope” version of this approach, where we rotate the coordinate axes to
find the best spreads. In another approach, we weight edges based on depth in
spanning trees rooted at the outer vertices. Edges closer to the outer vertices will
have higher weight and thus more “pull”, spreading the internal vertices away
from the center of the outer face in a manner that preserves the general structure.
We explore two types of spanning trees: BFS and (for fully triangulated graphs)
Schnyder woods [1, 8, 14].

3 However, their proof is only valid for polyhedra that have a triangle face.

3



(a) Tutte (b) x-spread (c) y-spread (d) xy-morph

Fig. 2: Drawings of a planar graph with 30 vertices and 80 edges, G(30, 80).

2 Algorithms

Weight Manipulation to Spread Vertices Uniformly. To find weights
whose stress-graph embedding spreads vertices evenly, we first begin with an
unweighted Tutte drawing, rotating it if necessary so no edge is vertical. We
sort the vertices by x-coordinates in this drawing, and orient edges from left to
right, producing an st-orientation: an acyclic orientation in which each vertex
vi with 1 < i < n has both incoming and outgoing edges. Next, we choose new
x-coordinates xi for the interior vertices that are as evenly spaced as possible
under the constraint that they respect the sorted x-ordering of all the vertices.
(The same constraint is also present in the flow-based method of Chrobak et
al. [3]) We can choose new positive edge weights for the Tutte drawing to produce
the chosen x-coordinates in linear time. Conceptually, we gradually increase
weights along a sequence of paths in the graph, starting with all weights zero.
For each edge e, we find a directed path from v1 to vn through e, and increase
weights on the edges of this path.

Along a single path through consecutive vertices vi, vj , vk, the spacing between
the vertex placements should be in the proportion xj −xi : xk −xj , which can be
achieved by giving edges vivj and vjvk the weights 1/(xj − xi) and 1/(xk − xj)
respectively. Because these weights do not depend on the other edges of the path,
we can use this weight for each edge in all of the paths that it belongs to and
preserve the x-equilibrium. In total, the weight of any edge vivj in the whole
graph (summing its weights for each path it appears in) will be nij/(xj − xi),
where nij is the number of paths containing edge vivj .

To calculate these numbers efficiently, we compute two spanning trees in
the oriented graph: tree T1 directed out of v1, and tree Tn directed into vn
(shortest-path trees via BFS were used for the implementation). For each edge
vivj , include a path that follows T1 from v1 to vi, then edge vivj , then follow Tn

from vj to vn. We can count the number of these paths that use vivj as follows:

– There is one path defined in this way from vivj .

4



– Let Dj be the set of descendants of vj in T1 (including vj itself) and
d+(vk) be the number of outgoing edges from vk. If vivj belongs to T1,
then

∑
vk∈Dj

d+(vk) paths pass through vivj in T1 before crossing to Tn.

– Let Ai be the set of descendants of vi in Tn and d−(vk) be the number of
incoming edges at vk. If vivj belongs to Tn, then symmetrically

∑
vk∈Ai

d−(vk)
paths pass through vivj in Tn after crossing to Tn.

The sums of descendant out-degrees in T1, and of descendant in-degrees in
Tn, can be computed in linear time by a simple bottom-up tree traversal, after
which we can calculate the weight nij/(xj − xi) of all edges in linear time. A
weighted Tutte drawing with positive weights and convex outer face cannot
introduce crossings, so we get a convex drawing with spread out x-coordinates
using these new weights. To spread by a different direction, we can rotate the
initial unweighted Tutte drawing before doing the spread. Indeed, as we explore
experimentally, we consider a number of distinct rotation angles, producing
drawings similar to the way a kaleidoscope produces patterns as it is turned.

Moreover, we can produce an “xy-morph” drawing of the input graph. Let a
weighted Tutte drawing be represented by Γ = (Λ,P), where Λ is the coefficient
matrix containing the edge weights and P is the convex polygon chosen to
be the outer face. One can morph between the x-coordinate spread drawing
Γ0 = (Λ0,P) and y-coordinate spread drawing Γ1 = (Λ1,P) to obtain a more
balanced graph drawing Γ1/2. Intuitively, this is like stopping halfway in Floater
and Gotsman’s morphing algorithm [10], where we construct Γ1/2 = (Λ1/2,P)

where Λ1/2 = 1
2 · Λ0 +

1
2 · Λ1. (See Fig. 2.)

Weight Manipulation via Spanning Tree Depth. In our spanning-tree
approach, we first do a Tutte drawing, then we find a set of edge-covering
spanning trees, T , for the graph rooted at the outer vertices, such as BFS trees
or Schnyder woods [1,8,14]. Next, we assign weights to the edges of each tree, T ,
in a top-down manner according to its depth in the spanning tree. With these
new weights, we do another stress-graph drawing.

Let the depth of an edge in a tree be the number of edges from the root to
the edge plus one (to include the edge itself). Then we assign an edge at depth i
with weight a/ri, where a is some initial constant and r is a scaling parameter.
When using BFS to find the shortest-path tree Tv rooted at an outer vertex v,
we assign weights to an edge according to its lowest depth from any of the outer
vertices. To do this, we create a dummy “super”-vertex, vs, connected to all the
outer vertices and run BFS from vs, which is akin to running BFS on all the
outer vertices simultaneously. For the case when the outer face is a triangle, we
also consider Schnyder woods, which form an edge-covering set of three spanning
trees that have nice “flow” properties [1, 8, 14]. (See Fig. 3.)

3 Experiments

Our experimental setup modifies the Open Graph Drawing Framework (OGDF)
C++ library [2]. One of our goals is to compare our weight manipulation methods

5



(a) Tutte (b) Schnyder-spread, r = 5 (c) BFS-spread, r = 5

Fig. 3: Drawings of a pseudorandom graph, G(50, 144).

against Tutte’s algorithm, which often produces exponentially small edge lengths.
Thus, the main metric we use is the edge-length ratio ρ(Γ ) of drawing Γ , which
is the longest edge length divided by the smallest edge length in the drawing. In
Table 1, we compare the edge-length ratios of the Tutte embeddings of several
pseudorandom planar graphs against the x-spread, the y-spread, the xy-morph
between the previous two, and the BFS-spread. For the BFS-spread, we choose
the parameter r to be the integer that minimizes the edge-length ratio p(Γ ). We
do not show the results for the Schnyder-spread, as they were almost always
worse than the BFS-spread.

Not surprisingly, our testing demonstrates that the x-spread and y-spread
drawings achieve edge-length ratio close to the number of vertices, n, because of
the uniform vertex spacing that they produce. Nevertheless, optimizing exclusively
for edge-length ratio can result in vertices that cluster close to a straight line
as can be seen in Table 1. In constrast, the xy-spread drawing often is more
aesthetically pleasing, as it tends to have better symmetry visualization than
either the x- or y-spread drawings without clustering. However, it usually results
in higher edge-length ratio than either of the two drawings it morphs. It may
even have a higher edge-length ratio than its corresponding Tutte drawing, as
seen by the xy-morph for G(50, 130) in Table 1.

The edge-length ratio of BFS-spread drawings tends to be smaller than Tutte
embeddings, while still preserving those drawings’ general structure and symmetry
visualization.

We also experimented with a “kaleidoscope” drawing paradigm, where we
rotate the x- and y-axes by small angular increments and compute an xy-morph
for each angle. The edge-length ratios can vary dramatically in such drawings, so
the minima offer good choices. We show an example plot of edge-length ratios in
Fig. 4, with its worst and best rotations in Table. 2.

6



Table 1: Drawing Gallery. ρ(Γ ) is the edge-length ratio, r is the scaling parameter.
Tutte x-spread y-spread xy-morph BFS-spread

G
(6
0
,1
5
0
)

ρ(Γ ) = 52717 ρ(Γ ) = 86 ρ(Γ ) = 63 ρ(Γ ) = 2074 ρ(Γ ) = 16156, r = 3

G
(1
0
0
,2
0
0
)

ρ(Γ ) = 3973 ρ(Γ ) = 43 ρ(Γ ) = 71 ρ(Γ ) = 229 ρ(Γ ) = 380, r = 3

G
(7
0
,2
0
0
)

ρ(Γ ) = 1165 ρ(Γ ) = 42 ρ(Γ ) = 69 ρ(Γ ) = 216 ρ(Γ ) = 283, r = 3

G
(5
0
,1
3
0
)

ρ(Γ ) = 766 ρ(Γ ) = 31 ρ(Γ ) = 31 ρ(Γ ) = 1020 ρ(Γ ) = 272, r = 3

G
(4
0
0
,1
1
0
0
)

ρ(Γ ) = 56162 ρ(Γ ) = 538 ρ(Γ ) = 414 ρ(Γ ) = 5054 ρ(Γ ) = 9092, r = 2

7



0 10 20 30 40 50 60 70 80 90
0

200

400

600

Initial Angle (degrees)

E
d
g
e-
le
n
g
th

R
a
ti
o

Fig. 4: Edge-length ratios for kaleidoscope xy-morphs for G(90, 240), increments
of 5 degrees.

Table 2: Worst and best rotations for the graph of Fig. 4.

Tutte x-spread y-spread xy-morph

α
=

0
◦

α
=

7
5
◦

8



Acknowledgements

This research was supported in part by NSF grant CCF-2212129.

References

1. Bonichon, N., Felsner, S., Mosbah, M.: Convex drawings of 3-connected plane
graphs. Algorithmica 47(4), 399–420 (2007)

2. Chimani, M., Gutwenger, C., Jünger, M., Klau, G., Klein, K., Mutzel, P.: The
open graph drawing framework (OGDF). In: Handbook of Graph Drawing and
Visualization. pp. 543–569. CRC Press (2013)

3. Chrobak, M., Goodrich, M.T., Tamassia, R.: Convex drawings of graphs in two
and three dimensions. In: 12th Symposium on Computational Geometry (SoCG).
pp. 319—-328. New York, NY, USA (1996). https://doi.org/10.1145/237218.
237401, https://doi.org/10.1145/237218.237401

4. Di Battista, G., Eades, P., Tamassia, R., Tollis, I.G.: Graph Drawing: Algorithms
for the Visualization of Graphs. Prentice Hall (1999)

5. Eades, P., Garvan, P.: Drawing stressed planar graphs in three dimensions. In:
Brandenburg, F.J. (ed.) Graph Drawing. pp. 212–223. Springer Berlin Heidelberg,
Berlin, Heidelberg (1996)

6. Erickson, J., Lin, P.: Planar and toroidal morphs made easier. In: Purchase, H.C.,
Rutter, I. (eds.) Graph Drawing and Network Visualization. pp. 123–137. Springer,
Cham (2021)

7. Fáry, I.: On straight-line representation of planar graphs. Acta Scientiarum
Mathematicarum 11(2), 229–233 (1948)

8. Felsner, S.: Lattice structures from planar graphs. The Electronic Journal of
Combinatorics pp. R15–R15 (2004)

9. Floater, M.S.: Parametric tilings and scattered data approximation. International
Journal of Shape Modeling 04(03n04), 165–182 (1998). https://doi.org/10.1142/
S021865439800012X

10. Floater, M.S., Gotsman, C.: How to morph tilings injectively. Journal of Computa-
tional and Applied Mathematics 101(1), 117–129 (1999). https://doi.org/https:
//doi.org/10.1016/S0377-0427(98)00202-7, https://www.sciencedirect.com/
science/article/pii/S0377042798002027

11. Hopcroft, J.E., Kahn, P.J.: A paradigm for robust geometric algorithms.
Algorithmica 7(1-6), 339–380 (1992)

12. Kleist, L., Klemz, B., Lubiw, A., Schlipf, L., Staals, F., Strash, D.: Convexity-
increasing morphs of planar graphs. Computational Geometry 84, 69–88 (2019)

13. Kobourov, S.G.: Spring embedders and force directed graph drawing algorithms.
arXiv preprint arXiv:1201.3011 (2012)

14. Schnyder, W.: Embedding planar graphs on the grid. In: 1st ACM-SIAM Symposium
on Discrete Algorithms (SODA). pp. 138–148 (1990)

15. Stein, S.K.: Convex maps. Proceedings of the American Mathematical Society 2(3),
464–466 (1951)

16. Tutte, W.T.: How to draw a graph. Proceedings of the London Mathematical
Society 3(1), 743–767 (1963)

17. Wagner, K.: Bemerkungen zum Vierfarbenproblem. Jahresbericht der Deutschen
Mathematiker-Vereinigung 46, 26–32 (1936)

9

https://doi.org/10.1145/237218.237401
https://doi.org/10.1145/237218.237401
https://doi.org/10.1145/237218.237401
https://doi.org/10.1145/237218.237401
https://doi.org/10.1145/237218.237401
https://doi.org/10.1142/S021865439800012X
https://doi.org/10.1142/S021865439800012X
https://doi.org/10.1142/S021865439800012X
https://doi.org/10.1142/S021865439800012X
https://doi.org/https://doi.org/10.1016/S0377-0427(98)00202-7
https://doi.org/https://doi.org/10.1016/S0377-0427(98)00202-7
https://doi.org/https://doi.org/10.1016/S0377-0427(98)00202-7
https://doi.org/https://doi.org/10.1016/S0377-0427(98)00202-7
https://www.sciencedirect.com/science/article/pii/S0377042798002027
https://www.sciencedirect.com/science/article/pii/S0377042798002027


A Appendix

In this appendix, we provide additional drawings in Table 3 and Table 4, as well
as another kaleidoscope drawing in Figure 5 and Table 5.

B Completely uniform vertex spacing

The method we implemented for our experiments to spread x-coordinates
uniformly fixes the outer face of the drawing to be a regular polygon. However,
the coordinates of this polygon may not be exactly aligned with a system of n
completely uniformly spaced points along the x-axis. Additionally, after its initial
unweighted Tutte drawing, our method cannot reorder the x-coordinates of the
points, so when many interior points have x-coordinates between some two outer
polygon vertices, and few interior points have x-coordinates between some other
two outer polygon vertices, our method cannot ameliorate that imbalance. In
this appendix we describe a method for constructing stress-graph embeddings
with completely uniform vertex x-coordinate spacing, in the order given by an
arbitrary st-ordering of the graph. Both the weights for this embedding and the
placement for the outer face vertices can be found in linear time. In exchange, we
lose control of the y-coordinates, even for the vertices of the outer face, making
this method unsuitable for combining with other weights in an xy-morph.

Theorem 1. Let G be an arbitrary three-connected planar graph, with one of its
faces chosen to be the outer face, and with its vertices ordered in an arbitrary st-
ordering respecting that choice of outer face. Then there exists a convex placement
for the outer face vertices, and a system of positive weights for the interior edges,
for which the stress-graph embedding for this outer face placement and system of
weights gives each vertex an x-coordinate equal to the index of its position in the
st-ordering. The outer face placement and system of weights can be constructed
from G in linear time.

Proof. The only difficulty is finding a convex placement for the outer face,
respecting the fixed x-coordinates given by the st-ordering. After this is done,
the weights for a stress-graph embedding can be chosen in exactly the same way
as we did for the x-uniform drawing with a regular polygon as its outer face.
If the outer face is a triangle, it is easy to choose y-coordinates for its vertices,
giving it a convex embedding that respects the fixed x-coordinates, so from now
on we assume that the outer face has more than two sides.

We first choose a convex sequence of slopes for the outer face edges, leaving
two edges (the top and bottom) horizontal. The choice of which is to be the top
and bottom edge is arbitrary, except that both edges must separate the leftmost
and rightmost vertex in the outer face ordering, and they cannot both be incident
to the leftmost or rightmost vertex. In this way, both the leftmost and rightmost
vertex are part of a chain of one or more non-horizontal edges.

Next, we place the leftmost vertex of the outer face with its given x-coordinate
and an arbitrary y-coordinate and place neighboring vertices along non-horizontal

10



Table 3: Drawing Gallery. ρ(Γ ) is the edge-length ratio, r is the scaling parameter.
Tutte x-spread y-spread xy-morph BFS-spread

G
(1
0
0
,2
9
4
)

ρ(Γ ) = 3016 ρ(Γ ) = 110 ρ(Γ ) = 114 ρ(Γ ) = 285 ρ(Γ ) = 1397, r = 3

G
(8
0
,2
3
2
)

ρ(Γ ) = 1013 ρ(Γ ) = 77 ρ(Γ ) = 72 ρ(Γ ) = 126 ρ(Γ ) = 160, r = 4

G
(5
8
,1
3
6
)

ρ(Γ ) = 648 ρ(Γ ) = 39 ρ(Γ ) = 122 ρ(Γ ) = 53 ρ(Γ ) = 236, r = 2

G
(3
0
0
,4
5
0
)

ρ(Γ ) = 2599 ρ(Γ ) = 244 ρ(Γ ) = 1814 ρ(Γ ) = 214 ρ(Γ ) = 1874, r = 2

G
(4
4
4
,1
1
1
1
)

ρ(Γ ) = 7774 ρ(Γ ) = 280 ρ(Γ ) = 623 ρ(Γ ) = 542 ρ(Γ ) = 2557, r = 2

11



Table 4: Drawing Gallery. ρ(Γ ) is edge-length ratio, r is the scaling parameter.
Tutte x-spread y-spread xy-morph BFS-spread

G
(3
9
0
,1
1
1
2
)

ρ(Γ ) = 1043677 ρ(Γ ) = 600 ρ(Γ ) = 597 ρ(Γ ) = 600 ρ(Γ ) = 172022, r = 3

G
(6
6
,1
4
7
)

ρ(Γ ) = 1341 ρ(Γ ) = 48 ρ(Γ ) = 53 ρ(Γ ) = 77 ρ(Γ ) = 157, r = 4

G
(7
4
,2
1
2
)

ρ(Γ ) = 560 ρ(Γ ) = 72 ρ(Γ ) = 551 ρ(Γ ) = 135 ρ(Γ ) = 182, r = 12

G
(3
5
5
,7
0
0
)

ρ(Γ ) = 11035 ρ(Γ ) = 328 ρ(Γ ) = 252 ρ(Γ ) = 214 ρ(Γ ) = 1116, r = 2

G
(5
9
,1
4
9
)

ρ(Γ ) = 154 ρ(Γ ) = 41 ρ(Γ ) = 49 ρ(Γ ) = 41 ρ(Γ ) = 125, r = 2

12



0 10 20 30 40 50 60 70 80 90
400

1,500

2,600

3,700

4,800

Initial Angle (degrees)

E
d
g
e-
le
n
g
th

R
a
ti
o

Fig. 5: Edge-length ratios for kaleidoscope xy-morphs for G(300, 800), increments
of 5 degrees.

Table 5: Worst and best rotations for the graph of Fig. 5.

Tutte x-spread y-spread xy-morph

α
=

6
0
◦

α
=

8
5
◦

13



edges so that they have the given x-coordinate and the chosen slope with respect
to their neighbors. In this way, the placement of the entire left chain can be
determined. Symmetrically, we can place the entire right chain. However, this
may not leave the top and bottom edges horizontal.

Finally, we apply a linear transformation to the y-coordinates of the right
chain so that it extends over the same range of y coordinates as the left chain.
This will in general change the slopes of the edges in the right chain, but preserve
their convexity, as well as preserving the x-coordinates of the points. After this
transformation, the left and right chains can be connected to each other by
horizontal edges, completing the placement of the outer face of G in a convex
polygon that respects the x-coordinates coming from the st-ordering of G.

14


	Manipulating Weights to Improve Stress-Graph Drawings of 3-Connected Planar Graphs

