
Quantum Tutte Embeddings

Shion Fukuzawa, Michael T. Goodrich, and Sandy Irani

Dept. of Computer Science, Univ. of California, Irvine, USA

Abstract. Using the framework of Tutte embeddings, we begin an
exploration of quantum graph drawing, which uses quantum computers
to visualize graphs. The main contributions of this paper include
formulating a model for quantum graph drawing, describing how to
create a graph-drawing quantum circuit from a given graph, and showing
how a Tutte embedding can be calculated as a quantum state in this
circuit that can then be sampled to extract the embedding. To evaluate
the complexity of our quantum Tutte embedding circuits, we compare
them to theoretical bounds established in the classical computing setting
derived from a well-known classical algorithm for solving the types
of linear systems that arise from Tutte embeddings. We also present
empirical results obtained from experimental quantum simulations.

Keywords: Tutte embeddings; quantum computing; linear systems.

1 Introduction

Quantum computing studies ways to leverage the principles of quantum
mechanics to perform computations; see, e.g., Nielson and Chuang [17]. Unlike
classical computing, where bits can only be in one of two states (0 or 1), quantum
computing uses quantum bits, or qubits, which can exist in multiple states
at once, expressed as a linear combination of states with complex coefficients.
This property of qubits, called superposition, allows quantum computers to
perform certain computations faster than what is believed possible with classical
computers. Moreover, although quantum computers are still in their infancy and
face significant technological challenges, quantum computing holds tremendous
promise for advancing fields ranging from chemistry and physics to artificial
intelligence and machine learning. At the very least, quantum computing is
providing interesting alternatives to classical notions of what is effectively
computable.

As is well-known, graphs are used to model a wide range of phenomena,
including molecular bonds, social network interactions, biochemical pathways,
and computer networks. Fields that study such phenomena include promising
applications of quantum computing; see, e.g., [1, 2, 15, 16]. In this paper, we
therefore begin an exploration of quantum graph drawing, which studies how
to use quantum computers to visualize graphs. As a first step in this exploration,
we focus in this paper on quantum circuits for what is arguably the first graph

ar
X

iv
:2

30
7.

08
85

1v
2

 [
cs

.D
S]

 2
5

Ju
l 2

02
3

drawing algorithm—Tutte embeddings [22].1 As we review in this paper, a
Tutte embedding is a type of force-directed graph drawing paradigm that can
be viewed as a simulation of a physical system in which edges are represented
as springs. Intuitively, given a graph, G, the goal of this paradigm is to find
a layout that minimizes the total energy of the physical system defined by G,
after “pinning” some of the vertices in G to specified locations, so as to create
an aesthetically pleasing visualization of G; see, e.g., [7, 14].

Although we focus on Tutte embeddings as a specific graph drawing
paradigm, our goal in this paper is to formulate an approach to quantum graph
drawing that could potentially be applied to other graph drawing paradigms as
well. That is, although our approach uses a quantum linear systems solver to
compute the coordinates of the vertices in a graph embedding, we can envision
that other types of quantum circuits could be used for other graph drawing
paradigms, which could have similar data flows as the methods we employ in
this paper.

A quantum linear systems solver computes a vector x that satisfies Ax = b for
input matrix, A, and vector, b. The matrix A is embedded in the quantum circuit
and the vector b must be prepared as a quantum state. In a Tutte embedding,
the matrix A encodes spring-optimization equations for the edges of a graph, so
one of the first challenges we explore is how to represent a graph in a quantum
circuit. This requires developing a method for effectively encoding a graph in the
gates of a quantum circuit, which ideally satisfies some sparsity condition. The
output embedding is encoded in the vector x as a quantum state, so another
issue that must be addressed is how to extract the drawing from the quantum
computer.

Our Contributions. Using the framework of Tutte embeddings, we provide
in this paper a proof of concept for quantum graph drawing. So as to avoid
introducing additional complications in this endeavor, we have not attempted to
fully optimize the performance of the resulting quantum graph-drawing circuit.
Instead, the contributions of this paper should be seen as providing a concrete
example of an algorithm in quantum graph drawing, including formulating the
model and describing how to convert a graph into a quantum graph-drawing
circuit, which calculates a Tutte embedding as a quantum state that then can
be sampled to extract the embedding. We compare the resulting complexity for
our quantum Tutte embedding circuit to theoretical bounds for computing such
embeddings in the classical computing setting that can be derived from a well-
known classical algorithm for solving the types of linear systems that arise for
Tutte embeddings [19], as we review in the next section. In addition, we also
provide empirical results from experimental quantum simulations.

1 Technically, proofs of Fáry’s Theorem, showing that simple, planar graphs have
straight-line planar embeddings, came earlier [8, 20, 23], but these proofs, unlike
Tutte’s algorithm, don’t provide vertex coordinates.

2

2 Preliminaries

In order for this paper to be as self-contained as possible, we provide a brief
primer on quantum computing in an appendix.

A Brief Review of Tutte Embeddings. In addition, let us provide a brief
review of Tutte embeddings [22]. Let G = (V,E) be an n-vertex simple, 3-
connected planar graph. Let f be a face of G, which we will consider to be the
outer face. A Tutte embedding of G is a crossing-free straight-line embedding
of G such that the outer face, f , is a convex polygon and such that each interior
vertex (not on f) is at the average (or barycenter) of its neighbors’ positions.
We enforce the first of these properties by “pinning” the vertices of f to be
the vertices of a convex polygon, which is typically a regular convex polygon.
We enforce the second property by imagining that the edges of G are idealized
springs with preferred length 0, so that the minimum-energy configuration of the
interior vertices determines their positions. In particular, we can formulate two
linear equations for each internal vertex, u, of G as follows (e.g., see the well-
known graph-drawing book by Di Battista, Eades, Tamassia, and Tollis [7]):∑

v∈N(u)

(xu − xv) = 0,

and ∑
v∈N(u)

(yu − yv) = 0,

where pv = (xv, yv) is the point to which vertex v is assigned, and N(u) denotes
the set of neighbors of u in G, i.e., N(u) = {v | (u, v) ∈ E}. Note that for a
vertex, v, on the outer face, f , we pin pv = (x∗v, y

∗
v); hence, x

∗
v and y∗v are fixed

constants. As Tutte showed [22] (and which has been repeated, e.g., by Hopcroft
and Kahn [11] and Floater [9]), solving the above linear system of equations
produces a planar straight-line embedding of G such that every face is convex.

We subdivide N(u) into the set, NI(u), of interior-neighbors of u, and Nf (u),
neighbors of u on the external-face, f . That is,

NI(u) = {v | (u, v) ∈ E and v ̸∈ f} and Nf (u) = {v | (u, v) ∈ E and v ∈ f}.

Also, let deg(u) degree of the vertex, u. Then we can rewrite the above linear
equations for each interior vertex, u, as follows:

deg(u)xu −
∑

v∈NI(u)

xv =
∑

v∈Nf (u)

x∗v,

and
deg(u) yu −

∑
v∈NI(u)

yv =
∑

v∈Nf (u)

y∗v ,

where pv = (x∗v, y
∗
v) is the point to which the vertex v is pinned if v ∈ f . Note

that the righthand sides of the above equations are 0 for each vertex, u, that is

3

not adjacent to an outer-face vertex. That is, this set of equations defines two
linear systems,

Ax = bx,

and

Ay = by,

where x and y are, respectively, the vector of x- and y-coordinates of the points
assigned to the interior vertices in G, and the entries of bx and by are 0 except
for vertices adjacent to pinned vertices. Note further that the (n−|f |)×(n−|f |)
matrix, A, is symmetric. Moreover, it is closely related to the graph Laplacian,
L, for G, which is is defined as follows (see, e.g., [4, 18]):

L = D −M,

where D is a diagonal matrix formed by the degrees of the vertices in G and
M is the adjacency matrix for G (with the same ordering of vertices as in D).
Further, the matrix, A, is diagonally dominant, that is, Ai,i ≥

∑
j ̸=i |Aj,i|,

for all i. Also, the number of non-zero entries in A is O(n), since the graph, G,
is planar.

Given such a symmetric, diagonally-dominate O(n) × O(n) matrix, A, with
O(n) non-zero entries, and an O(n)-vector, b, as well as an error tolerance, ε > 0,
Spielman and Teng [19] provide a classical algorithm that produces a vector, x̃,
such that ||Ax̃− b|| < ε and ||x̃− x|| ≤ ε, where x is the solution to Ax = b, in
time

O
(
n logO(1) n+ n2O(

√
logn log logn) log(κ/ε)

)
,

where κ is the condition number of the matrix, A, i.e., the ratio of the largest
to the smallest non-zero eigenvalue of A. Thus, although the algorithm is fairly
complicated and not commonly used in practice, this provides a theoretical
classical algorithm for computing an ε-approximation to the coordinates of a
Tutte embedding for G. Incidentially, further improving the asymptotics for
solving such linear systems in the classical model is an on-going line of research,
with more recent results having similar “near-linear” bounds; see, e.g., [12].

Using this result from the classical setting as a theoretical point of compari-
son, our interest in this paper is to design a quantum circuit for producing Tutte
embeddings, based on a well-known quantum linear system solver [10], whose
complexity can also be expressed as a function of n, κ, and ε, as well as ∆,
the maximum degree of the vertices in G. We have not attempted, however, to
optimize the performance of the quantum linear system solver, as we mention
above. The contributions of this paper should instead be seen as providing a
first example for an algorithm in quantum graph drawing, including formulating
the model and describing how to convert a graph into a quantum graph-drawing
circuit. The quantum algorithm calculates a Tutte embedding as a quantum
state which is then sampled to extract the embedding. We also provide some
empirical results from experimental quantum simulations.

4

3 A Quantum Algorithm for Tutte Embeddings

This section assumes basic familiarity with quantum computing. For complete-
ness, we provide a primer on quantum computing in an appendix. Quantum
algorithms for solving linear systems have been explored heavily since being
first introduced by Harrow et al. [10], who designed a quantum algorithm
whose running time is exponentially faster in the size of the matrix than
classical methods, but with a few tradeoffs that will be discussed later in
this section. Their algorithm and the follow-up work largely follow the same
structure, whose intuition can be captured by the following. Consider a linear
system, A |x⟩ = |b⟩, and recall that the matrix A can be expressed in its
eigenbasis as A =

∑
i λi |ui⟩ ⟨ui|. The inverse of A can then be expressed as

A−1 =
∑

i λ
−1
i |ui⟩ ⟨ui|, and the vector |b⟩ can also be written in this basis as

|b⟩ =
∑

i bi |ui⟩. Using this, we can express |x⟩ also in the eigenbasis of A as
follows:

|x⟩ = A−1 |b⟩ (1)

=
∑
i

βi
λi

|ui⟩ . (2)

The objective of the quantum linear system solver is to prepare a state |x⟩ which
is proportional to the output state above. A vector corresponding to a quantum
state must be normalized so that its L2 norm is 1, which is why the output is
only proportional to |x⟩ given above, which is not necessarily normalized.

Besides the dimensionality, N , of the matrix and the desired precision of the
solution, ε, linear system solvers both in the classical and quantum literature
critically depend on two other parameters, namely the sparsity, s, and the
condition number, κ. A matrix is s-sparse if it has at most s nonzero entries
in each row, and the condition number is defined to be the ratio between the
largest and smallest eigenvalue of A, i.e., κ = λmax/λmin. Intuitively, this
captures how “invertible” the matrix is, as a noninvertible matrix would have
κ = ∞. The following theorem captures the performance of the quantum linear
solver algorithm. While there have been subsequent developments in quantum
linear systems solvers [3], they do not provide any advantage over the original
algorithm for the linear systems we are considering. For a comprehensive survey
on quantum linear systems solvers, we refer the reader to Dervoric et al. [6].

Theorem 1 (Harrow et al. [10]). Let A be a Hermitian s-sparse N × N
matrix with condition number κ and let b be a unit vector. Then there is a
quantum algorithm that can prepare the state, |x⟩, satisfying the equation

Ax = b (3)

in Õ
(
κTB + log (N) s2κ2/ε

)
time. The Õ suppresses the more slowly growing

terms of (log∗(N))2, exp
(
O
(
1/
√
log(t0, εH)

))
, and polylog(T/εΨ). Here, TB

is the time required to prepare the input vector |b⟩, εΨ and εH are error terms

5

accrued in the phase estimation subroutine, and T is usually selected to be
O(log(N)s2t0). The ε is the additive error achieved in the output state |x⟩.

Once the output state |x⟩ is prepared, for any Hermitian operator, M , the
expected value xTMx can be measured.

As described above in section 2, the matrix A that appears in the Tutte
embedding system is diagonally dominant, and for a fixed degree graph has
constant sparsity, s. It is easy to show that this matrix is sparse when the
degrees of the vertices are bounded by ∆, for example. The analysis of the
condition number is more involved, and we provide an experimental analysis of
how the condition number can scale for various classes of graphs.

Our quantum graph drawing algorithm has 3 main components: preparing
the input state |b⟩, the procedure for generating the solution vector |x⟩, and
finally the measurement of the expected value of an operator M given the state
|x⟩. The following is an overview of the algorithm, and specific parts of it will
be detailed in the following subsections.

1. Preparation
– Prepare the input vector |b⟩.
– Generate a quantum circuit from a sparse representation of A.

2. Run eigenvalue estimation
3. Perform conditional rotations
4. Invert the eigenvalue estimation
5. Repeat steps 2, 3, 4 until success
6. Use output vector |x⟩ to measure summary statistics about an operator M

3.1 Preparing the Vector |b⟩

Recall that for an n-vertex planar graph, we can draw the graph by solving two
system of equations, F (u) =

∑
(u,v)∈E(v − u), for the x and y coordinates,

respectively. Also recall that if k vertices are pinned down, the matrix A
representing the graph is close to the graph Laplacian. Thus, the final linear
systems will be represented by a system of size n− k by n− k. In the literature,
such matrices have been defined and studied as “grounded Laplacians.” For
example, Pirani et al. [18] show that for weighted d-regular graphs with one
pinned vertex, the smallest eigenvalue is Θ(1/n). We empirically study the
condition number for grounded Laplacians of several classes of graphs and
present the results below in section 4.

In this paper, we focus on the case where there is a triangular outer face of
the graphs, which will always be drawn such that it bounds the rest of the graph.
Furthermore, to simplify the input vector, |b⟩, we add a dummy outer face such
that the true outer face is connected to this dummy outer face, as is shown in
Figure 1. In our construction of the linear system, we pin down this dummy
outer face to the coordinates, (0, 0), (1, 0), (0, 1). For the purpose of illustration,
when indexing the vertices of the graph we will always index the vertices of the
outer face first in a clockwise order starting from the bottom left vertex. When

6

Fig. 1: To simplify the linear system we are solving, we construct our system by
creating a dummy outer face drawn in blue, and pinning the three blue vertices
to the coordinates (0, 0), (0, 1), and (1, 0). Under this construction, if we index
the vertices of our graph G such that the three outer vertices are indexed as
above, the construction of the matrix A is simply the graph Laplacian G(L)
plus a diagonal matrix such that the first three entries are 1, and the remaining
are all 0. This indexing scheme also ensures that |b⟩ has a single index with a 1
and 0 everwhere else.

using this indexing scheme, the |b⟩ vector for the x-coordinate system is always
the vector with a 1 in index 2 and 0’s everywhere else, and the |b⟩ vector for the
y-coordinate system is always the vector with a 1 in index 1 and 0’s everywhere
else.

3.2 Preparing the circuit to implement the matrix A

Recall that quantum gates are unitary operators, and the input matrices are
Hermitian. Given a Hermitian matrix, A =

∑
i λi |ui⟩, if we take the matrix

exponent of A, then we get an operator U which is unitary:

U := e−iAt =
∑
i

e−iλit |ui⟩ ⟨ui| . (4)

The factor of i is critical in enforcing unitarity, and the constant multiple of t
is a parameter we vary during the algorithm. An important preparation step in
running this algorithm on a quantum computer is to generate the circuit that
implements U .

In the literature, this problem is referred to as Hamiltonian simulation (See
Dervovic et al. [6] for a more in depth tutorial). The main method we use begins
by decomposing our operator into a sum of simpler matrices as A =

∑s
j=1Aj ,

where simple refers to a class of matrices that are known to be easy to implement
on a quantum computer. Given this decomposition, equation 4 can be rewritten,

e−iAt = e−i
∑s

j=1 Ajt. (5)

7

We want to combine smaller circuits where each circuit depends only on a single
Aj , but in general matrix products do not commute so we cannot just implement
the circuit

∏s
j=1 e

iAjt. Instead, the Lie-Trotter product theorem [21] states that

e−i(A+B)t = lim
m→∞

(
e−iAt/me−iBt/m

)m
(6)

which has driven many results in Hamiltonian simulation. For the simplest model
of approximating equation (6), it is now known that selecting m = O((νt)2/ε)
achieves ∣∣∣∣∣∣(e−iAt/me−iBt/m

)m
− e−i(A+B)t

∣∣∣∣∣∣ ≤ ε, (7)

where ν := max{||A||, ||B||} and || · || denotes the spectral norm of the operator.
To decompose the operator A into a sum of terms, we can first express it

as the sum of the diagonal D and non-diagonal M which is just the adjacency
matrix of the free vertices.

A simple circuit construction for the diagonal matrix e−iDt can be realized by
the following. This operation will use two quantum registers, the index register
with logN qubits and a memory register using log s qubits, where s is the
sparsity. The circuit begins by setting the index register into superposition using
logN Hadamard gates. Then for each index, it will perform a logN qubit Toffoli
gate up to log s times to store the state |a, d(a)⟩ where d(a) is the diagonal
element in the matrix of the a-th index. After this step, we apply phase gates
parameterized by −2it on the i-th qubit. After this step, we then uncompute
the memory register by reversing the Toffoli gates. The full transformation of
the above circuit is described by the following sequence of equations:

|a, 0⟩ → |a, d(a)⟩ (8)

→ e−id(a)t |a, d(a)⟩ (9)

→ e−id(a)t |a, 0⟩ (10)

= e−iDt |a⟩ |0⟩ (11)

Now that we have a circuit computing the diagonal part, what remains
is to build a circuit to implement the exponentiated adjacency matrix, M .
Unfortunately, M on its own may not be easily translated into a quantum
circuit, so this must also be expressed as a sum of terms that can be easily
diagonalized. For an adjacency matrix, this can be accomplished by computing
an edge coloring on the graph, and decomposing the adjacency matrix into a
sum of terms corresponding to each color. Since the graphs we are considering
have a maximum degree of ∆, a greedy edge coloring scheme provides a coloring
of at most 2∆ terms. After this step, each color, c, corresponds to a 1-sparse
matrix that is still Hermitian, meaning that it can easily be diagonalized to be
written as Mc = UcDcU

†
c where Uc is unitary and Dc is diagonal. Using the

identity,

e−iUHU†t = Ue−iHtU†, (12)

8

for conjugations of Hermitian matrices with unitary matrices, we can build the
circuit Mc by first constructing the circuit to simulate Uc, then performing the
diagonal part the same way as it was done for D.

In the following sections, we will use U to refer to the circuit that implements
the approximation to the e−iAt equation decomposed into a sum of a diagonal
matrix and the decomposition of the off-diagonal matrix corresponding to the
edge coloring, using the Trotterization scheme mentioned in equation (7).

3.3 Solving the Linear System

Fig. 2: A high level overview of Harrow’s quantum algorithm for solving linear
systems. The shaded boxes describe subroutines that will be described in further
detail in this section.

In this section, we provide a high-level overview of how Harrow et al.’s linear
system solver algorithm [10] works. The first key subroutine is what is referred to
in the literature as phase estimation or eigenvalue estimation [13,17]. Since phase
estimation is a standard quantum algorithm, we just describe the input/output
behavior of the algorithm and how it is used for linear system solving.

The ideal phase estimation algorithm takes as input a unitary U and one of
its eigenvectors |ψ⟩, and the output will be an r-bit approximation of 2rθ for
e2πiθ, the eigenvalue corresponding to the input eigenvector. The procedure is
described by the equation,

|0⟩r |ψ⟩ → |2rθ⟩ |ψ⟩ . (13)

The behavior of the algorithm on a generic quantum state |b⟩ can be
understood by expressing |b⟩ in the eigenbasis for U . Let |ψj⟩ denote the j-
th eigenvector of U . Then |b⟩ can be expressed as |b⟩ =

∑
j βj |ψj⟩ for some set

of coefficient {βj}j . Performing the full phase estimation using this state as the
input state now prepares a superposition of r-bit approximations of 2rθj where
e2πiθj is the eigenvalue of |ψj⟩ weighted by the coefficient βj :

|0⟩r |b⟩ =
∑
j

βj |0⟩r |ψj⟩ →
∑
j

βj |2rθj⟩ |ψj⟩ (14)

Note that 2πθj = λj for all j, and a uniform scaling of the eigenvalues will not
effect the description of the algorithm below, which is expressed in terms of the

9

λj ’s. Once we’ve prepared the register storing a superposition of the eigenvalues,
we use these to prepare the following state:

∑
j

βj |λj⟩ |ψj⟩

(√
1− C2

λ2j
|0⟩+

√
C

λj
|1⟩

)
, (15)

where C is a constant that should be chosen such that |C| < λmin. This rotation
can be performed by preparing a single qubit register initialized in the |0⟩
state, then for each k-th significant bit in the eigenvalue register, perform a
controlled rotation by an angle of C

2k
. Provided a sufficiently good approximation

of the eigenvalue, this will put the quantum device in the state described in
equation (15).

Following the controlled rotation, we now do the inverse of the phase
estimation procedure, effectively uncomputing the eigenvalue register. We have
no entanglement with the eigenvalue register now, so we can ignore it for the
remaining analysis. The state we have now is

∑
j

βj |ψj⟩

(√
1− C2

λ2j
|0⟩+

√
C

λj
|1⟩

)
, (16)

and the final step before preparing the |x⟩ vector is to measure the last register.
If we measure |1⟩ in the final register, we end up with the state√

1∑
j C

2|βj |2/|λj |2
∑
j

βjC

λj
|ψj⟩ , (17)

which is exactly the state |x⟩ described in equation (2) up to a normalization
factor. The final running time including the time required to perform the matrix
to circuit conversion is summarized in the following theorem.

Theorem 2. Let G be a 3-connected planar graph with n vertices and at most
∆ edges per vertex. Let A be the grounded Laplacian and |bx⟩, |by⟩ be the
input vectors for the x- and y- coordinate systems as described in section 3.1.
Then, the quantum computer can prepare the normalized solution vector |x⟩ in
time Õ

(
sn+ κTB + κ2s2 log(n)/ε

)
, where the first term is the time required to

construct the quantum circuit from the input matrix.

4 Experiments

This section is divided into two sections, the first being an empirical study on
the condition number of grounded Laplacian matrices, and the second section
being a demonstration of the results obtained from using the quantum algorithm
for graph drawing.

10

Fig. 3: An empirical study of the scaling of condition numbers for standard classes
of graphs. Graphs were generated randomly within each class, and the average
is plotted over 100 runs per data point.

4.1 Condition Number

As the quantum algorithm critically relies on the condition number, we begin the
exploration with an empirical study of these values for a few classes of graphs.
The planar graphs were generated using the technique outlined in the following
subsection. The remaining three types of graphs were generated using the built-
in graph generation functions for Python’s NetworkX library. The expander
graphs are Margulis-Gabber-Galil graphs and the random graphs are Erdős-
Rényi graphs. For each instance, the average over 100 samples is plotted in
Figure 3. We see in the results that for all chosen classes of graphs, the condition
number appears to scale at least linearly.

4.2 Example Quantum Tutte Embeddings

To demonstrate the proof of concept for our Tutte embedding procedure using
quantum circuits, we used a public implementation 2 of Harrow’s algorithm,
which is endorsed by and works with QISKit [5], the leading software package for
writing quantum circuits. We note that the off-the-shelf implementation provided
here does not perform the optimal matrix-to-circuit construction as outlined in
section 3. However, we adopt this version for the purpose of demonstration.

2 https://github.com/anedumla/quantum_linear_solvers/tree/main

11

https://github.com/anedumla/quantum_linear_solvers/tree/main

Fig. 4: Graph drawing results using both the classical and quantum solver. The
first is drawing a random planar graph with 4 nodes, and the last three are
drawing random planar graphs with 8 nodes.

12

Fig. 5: Graph drawing results using both the classical and quantum solver. The
first two are drawing random planar graphs with 8 nodes, and the last two are
drawing random planar graphs with 16 nodes.

13

Furthermore, we use the circuit simulator and thus only demonstrate the results
for small-size graphs. The time required for running the quantum simulator
grows exponentially with the number of qubits, and even for a graph with 16
nodes, this required using matrices with size 213 by 213. This makes simulating
the quantum solver for larger-size graphs very difficult. Some of the resulting
graphs are shown in Figures 4 and 5.

The graphs drawn were generated randomly by placing N random points on
the plane, then defining their edges via a Delaunay triangulation. This guarantees
their planarity as well as strong connectivity while maintaining low average
degree per vertex. The dummy outer face is removed from the final drawing,
leading to graphs whose outer faces are not perfectly placed triangles as their
coordinates were not fixed.

Acknowledgements

We would like to thank David Eppstein for helpful discussions regarding the
topics of this paper. This work was supported in part by NSF grant 2212129.

14

References

1. Bassoli, R., Boche, H., Deppe, C., Ferrara, R., Fitzek, F.H., Janssen, G.,
Saeedinaeeni, S.: Quantum Communication Networks, vol. 23. Springer (2021)

2. Cabello, A., Danielsen, L.E., López-Tarrida, A.J., Portillo, J.R.: Quantum social
networks. Journal of Physics A: Mathematical and Theoretical 45(28), 285101 (jun
2012), https://dx.doi.org/10.1088/1751-8113/45/28/285101

3. Childs, A.M., Kothari, R., Somma, R.D.: Quantum Algorithm for Systems of
Linear Equations with Exponentially Improved Dependence on Precision. SIAM
Journal on Computing 46(6), 1920–1950 (Jan 2017)

4. Chung, F.R.: Spectral Graph Theory, vol. 92. American Mathematical Soc. (1997)
5. Cross, A.: The IBM Q experience and QISKit open-source quantum computing

software. In: APS March Meeting Abstracts. vol. 2018, pp. L58–003 (2018)
6. Dervovic, D., Herbster, M., Mountney, P., Severini, S., Usher, N., Wossnig, L.:

Quantum linear systems algorithms: A primer (Feb 2018)
7. Di Battista, G., Eades, P., Tamassia, R., Tollis, I.G.: Graph Drawing: Algorithms

for the Visualization of Graphs. Prentice Hall (1999)
8. Fáry, I.: On straight-line representation of planar graphs. Acta Scientiarum

Mathematicarum 11(2), 229–233 (1948)
9. Floater, M.S.: Parametric tilings and scattered data approximation. International

Journal of Shape Modeling 04(03n04), 165–182 (1998)
10. Harrow, A.W., Hassidim, A., Lloyd, S.: Quantum algorithm for linear systems of

equations. Phys. Rev. Lett. 103, 150502 (Oct 2009), https://link.aps.org/doi/
10.1103/PhysRevLett.103.150502

11. Hopcroft, J.E., Kahn, P.J.: A paradigm for robust geometric algorithms.
Algorithmica 7(1-6), 339–380 (1992)

12. Kelner, J.A., Orecchia, L., Sidford, A., Zhu, Z.A.: A simple, combinatorial
algorithm for solving SDD systems in nearly-linear time. In: 45th ACM Symposium
on Theory of Computing (STOC). pp. 911–920 (2013)

13. Kitaev, A.Y.: Quantum measurements and the abelian stabilizer problem (1995)
14. Kobourov, S.G.: Force-directed drawing algorithms. In: Tamassia, R. (ed.)

Handbook of Graph Drawing and Visualization, chap. 12, pp. 383–408. CRC Press
(2013)

15. Kumar, R., Kumari, S., Bala, M.: Quantum mechanical model of information
sharing in social networks. Social Network Analysis and Mining 11(1), 42 (2021)

16. Matta, C.F.: Quantum Biochemistry. John Wiley & Sons (2010)
17. Nielsen, M.A., Chuang, I.: Quantum Computation and Quantum Information.

Cambridge University Press, 10th edn. (2010)
18. Pirani, M., Sundaram, S.: On the Smallest Eigenvalue of Grounded Laplacian

Matrices. IEEE Transactions on Automatic Control pp. 1–1 (2015)
19. Spielman, D.A., Teng, S.H.: Nearly-linear time algorithms for graph partitioning,

graph sparsification, and solving linear systems. In: 36th ACM Symposium on
Theory of Computing (STOC). pp. 81–90 (2004)

20. Stein, S.K.: Convex maps. Proceedings of the American Mathematical Society 2(3),
464–466 (1951)

21. Trotter, H.F.: On the product of semi-groups of operators. Proceedings of the
American Mathematical Society 10(4), 545–551 (1959)

22. Tutte, W.T.: How to draw a graph. Proceedings of the London Mathematical
Society 3(1), 743–767 (1963)

23. Wagner, K.: Bemerkungen zum vierfarbenproblem. Jahresbericht der Deutschen
Mathematiker-Vereinigung 46, 26–32 (1936)

15

https://dx.doi.org/10.1088/1751-8113/45/28/285101
https://link.aps.org/doi/10.1103/PhysRevLett.103.150502
https://link.aps.org/doi/10.1103/PhysRevLett.103.150502

A A Brief Primer on Quantum Computing

Gate Matrix Representation

I (Identity)

[
1 0
0 1

]
X (Bitflip)

[
0 1
1 0

]
Z

[
1 0
0 −1

]
H 1√

2

[
1 1
1 −1

]
P (θ)

[
1 0

0 eiθ

]
CX (Controlled Bitflip)

[
I
X

]

Toffoli

I
I
I
X

Table 1: The matrix representation of quantum gates which will appear in this
paper. The final two matrices are block encoded using the I and X single qubit
gates. The controlled bitflip applies an X gate to the second qubit if the first
qubit is set to 1. The Toffoli can be thought of as a doubly controlled bitflip,
applying an X gate to a third qubit iff the first two qubits are set to 1.

In this appendix, we go over some notation and properties of quantum
computing that are important in describing quantum algorithms. For a full
introduction, we refer the reader to Nielsen and Chuang [17].

In a classical computer, an n-bit register can only store a single n-bit
string at a time, but a quantum computer with an n-qubit register can store
a superposition of n-bit strings. This is represented as a unit column vector
referred to as a state vector, |ψ⟩ =

∑n−1
i=0 αi |i⟩ (read ”ket” psi), and the αi’s

are complex numbers such that their norm squared is equal to the probability of
measuring the bit string i. Thus, the quantum states must always be a unit vector
whose L2-norm

∑
i |αi|2 equals 1. Quantum gates are represented as unitary

matrices that act on state vectors, effectively altering the superposition at each
application. Unitarity guarantees that the state vector remains a unit vector
after the transformation.

An important operation in quantum computing is measurement. Although it
is possible to store a superposition of states and operate on them concurrently,
to read out any information about the state vector a measurement must be
performed. The probably of measuring the bit string i is equal to |αi|2, and

16

once measured, the state vector collapses to the bit string i, losing information
about the state it collapsed from.3 Since the output of a measurement is drawn
from a probability distribution determined by the squares of the amplitudes of
the output state, quantum computation is inherently probabilistic in nature. The
goal is to output a quantum state such that the “solution” bit string is measured
with high probability. The probability of success can be boosted by repetition
as with classical randomized algorithms.

B Example Source Code

We provide in Figure 6 example source code for our quantum simulations.

3 Although it is possible to perform different measurements, for simplicity we focus
on measurement in the “standard basis” which measures the qubits as classical bit
strings.

17

import numpy as np

import scipy

from linear_solvers import HHL

import random

from qiskit.quantum_info import Statevector

Number of vertices

n = 8

Generate a grounded Laplacian for input graph

L = Input graph Laplacian

A = L

A[0][0] += 1

A[1][1] += 1

A[2][2] += 1

b_x = np.array([0, 0, 1, 0, 0, 0, 0, 0])

b_y = np.array([0, 1, 0, 0, 0, 0, 0, 0])

def get_solution_vector(solution):

"""Extracts and normalizes simulated state vector

from LinearSolverResult."""

Read out the relevant entries in the state vector

half_dim = Statevector(solution.state).dim // 2

solution_vector = Statevector(solution.state).data[half_dim:half_dim+n].real

print(Statevector(solution.state).dim)

return solution_vector

Instantiate HHL object and solve for x and y coordinates.

hhl = HHL(epsilon=1e-4)

naive_hhl_solution_x = hhl.solve(A, b_x)

sol_x = get_solution_vector(naive_hhl_solution_x) * hhl.scaling

hhl = HHL(epsilon=1e-4)

naive_hhl_solution_y = hhl.solve(A, b_y)

sol_y = get_solution_vector(naive_hhl_solution_y) * hhl.scaling

Fig. 6: Example source code for our quantum simulation.

18

	Quantum Tutte Embeddings

