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Abstract. In the 1960 s, the world-renowned social psychologist Stanley
Milgram conducted experiments that showed that not only do there exist
“short chains” of acquaintances between any two arbitrary people, but
that these arbitrary strangers are able to find these short chains. This
phenomenon, known as the small-world phenomenon, is explained in part
by any model that has a low diameter, such as the Barabási and Albert’s
preferential attachment model, but these models do not display the same
efficient routing that Milgram’s experiments showed. In the year 2000,
Kleinberg proposed a model with an efficient O(log2 n) greedy routing
algorithm. In 2004, Martel and Nguyen showed that Kleinberg’s analysis
was tight, while also showing that Kleinberg’s model had an expected
diameter of only Θ(log n)—a much smaller value than the greedy routing
algorithm’s path lengths. In 2022, Goodrich and Ozel proposed the neigh-
borhood preferential attachment model (NPA), combining elements from
Barabási and Albert’s model with Kleinberg’s model, and experimentally
showed that the resulting model outperformed Kleinberg’s greedy rout-
ing performance on U.S. road networks. While they displayed impressive
empirical results, they did not provide any theoretical analysis of their
model. In this paper, we first provide a theoretical analysis of a gen-
eralization of Kleinberg’s original model and show that it can achieve
expected O(log n) routing, a much better result than Kleinberg’s model.
We then propose a new model, windowed NPA, that is similar to the
neighborhood preferential attachment model but has provable theoretical
guarantees w.h.p. We show that this model is able to achieve O(log1+ε n)
greedy routing for any ε > 0.

Keywords: small worlds · social networks · random graphs

1 Introduction

Stanley Milgram, a social psychologist, popularized the concept of the small-
world phenomenon through two groundbreaking experiments in the 1960 s
[13,16]. In these experiments, Milgram determined that the median number of
hops from a random volunteer in Nebraska and Boston to a stockbroker in Boston
was six, thereby giving rise to the expression “six degrees of separation”.
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A common and well-studied method for modeling real-world social networks
is the preferential attachment model, popularized by Barabási and Albert in
1999 [1]. In this model, nodes are added to the graph one at a time, and each
node is connected to m other nodes with probability proportional to their degree.
Put simply, in this model, nodes with a greater degree are more likely to obtain
an even greater degree, in what is commonly referred to as a “rich-get-richer”
process. Such a process leads to power law degree distributions, meaning that the
number of nodes with degree k is proportional to k−α for some constant α > 1.
In 2009, Dommers, Hofstad, and Hooghiemstra showed that the diameter of the
preferential attachment model is Ω(log n) when the power law exponent α > 3,
and Ω(log log n) when α ∈ (2, 3) [6]. While such preferential attachment models
indeed display small diameters, therefore explaining how these short paths exist,
they do not explain how these paths are found. In other words, individual nodes
in these models, using only local information, cannot find short paths to other
nodes, unlike in Milgram’s experiments.

In 2003 Dodds, Muhamad, and Watts conducted an experiment similar to
Milgram’s using email, with more than 60,000 volunteers and 18 targets in 13
countries. This experiment determined that the average number of hops was
around five if the target was in the same country and seven if the target was in a
different country, largely in line with Milgram’s results. Interestingly, this exper-
iment asked participants the reasons for picking their next particular acquain-
tance, finding that, especially during the early stages of routing, geographical
proximity was the dominant factor [5]. This result suggests that realistic models
aiming to explain the small-world phenomenon should incorporate geographical
information.

1.1 Kleinberg’s Model

In 2000, Jon Kleinberg proposed a famous model that, while not incorporating
true geographical information, does consider a notion of geographic distance by
placing nodes on an n×n grid. Kleinberg’s model connects nodes using two types
of connections—local connections, in which nodes are connected to all neigh-
bors within a fixed lattice distance, and long-range connections, in which
nodes are connected to random nodes in the graph. Importantly, these long-
range connections are chosen with distance in mind, namely that closer nodes
are picked more often as long-range connections than farther nodes. Specifi-
cally, each node u picks long-range connection v with probability proportional
to d(u, v)−s, where d(u, v) is the lattice distance between u and v and s is the
clustering exponent. This model mimics how individuals in a social network are
more likely to know people who are geographically closer to them, but also have
a small probability of knowing people who are farther away. Kleinberg showed
that, for s = 2, a greedy routing algorithm can find paths of length O(log2 n)
with high probability (w.h.p.), and that this is optimal for any s1 [9]. In 2004,
Martel and Nguyen proved tight bounds of expected Θ(log2 n) hops for greedy

1 for 2-d grids.
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routing, and of expected diameter of Θ(log n)—highlighting the large discrep-
ancy between the two [12]. We are not aware of any other work that achieves
an asymptotically better expected number of greedy routing hops using a con-
stant average node degree and using only a constant average amount of local
information per node.

1.2 The Neighborhood Preferential Attachment Model

In 2022, Goodrich and Ozel proposed a new model that combines the preferential
attachment model with Kleinberg’s model, which they call the neighborhood
preferential attachment model [8]. In this model, as in the Barabási-Albert
model, nodes are added to the graph one at a time, but instead of connecting
to nodes solely based on their degree as in the preferential attachment models,
they also take into account the distance between the nodes, as in Kleinberg’s
model. Specifically, each node u picks a node v with probability proportional
to deg(v)/d(u, v)s, where deg(v) is the current degree of vertex v. Furthermore,
Goodrich and Ozel expanded all three models (Barabási-Albert, Kleinberg, and
their own) to work with underlying distances defined by a road network rather
than a grid. In their work, they conducted rigorous experiments on U.S.A. road
networks and showed that their model is able to outperform both the constituent
models in terms of average greedy routing hops between randomly chosen pairs
of nodes. In their paper, they describe how road networks serve as good proxies
for social networks since the density of road infrastructure is correlated with
population density. Their model was, at the time, the only randomized model to
not only capture a proxy for the position of nodes in a social network, but also the
power law distribution of node degrees that is widely common social networks.
These two facts allowed this model to be the first randomized model able to
reproduce results from Stanley Milgram’s original small-worlds social experiment
using a small average degree (only of around 30). However, importantly, they
did not prove any theoretical bounds on their model. Our paper can be seen as
a theoretical complement to their work, as we prove high probability bounds on
the average greedy routing path length of a grid version of a very similar model,
showing that it is far better than the Θ(log2 n) bound of Kleinberg’s model.

1.3 Our Results

As stated before, our main goal for this paper was to provide theoretical results
for the work of Goodrich and Ozel, or more generally, for preferential attachment
variations of Kleinberg’s model. In this paper, we propose three new models,
each combining aspects of both Kleinberg’s model and the preferential attach-
ment model. We prove that, for grid networks, each of our networks are able
to asymptotically outperform Kleinberg’s original model in terms of average
greedy routing path length, while using only a constant average amount of local
information per node and while maintaining an expected constant average node
degree.
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We note that greedy routing can be improved by relaxing either of these two
constraints. For example, if we allow nodes in the Kleinberg model to have access
to more local information, we can improve greedy routing to O(log3/2 n). Simi-
larly, if we allow nodes to have a higher, O(log n), average degree, then we can
improve greedy routing to O(log n) hops [12]. The latter of these two relaxations
reveals that greedy routing can be greatly improved by getting to—and staying
on—high degree nodes. With this in mind, we consider a node highway—a set
of interconnected nodes that each have higher than average degrees. Our first
two models introduce a parameter k that controls both the size of the highway
and the degree of nodes on the highway. Specifically, the degree of nodes on
the highway is proportional to k while the number of nodes on the highway is
inversely proportional to k, such that the average degree of the entire graph is
constant.

Our first model, the Kleinberg highway model (KH), works by embedding
a Kleinberg grid within an n × n grid, such that there are n2/k nodes on the
highway. Each of the nodes on the highway grid only chooses long-range con-
nections to other nodes on the highway grid, while local connections are still
made to all neighbors within a fixed lattice distance as in the original Kleinberg
model. Our second model, the randomized highway model (RH), is similar
to the first, but instead of embedding a perfect Kleinberg grid inside the orig-
inal graph, nodes are chosen uniformly at random to be on the highway grid.
More specifically, each node has probability 1/k to become a highway node, lead-
ing to an expected Θ(n2/k) highway nodes w.h.p. Both of these generalizations
reduce to the original Kleinberg model when k = 1, that is when every node
is a highway node, and adds a constant number of long-range connections per
node. Importantly, both models reach a global minimum of O(log n) hops when
k = Θ(log n), a much better result than Kleinberg’s (see Fig. 1).
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Fig. 1. The average greedy routing path length of the Kleinberg highway model for
different values of parameter k.
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Our final model is the windowed neighborhood preferential attachment
model (windowed NPA), which like Goodrich and Ozel’s neighborhood prefer-
ential attachment model (NPA), is based on both Kleinberg’s model and the
preferential attachment model. There are two main differences between the mod-
els. First, in the NPA model, the power law degree distribution naturally arises
from the rich-get-richer selection property when adding new edges. In contrast,
in our model, the power law degree distribution is strictly enforced, with each
node picking a popularity k with probability ∝ k−α. Each node node then adds
a number of long-range connections proportional to its popularity. In order to
maintain a constant average degree, the power law exponent α must be greater
than 2, so α ≥ 2 + ε for any ε > 0. The second main difference is that instead of
there existing a probability of any two nodes being connected, in the windowed
NPA model, nodes are only connected to other nodes within a constant factor of
their popularity. The idea being that a residential street is more likely to connect
to an alley, another residential street, or an arterial road, than it is to connect
directly to a highway. This constant factor is controlled by a parameter A, and
any node u with popularity ku can only have long-range connections to nodes
with popularity kv such that kv ∈ [ku/A, ku ·A]. We prove that for any arbitrar-
ily small ε > 0, the average greedy routing path length of the windowed NPA
model is O(log1+ε n) w.h.p.2 While this result only holds for grid networks, we
provide experimental results of our new model on both grid and road networks,
showing that the windowed NPA model is able to outperform Kleinberg’s model
on both types of networks.

2 Preliminaries

As stated before, for the theoretical analysis, we will be using an n × n grid,
such that the total number of nodes |V | = n2. For simplicity, we will assume
that our grid has wrap-around edges, as is common when analyzing grid networks
[12], although our results can be extended to non-wrap-around grids. Let d(u, v)
be defined as the lattice distance between two nodes u and v in the grid, i.e.
d(u, v) = min(δx, n − δx) + min(δy, n − δy), where δx and δy are the absolute
differences in the x and y coordinates of u and v, respectively. Let Bd(u) denote
the set of nodes within lattice distance d from u. All three models have the
notion of local connections and long-range connections. Without loss of
generality, we will only consider the case where we only add immediately adjacent
local connections, that is, each node is only connected to the four nodes directly
above, below, to the left, and to the right of it. Equivalently, we can say that
each node is connected to all other nodes in B1(u), as in the case when p = 1
in Kleinberg’s original model. In this paper, when we refer to a node’s degree
deg(u), we will be referring to the number of outgoing long-range connections
from u.

2 We proved this for a slightly modified greedy routing algorithm.
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3 Kleinberg Highway

As stated before, Kleinberg’s model is defined on a graph G comprising of an
n × n grid where each node u adds local connections to all nodes in BP (u)
(all nodes within lattice distance P of u), and Q long-range connections to
other nodes. The probability of adding a long-range connection to node v is
proportional to d(u, v)−r. In our model, we will set P to 1 w.l.g., and we will set
r = 2, as this is the value that Kleinberg showed was optimal for 2-dimensional
grids, and Goodrich and Ozel hypothesized could be optimal for road networks
[8,9]. Furthermore, in our model, we will define a subgraph GH , known as the
highway , which for this model is an nH × nH evenly spaced grid in G. We
introduce a new parameter k in the range of 1 ≤ k ≤ n2, where 1/k of the nodes
are designated as highway nodes, meaning that nH is equal to n/

√
k (which for

simplicity we assume is a whole number). Now, we introduce two forms of local
connections, the first connects all nodes in the entire graph G to their neighbors,
and the second connects all nodes in the highway subgraph GH to their highway
neighbors. Finally, and importantly, only highway nodes are able to add long-
range connections, and these long-range connections are directed edges added
only to other highway nodes (see Fig. 2). Since there are fewer highway nodes, we
are able to add proportionally more long-range connections per node to maintain
the same constant average degree Q. In particular, each highway node is able to
add Q × k long-range connections, where Q, as in the original Kleinberg model,
represents the average highway degree. Put simply, GH is a Kleinberg graph with
Kleinberg parameters: n = nH = n/

√
k, p = 1, q = Q × k, r = 2. We call the

entire graph G the Kleinberg highway model.

Fig. 2. An example of the Kleinberg highway model with n = 9, k = 9, and Q = 1/9.
The solid black and curved solid blue lines represent local connections for the entire
grid and for the highway grid, respectively. The value of Q was picked such that each
highway node has only one long-range connection (represented by the dashed light
green directed lines) to make the graph less cluttered. If Q were 1, each highway node
would have 9 long-range connections.
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3.1 Results

Our results depend on whether or not the structure of the highway is known to
the vertices. Due to the structured nature of the highway, we will assume that
its layout is known to all vertices (a constant amount of information), such that
nodes know the location of the closest highway node to them. We will include
both results for completeness, and both have the same optimum value and result,
but our standard definition of our model will include this natural assumption.

We split our decentralized algorithm to route from s to t into three steps:

1. We use local connections in G to route from s to the closest highway node.
2. We traverse the highway (GH) using standard Kleinberg routing towards t.
3. Finally, we use the local connections in G to route to t.

A straightforward proof, included for completeness in Sect. 7.2, produces the
following result:

Theorem 1. The expected decentralized routing time in a Kleinberg highway
network is O(

√
k + log2(n)/k + log n) for 1 ≤ k ≤ n2 when each node knows the

positioning of the highway grid, and O(k + log2(n)/k) otherwise.

Reassuringly, both results are consistent with the original Kleinberg model
when k is constant, with the expected routing time being O(log2 n). Our key
observation, however, is that the expected routing time reaches a global min-
imum when Θ(log n) ≤ k ≤ Θ(log2 n) when the positioning of the highway is
known, or just when k ∈ Θ(log n) in general, in which case the expected routing
time becomes O(log n), as shown visually in Fig. 1. This is a major improvement
over the original Kleinberg model.

4 Randomized Highway

The key difference between this model and the Kleinberg highway model is
that in this model highway nodes are distributed randomly through the entire
graph G instead of the unrealistic expectation that they are distributed perfectly
uniformly. As in the previous model, nodes are laid out in an n×n grid with wrap-
around, where each node is connected to its 4 directly adjacent neighbors. Each
node independently becomes a highway node with probability 1/k for 1 ≤ k ≤
n2/ log n such that there are an expected Θ(n2/k) highway nodes total w.h.p.,
and each highway node adds Q × k long-distance connections to other highway
nodes such there is an expected average of Q long-distance connections per
node w.h.p.3. As before, each highway node only considers other highway nodes
as candidates for long-distance connections, and the probability that highway
node u picks highway node v as a long-distance connection is proportional to
d(u, v)−2. An important difference, however, is that there is no clear notion of
local connections between highway nodes in this graph, which will affect the
decentralized greedy routing results. See Fig. 3.
3 This holds for k ∈ o(n2/ log n) when k ∈ Θ(n2/ log n), the density is at most αQ

w.h.p. for a large enough constant α.
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Fig. 3. An example of the randomized highway model with n = 9, k = 9, and Q = 1/9.
The solid black and curved solid blue lines represent local connections for the entire
grid. In this model, there are no local connections for the highway subgraph. The
value of Q was picked such that each highway node has only one long-range connection
(represented by the dashed light green directed lines) to make the graph less cluttered.
If Q were 1, each highway node would have 9 long-range connections.

4.1 Results

As before, we split our decentralized routing algorithm into three steps: reaching
a highway node from s, traversing the highway, and reaching t from the highway.
While traversing the highway, we will only take local connections that improve
our distance to t by at least 4

√
k, for reasons that will be clear from the proof

of Lemma 3. We will show that the expected time to reach a highway node from
s is O(k + log n) w.h.p., the expected time to traverse the highway is O(log2 n)
w.h.p. for k ∈ o(log n) or O(log n) w.h.p. for k ∈ Ω(log n), and the expected
time to reach t from the highway is O(k + log n) w.h.p. From these results, we
will obtain:

Theorem 2. For k ∈ o
(

log n
log log log n

)
, the expected decentralized greedy routing

path length is O(log2 n) w.h.p., while for Θ
(

log n
log log log n

)
≤ k < Θ(log n),

the expected decentralized greedy routing path length is O(log2(n)/k) w.h.p., and
finally for Θ(log n) ≤ k ≤ Θ(n), the expected decentralized greedy routing path
length is O(k). Finally, for k ∈ Ω(n), the expected decentralized greedy routing
path length is O(n).

Note that importantly, the results of Theorem 2 are worse than the results
of Theorem 1 for values of k between Θ(1) to o

(
log n

log log log n

)
, and for values of k

greater than Θ(n). This can be attributed to two facts, the first being that the
location of the closest highway node to s is not known, and the second being
that there is no notion of local connections between the highway nodes.
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4.2 Greedy Routing Sketch

Proving the expected decentralized greedy routing path length results for the
randomized highway model in Theorem 2 follows similar steps to the proof for
the Kleinberg highway model in Theorem 1. We include a sketch below, leaving
the complete proofs for the appendix in Sect. 7.3.

We start by proving a lower bound on the probability that a long-range
connection exists between two arbitrary highway nodes. In order to do this, we
need to find a high probability upper bound on the normalization constant z for
any arbitrary highway node.

Lemma 1. The normalization constant z for any arbitrary highway node is at
most 25 log log log n+ 41

9
log n

k log log n +26 log n
k for n > 5 w.h.p. (for at most O(log2 n)

invocations).

This result gives us a normalization constant that is in O(log(n)/k) for k ∈
o
(

log n
log log log n

)
, and in O(log log log n) for k ∈ Ω

(
log n

log log log n

)
. Note that this

bound is worse for large values of k than the bound we obtained for the Kleinberg
highway model in Lemma 7. We can, however, improve this bound, but without
the same high probability guarantees:

Lemma 2. The normalization constant z for any arbitrary highway node is at
most 10 + 37 log n

k for n > 2 with probability at least 1/2. From now on, we will
refer to this tighter bound as z′.

This improved bound gives us a normalization constant that is in O(log(n)/k)
for k ∈ o(log n) in O(1) for k ∈ Ω(log n), a result in line with the Kleinberg
highway model. We want to be able to use this improved bound when calculating
the probability of halving the distance to the destination.

Lemma 3. Using the improved normalization constant bound z′ incurs at most
a constant factor to the probability of halving the distance to the destination while
routing w.h.p.

Now we can use these improved normalization constant bounds to find the
probability of halving our distance. Suppose we are in phase j where log(c(k +
log n)) ≤ j ≤ log n (for some constant c we will discuss later), and the current
message holder u is a highway node. Let us find the probability that we have
a long-range contact that is in a better phase. First, we find the number of
highway nodes in a better phase than us, i.e., within the ball of radius 2j around
t (B2j (t)).

Lemma 4. There are at least 22j−2/k highway nodes in a ball of radius 2j for
log(c(k + log n)) ≤ j ≤ log n with high probability (with probability at least
1 − n−0.18c2).

Each of these nodes has lattice distance less than 2j+2, allowing us to bound
the probability of them being a specific long-range contact of u. Then, we can
obtain an identical result (in asymptotic notation) to the result in Lemma 8:
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Lemma 5. In the randomized highway model, the probability that a node u has
a long-range connection to a node v that halves its distance to the destination is
proportional to at most k/ log n for k ∈ O(log n) and is constant for k ∈ Ω(log n).

Once we reach phase j = log(c(k + log n)), we are at distance O(k + log n)
from the destination, reaching it in O(k + log n) local hops. As stated up until
now, we would be able to perform greedy routing with results equivalent to those
of Theorem 1 assuming no knowledge about the positioning of the highway nodes
(O(k + log2(n)/k) routing). However, we have not yet addressed the elephant
in the room: the fact that there is no notion of local contacts between highway
nodes. In simple terms, while routing, if there are no long-range contacts that
improve your distance, you must leave the highway. And when you leave the
highway, it may take a while to get back onto it. We will show that this is
not a problem for large values of k, i.e. values of k ∈ Ω(log n), but for smaller
values of k the bound will be worse than before, becoming O(log2 n) expected
routing instead of O(log2(n)/k) (note that we do not prove that the bound is
tight). In Sect. 7.5 we propose a variant which trivially achieves the improved
O(log2(n)/k) expected routing for small values of k. We consider this variant
slightly less elegant, and since it maintains the same optimal results, we do not
consider it further.

5 Windowed Neighborhood Preferential Attachment

Our previous models have a binary distinction between highway nodes and nor-
mal nodes, represented by a fixed value of k. We now describe a new model with
a continuous transition, where each node picks its own value of k, such that
the distribution of the values of k, and consequently the degree distribution,
exhibits a power law. Each node independently picks their probability k from a
distribution Pr(k) ∝ 1/k2+ε for ε > 0. Each node u then adds εQ× k long-range
connections, but only to nodes within a given range, or “window”, of popularity.
Specifically, let the window of popularity for a given node u with popularity ku

be popularities in the range [ku/A,Aku].

5.1 Results

While at first glance this model may seem irreconcilable from the previous mod-
els, consider referring to all nodes with popularity log n ≤ k ≤ A log n as the
“highway”. We expect to have O(1/ log1+ε n447) highway nodes. Ignoring all
long-range connections that do not connect two highway nodes, we find an
instance of the randomized highway model embedded within the windowed NPA
model, albeit with a small (but nevertheless constant) value of Q. With these
key observations, we are able to prove:

Theorem 3. The windowed NPA model has a decentralized greedy algorithm
that routes in O(log1+ε(n)) hops w.h.p.
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The complete proof for this theorem can be found in Sect. 7.6. Furthermore,
experimental results confirming that this model greedily routes significantly bet-
ter than Kleinberg’s can be found in Sect. 7.1.

5.2 Efficient Construction

The neighborhood preferential attachment model of Goodrich and Ozel [8] takes
O(|V |2) time to construct and there is no more efficient construction currently
known. The windowed NPA model can similarly be constructed sequentially in
O(|V |2) time. However, due to how each node picks their connections indepen-
dently, this model is embarrassingly parallel, and can be constructed in O(|V |)
time with |V | processors, without any communication between processors.

6 Future Work

It would be interesting to be able to prove whether our bounds are tight for our
models. Specifically, whether the bounds for the randomized highway model can
be improved to be more in line with the Kleinberg highway results. While the
diameter of models with constant degree is at least Ω(log n), there is no such
lower bound when dealing with constant average degree. It would be interesting
to either bridge the gap or show that a true gap exists between the lower bound
on the diameter of our networks, Ω(log n/ log log n), and the upper bound on
greedy routing, O(log n). Also, it would be interesting to prove whether it is
possible to achieve a greedy routing time of log n +

√
k for larger values of k if

each node knows the location of the nearest highway node (a constant amount
of additional information). This result would improve the expected running time
of the windowed NPA model to just O(log n) for 0 < ε ≤ 1. Finally, our analysis
for the randomized highway model depends on the network having a mostly
even spread of nodes. Experimentally, both our model and the original NPA
model perform worse on Alaska, a highly unevenly spread out state. It would be
interesting to generalize our results if some form of density condition is met.

7 Appendix

7.1 Experimental Analysis

Goodrich and Ozel’s paper on the neighborhood preferential model [8] was able to
show that a hybrid model combining elements from Kleinberg’s model with pref-
erential attachment is able to outperform both individual models for decentral-
ized greedy routing on road networks by showing many experimental results. In
the previous sections, we provided some theoretical justification for their results,
by proving asymptotically better greedy routing times for a similar model. In
this section, we complete our comparisons by reproducing their key experimental
results with our new model. Our experimental framework is nearly identical to
theirs, except that we implement directed versions of each algorithm, i.e. where
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each long-range connection is directed (local connections are by definition always
undirected). This allows us to run experiments much more efficiently—we sample
between 30,000 to 200,000 source/target pairs for each data point, as compared
to their 1,000 pairs—but results in all algorithms having a worse performance.
For our experiments we picked ε = 0.5 and A = 1.01. It is possible that other
parameters would yield better results.

Key Results. Our main key result is that our windowed NPA model outper-
forms Kleinberg’s model for road networks by a factor of 2, as shown in Fig. 4.
This result is directly in line with Goodrich and Ozel’s experimental results with
their similar model [8]. It is worth mentioning that our directed version of the
model is worse than the undirected version from Goodrich and Ozel’s paper by
roughly a factor of 2.

Fig. 4. Comparison of greedy routing times for Kleinberg’s model and the windowed
NPA model when Q = 1, ε = 0.5, A = 1.01. The right plot is in log scale.

Similarly, we show that by increasing the degree density to 32 we can achieve
a result of less than 20 degrees of separation, which again is roughly twice the
results from Goodrich and Ozel’s paper (see Fig. 5), which we attribute primarily
to the directed implementation of the models for our experiments.
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Fig. 5. The greedy routing times for the windowed NPA model on the 50 US states
when Q = 32, ε = 0.5, and A = 1.01.

7.2 Kleinberg Highway Proofs

In this section, we prove Theorem 1 by proving upper bounds on each of the three
steps of the greedy routing algorithm: routing from s to the highway using local
connections, within the highway towards t using standard Kleinberg routing,
and finally from the highway to t again using local connections.

Lemma 6. It is possible to route from any node s ∈ G to a highway node h ∈ GH

in at most
√

k hops, if the location of h is known, or in at most k − 1 hops, if
the location of h is not known.

Proof. Without loss of generality, let’s assume highway nodes are located wher-
ever mod (x,

√
k) = 0 and mod (y,

√
k) = 0. Then, the maximum distance in the

x dimension to a highway node is δx = min(mod(x,
√

k),
√

k − mod(x,
√

k)) =⌊√
k
2

⌋
, and an equivalent result holds for δy. Therefore, the maximum lattice

distance to a highway node is the sum of both, or at most 2
⌊√

k
2

⌋
≤ √

k. If the
location of h is known, then we can route to it directly taking a number of hops
equal to the lattice distance to h. If the location of h is not known, we can visit
every node in a

√
k ×√

k square, guaranteeing that we will encounter a highway
node h, in k − 1 hops.

After we reach the highway subgraph GH , we can use the standard Kleinberg
routing algorithm towards t. As in Kleinberg’s original analysis, we first prove a
lower bound on the probability that a long-range connection exists between two
arbitrary highway nodes.
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Lemma 7. The normalization constant z for GH is upper bounded by z ≤
4 ln(6nH) ≤ 4 ln(6n). As such, the probability of any two highway nodes u and
v being connected is at least [4 ln(6n)dH(u, v)2]−1, where dH(u, v) is the lattice
distance between u and v in GH .

Proof. This result follows directly from Kleinberg’s original analysis on the high-
way subgraph GH .

In Kleinberg’s analysis, the probability that a node u has a long-range con-
nection to a node v that halves its distance to the destination is proportional
to [log n]−1, when a node has a constant number of long-range connections Q.
In our case, each highway node has Q × k long-range connections, where k does
not need to be constant. This gives us improved distance-halving probabilities:

Lemma 8. In the Kleinberg highway model, the probability that a node u has a
long-range connection to a node v that halves its distance to the destination is
proportional to at most k/ log n for k ∈ O(log n) and is constant for k ∈ Ω(log n).

Proof. Following Kleinberg’s analysis, the probability that a single long-range
connection from u halves its distance to the destination is still proportional to
[log n]−1. Therefore, the probability that a single long-range connection does not
halve its distance to the destination is proportional to 1 − [log n]−1. The proba-
bility that all Qk long-range connections do not halve the distance is therefore

proportional to
(
1 − [log n]−1

)Qk =
[(

1 − [log n]−1
)log n

] Qk
log n ≤ e− Qk

log n . Finally,
the probability that any one of the Qk succeed in halving the distance is there-
fore proportional to 1 − e− Qk

log n . When k ∈ ω(log n), the exponential term tends
towards zero, and the probability tends towards one. For smaller values of k,
a Taylor expansion of e− Qk

log n shows that this probability is proportional to at

least 1 −
[
1 − Qk

log n + O
([

Qk
log n

]2)]
= Qk

log n − O
([

Qk
log n

]2)
. When k ∈ o(log n),

the lower order terms become asymptotically negligible, and we are left with a
probability proportional to Qk

log n = O(k/ log n). When k = Θ(log n), we are left
with a constant dependent on Q.

Importantly, this result reproduces Kleinberg’s original result when k is con-
stant, since we are left with a probability proportional to 1/ log n. Finally, we
can prove the main result of this section:

Proof (of Theorem 1). It is possible to describe the greedy routing path in
terms of at most log n phases, where a node u in phase j if it is at a lattice
distance between 2j and 2j+1 from the destination t. It is easy to see that
halving the distance to the destination results in reducing what phase a node
is in by one. The expected amount of hops spent in each phase is therefore
1/Pr(distance halving) = O(log(n)/k). Note that importantly, when no long-
range connections halve the distance, we take local connections on the highway
graph towards t, as in the original Kleinberg model. Since there are at most log n
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phases, we expect to spend at most O(log n(log(n)/k+1)) hops on the highway4.
Finally, the final highway node is known to be at most

√
k hops away from the

destination t. The theorem follows from these results along with the results from
Lemma 6.

7.3 Randomized Highway Proofs

We now present proofs of theorems and lemmas discussed in Sect. 4.2.

The Nested Lattice Construction. For our proofs, similarly to the Kleinberg
highway model, we will conceptually subdivide the highway into a lattice of balls
of various sizes (see Fig. 6 for an example nested lattice structure), and show
upper and lower bounds on the number of highway nodes within each ball with
varying degrees of probability bounds. Specifically we will prove:

Lemma 9. Results from the nested lattice structure:

1. All balls of radius 3
√

k log n, centered around any of the n2 nodes, contain at
least 9 log n highway nodes with high probability in n.

2. All balls of radius 3
√

k log n, centered around any of the n2 nodes, contain
fewer than 41 log n highway nodes with high probability in n.

3. O(log2 n) balls of radius 3
√

k log log n, centered
around any O(log2 n) nodes, contain fewer than 41 log log n highway nodes
with high probability in log n.

4. Any arbitrary ball of radius 2
√

k has at most 18 highway nodes with prob-
ability at least 1/2. This result is not a high probability bound, and is only
independent for balls centered around nodes with lattice distance greater than
4
√

k between them.

Proof. Consider balls of radius a
√

k log n for some constant a. There are at least
2a2k log n-many nodes within each ball of radius a

√
k log n. The probability that

any node is a highway node is 1/k, so the expected number of highway nodes
within each ball is μ ≥ 2a2 log n. We can lower bound the number of highway
nodes within each ball by using a Chernoff bound. Letting X be the number of
highway nodes within each ball, we have:

Pr(X ≤ (1 − δ)μ) ≤ e− δ2μ
2 = e−a2δ2 log n = n− a2δ2

ln 2

By union bound, the probability this fails for a ball centered at any of the
n2 vertices is at most n2− a2δ2

ln 2 . Setting δ = 1/2 and a = 3, we obtain that all
balls with radius 3

√
k log n have at least 9 log n highway nodes with probability

at least 1 − n−1.24, which is w.h.p. For an upper bound, we first note that there

4 Some minor details regarding the final log log n phases are omitted for brevity.
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Fig. 6. The nested lattice construction showing balls of radius 3, centered around an
orange node. The central ball is depicted in solid light green, while the 8 adjacent balls
are shown in dashed yellow.

are fewer than 3a2k log n-many nodes within each ball of radius a
√

k log n for
radii of at least 3. Using another Chernoff bound:

Pr(X ≥ (1 + δ)μ) ≤ e− δ2μ
2+δ = e− 2a2δ2 log n

2+δ = n− 3a2δ2
ln 2(2+δ)

By setting δ = 1/2 and a = 3, we obtain that all balls with radius
3
√

k log n have fewer than 41 log n highway nodes w.h.p. (with probability at
least 1 − n−1.89). We can obtain similar bounds for smaller balls, although with
worse probabilities. For example, for balls of radius a

√
k log log n, we expect

μ < 3a2 log log n highway nodes for radii of at least 3. Using another Cher-
noff bound with δ = 1/2 and a = 3, we obtain that any given ball with radius
3
√

k log log n has more than 41 log log n highway nodes with probability less than
log−3.89 n. Assuming we will only invoke this bound at most O(log2 n) times, the
probability that any of the invocations fail is negligible (at most O(log−1.89 n)).
Finally, we consider balls of radius only 2

√
k, which have at most 18 highway

nodes with probability at least 1/2.

Finding the Normalization Constant. The probability that highway node u

picks highway node v as a long-range connection is d(u, v)−2/
[∑

w �=u d(u,w)−2
]
,

where each w in the summation is a highway node. In order to lower bound this
probability, we must upper bound the denominator, known as the normaliza-
tion constant z.

Proof (of Lemma 1). Let’s consider a lattice of balls centered around an arbitrary
highway node u. Let’s define a notion of “ball distance” b to measure the distance
between two balls in this ball lattice. Let Bb(u) be the set of all balls at ball
distance b from a ball centered at u. There is 1 ball at ball distance 0 (|B0(u)| =
1), 8 balls at ball distance 1, and in general at most 8b balls at distance b for
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b > 0 (see Fig. 6). The minimum distance between u to a node in another ball
at distance b is 2b − 1 times the ball radius for b > 0. Let’s consider a lattice of
balls with radius 3

√
k log n. From Lemma 9.2 we know that there are at most

41 log n highway nodes within this ball w.h.p. Let’s also find the normalization
constant in two parts, first due to highway nodes in b > 0 (z>0), and then due
to highway nodes within the same ball (z0).

Note that any two balls are separated by ball distance at most 2n/twice the
ball radius, or n

3
√

k log n
.

z>0 ≤
n

3
√

k log n∑
b=1

(max # highway nodes in Bb(u))
(min distance to node in Bb(u))2

≤
n

3
√

k log n∑
b=1

41 log n × 8b

(2b − 1)2 × 9k log n
<

37
k

n
3

√
k log n∑
b=1

b

(2b − 1)2

≤ 37
k

n
3

√
k log n∑
b=1

1
b

=
37
k

H
(

n

3
√

k log n

)

≤ 37
k

H
(

n

3
√

log n

)
< 26

log n

k
for n > 2

Now that we showed the contribution of highway nodes in different balls from
u, let’s bound the contribution due to highway nodes within the same ball. We
are only interested in the normalization constant for nodes that we visit along
the highway, which we will show is at most O(log2 n) nodes. Knowing this,
we can use the improved bound for balls of radius 3

√
k log log n, which from

Lemma 9.3 we know contain fewer than 41 log log n highway nodes w.h.p. Let’s
consider the worst case where they are all bunched up around u. Let’s denote
their contribution z0,inner.

z0,inner ≤
�√

41 log log n�∑
j=1

4j

j2
< 4H

(√
41 log log n + 1

)

< 25 log log log n for n > 5

Recall that we can still have up to 41 log n highway nodes in in the same
(large) ball as u. Let’s assume they are all as close as possible, meaning that
they are all at the edge of the inner ball. Let’s denote their contribution z0,outer.

z0,outer <
41 log n

(3
√

k log log n)2
=

41
9

log n

k log log n

Combining these results, we obtain:

z < 25 log log log n +
41
9

log n

k log log n
+ 26

log n

k
for n > 5

w.h.p., for at most O(log2 n) invocations.
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We provide a tighter bound for the normalization constant, z′, in a similar
fashion:

Proof (of Lemma 2). Recall from Lemma 9.4 that balls of radius 2
√

k have at
most 18 highway nodes with probability at least 1/2. When this occurs, z0,inner

can be improved to:

z0,inner <

5∑
j=1

4j

j2
= 4H(5) < 10

Meanwhile, z0,outer changes to:

z0,outer <
41 log n

(2
√

k)2
=

41
4

log n

k

Overall, with probability at least 1/2, we obtain the improved bounds on the
normalization constant:

z′ < 10 + 37
log n

k
for n > 2

Probability of Distance Halving. As explained before, the first step is to
show that we can use the improved bounds on the normalization constant by
incurring only an increase in a constant factor to the probability of halving the
distance:

Proof (of Lemma 3). The probability of the improved normalization constant
bound z′ applying is at least 1/2, and this probability is independent for any
nodes a distance of at least 4

√
k apart (see Lemma 9.4). For values of k ∈

o
(

log n
log log log n

)
, the improved normalization constant bound is already only a

constant factor better. For values of k ∈ Ω
(

log n
log log log n

)
we will show that we

can always visit highway nodes that are at least 4
√

k apart, so that we have
independence. All our routing algorithms expect to take O(log n) hops on the
highway, or a log n hops for some constant a. We expect at least 1

2a log n of the
highway nodes visited to have the improved bounds apply. By Chernoff bound,
we visit at least 1

4a log n highway nodes with the improved bounds w.h.p. (with
probability at least 1−n− a

16 ln 2 ). Since a can be picked arbitrarily large, then with
high probability we will visit O(log n)-many nodes with the improved bounds
along our path, which is the same as our original expectation of how many nodes
we will visit, meaning our results are the same up to a constant hidden by the
asymptotic notation. Note that a similar reasoning works for smaller values of k
as well.

Next, we need to prove a lower bound on how many nodes are in a better
phase than us w.h.p.:



74 O. Gila et al.

Proof (of Lemma 4). Kleinberg showed that there are more than 22j−1 nodes
within lattice distance 2j of t [9], for log log n ≤ j < log n. Within this range, we
expect there to be at least 22j−1/k highway nodes. Since we are only considering
the case where j ≥ log(c(k + log n)), we can use this to create a Chernoff bound
(with δ = 1/2). Letting X be the number of highway nodes:

Pr(X ≤ μ/2) ≤ e− μ
8 = e− 22j−1

8k ≤ e− 22 log(c(k+log n))
16k

= e− [c(k+log n)]2

16k < e− c2(2k log n)
16k = n− c2

8 ln 2

< n−0.18c2

In summary, since we picked δ = 1/2, we expect at least 22j−2/k highway
nodes, to be within lattice distance 2j of t w.h.p. (with probability at least
1 − n−0.18c2).

Finally, we use these results to prove the main lemma of this section, the
probability of halving the distance:

Proof (of Lemma 5). From our previous results, we
know we can use the improved bounds for the normalization constant, z′ =
10+37 log n

k , with at most a constant factor increase in the probability of halving
the distance. Furthermore, we know that there exist at least 22j−2/k highway
nodes in better phases w.h.p. Since they are in phase j or better, they are each
within lattice distance < 2j+1 + 2j < 2j+2 from u. Using this, and letting v be
an arbitrary long-range connection of u, we obtain:

Pr(v ∈ B2j (u)) > [64kz′]−1 > [64k × 37(1 + log(n)/k)]−1

The probability of v not being in a better phase is similarly 1 − Pr(v ∈
B2j (u)). Recalling that each highway node has Qk independently chosen ran-
dom long-range connections, the probability of none of them being connected
to a better phase is therefore (1 − Pr(v ∈ B2j (u)))Qk ≤ e−Qk Pr(v∈B2j (u)). The
probability of any one of them being connected is therefore:

Pr(∃v ∈ B2j (u)) ≥ 1 − e−Qk Pr(v∈B2j (u)) > 1 − e− Qk
2368(k+log n)

When k ∈ o(log n), the log n term in the denominator dominates, and we
obtain similar asymptotic results to Lemma 8. When k ∈ Ω(log n), the k term
in the denominator dominates, cancelling out the k term in the numerator, and
leaving us with a constant term dependent on Q. It is worth noting that the
constant factors in this analysis are very loose, and also considerably decrease
for larger values of n. In any case, we obtain that the probability of halving the
distance is at least in O(k/ log n) for k ∈ o(log n), and at least f(Q) = O(1) for
k ∈ Ω(log n).
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7.4 Removing Local Contact Dependence

In this section, we complete the proof of Theorem 2 by removing the dependence
on local connections. The results of the theorem directly follow.

If we do find a long-range connection that takes us to the next phase, we can
just take it, but what do we do when there aren’t any? To continue the Kleinberg
analogy, we would just keep taking local connections to keep re-rolling the dice,
and as long as we never traverse any space twice and never traverse any space
that is within 4

√
k of previous spaces (because of Lemma 9.4), we can assume

each step taken is independent of other steps. The obvious problem here is that
there is no notion of “local connections” in this randomly selected highway. We
could either greedily take local connections in the entire graph until we happen
to reach a highway node again (in expected O(k) time), or we can simply pick
any long-range connection that takes us closer to the destination by at least
4
√

k. For values of k ∈ o(log n), we will use the first method (greedily taking
local connections), and for values of k ∈ Ω(log n), we will use the second.

Values of k ∈ o
(

log n
log log log n

)
. For these smaller values of k, from Lemma

5, we expect to take O(log(n)/k) hops on highway nodes to reach the next
phase, and since there are at most log n total phases, we expect to visit at most
O(log2(n)/k) highway nodes throughout the entire routing process w.h.p. In
the worst case, whenever we can’t halve the distance, we never have any closer
long-range connections, so we would need to greedily move along local contacts
towards t until reaching another highway node. Recalling that each node has
probability 1/k of being a highway node, and that we expect to visit a highway
node every k independent hops. In order to avoid visiting highway nodes within
4
√

k of each other, we can first walk 4
√

k hops before checking for highway
nodes, which we will expect to find after 4

√
k + k ∈ O(k) hops. Over the entire

duration of the routing, we expect to spend O(log2(n)/k × k) = O(log2 n) hops
using local connections to reach highway nodes w.h.p.

Values of k ∈ Ω
(

log n
log log log n

)
For these larger values of k, we will prove that

we can find a long-range connection to an arbitrary highway node u in phase
log(c(k+log n)) ≤ j < log n that is at least 4

√
k closer to the destination t, w.h.p.

Recall that long-range connections are always only between highway nodes, so
taking them will always keep us on the highway. To find the probability of one of
these connections existing, we consider a ball of radius d − 4

√
k centered on the

destination t (Bd−4
√

k(t)), where d is the distance from u to t (d = d(u, t)). Let’s
lower bound the probability of an arbitrary long-range connection of u going
into this ball. We can assume w.l.o.g. that u shares either an x or a y coordinate
with t (see Lemma 13). As before, let’s consider the nested lattice construct,
where this time u sits at the edge of one such ball. There are exactly 2b−1 balls
closer to t than u is at ball distance b, for 1 ≤ b ≤ 2d−2

6
√

k log n
. In order to enforce

the condition that we improve the distance by at least 4
√

k, we can dismiss the
outer layer of balls, leaving us with 2b − 3 balls for 2 ≤ b ≤ d−1

3
√

k log n
− 1. The

maximum distance from u to any node in one of these balls is 2b × 3
√

k log n.
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From Lemma 9.1, we know that each ball of radius 3
√

k log n has at least 9 log n
highway nodes w.h.p. This lower bound must apply w.h.p. for any highway node
along our path, so we must use the looser normalization constant bound, z. We
can now lower bound the probability that v is in one of these closer balls:

Pr(v ∈ Bd−4
√

k) ≥
d−1

3
√

k log n
−1∑

b=2

(min # dist b highway nodes)
z(max dist to node at dist b)2

≥
d−1

3
√

k log n
−1∑

b=2

(2b − 3) × 9 log n

z(2b × 3
√

k log n)2

=
2

9kz

d−1
3

√
k log n

−1∑
b=2

2b − 3
b2

>
2

9kz

[
ln

(
d − 1

3
√

k log n
− 1

)]

>
ln

(
d

3
√

k log n

)

9kz

Note that this result holds for d ≥ c(k + log n) for large enough constant c.
This result holds for a single long-range connection of u. The probability that

none of u’s long-range connections are closer is:

Pr(none closer) <

⎡
⎣1 −

ln
(

d
3
√

k log n

)

9kz

⎤
⎦

Qk

=

⎛
⎜⎝

⎡
⎣1 −

ln
(

d
3
√

k log n

)

9kz

⎤
⎦

kz
⎞
⎟⎠

Q
z

< e
− Q

9z ln
(

d
3

√
k log n

)

< e− Q ln d
9z = d− Q

9z

again, holding for large enough constant c.
With this probability established, let’s try seeing how many hops we can take

before we hit a dead end. Let’s do this in two parts. First, let’s see if we can get
to within a distance of (a log n)bz from t for some constants a and b. Since the
probability of hitting a dead end only increases as we get closer, the probability of
hitting a dead end while in this range is always going to be < (a log n)− bQ

9 . This
gives us an expected number of hops of Ω

(
(a log n)

bQ
9

)
w.h.p. When setting b

large enough, we can get this to be Ω(log2 n), which is more than the maximum
number of steps we expect to spend in routing.
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In the second part, we are within distance (a log n)bz ≥ d ≥ c(k + log n)
of t. From Lemma 1, we know that our normalization constant z is at most
O(log log log n) for k ∈ Ω

(
log n

log log log n

)
w.h.p., so z < w log log log n for some

constant w. This gives us probability of hitting a dead end of less than (c(k +
log n))− bQ

9w log log log n . Setting constant c large enough, we can expect to take at
least Ω

(
log n

Q
9w log log log n

)
hops on the highway within this range before hitting

a dead end w.h.p. Let’s call this our “allowance”. While this is less than the
maximum number of steps we expect to spend while routing, we only have
at most bz log(a log n) phases left in this second part, while we spend at most
O(log log log n) highway hops per phase. Putting this together, we expect to take
at most f(log log log n)2 log log n hops in this second part of the routing for some
large enough constant f . Let’s determine if our allowance is enough to get us to
t, by considering the ratio r between our allowance and the number of remaining
highway hops:

r = lim
n→∞

log n
Q

9w log log log n

f(log log log n)2 log log n

log r = lim
n→∞

Q log log n

9w log log log n
− log(f(log log log n)2 log log n)

= lim
n→∞

log log n

log log log n
− log((log log n)3) = ∞

Since log r tends towards infinity, r tends towards infinity, meaning that for
a large enough constant c, our allowance is enough to get us to t w.h.p. for
arbitrarily large n. Combining these results, we can conclude that we can reach
a highway node within distance c(k + log n) of t w.h.p. while only taking long-
range connections that improve our distance by at least 4

√
k, thus eliminating

the need for local connections.

7.5 Randomized Highway Variant

If it is desired to improve the greedy decentralized routing time of the randomized
highway model for smaller values of k to be inline with the Kleinberg highway
model, it is possible to reintroduce local connections within the highway nodes,
despite the fact that nodes are picked arbitrarily. One straightforward way to
do so is to add a local connection between each highway node to an arbitrary
highway node in each of the 8 adjacent balls of radius 3

√
k log n (see Fig. 6).

From Lemma 9.1 we know that at least one highway node will exist in each of
those balls w.h.p. At least one of these adjacent highway nodes will be at least
3
√

k log n closer to the destination. With this variant, the routing time for smaller
values of k is improved to log2(n)/k, while only increasing the average degree
by a constant, inline with the randomized highway model. However, this model
is not as clean as the original, and still maintains the same optimal parameter
k of Θ(log n) with the same result of Θ(log n) hops, so we will not consider it
further.
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7.6 Windowed NPA Proofs

In this section, we prove that the windowed NPA model maintains a constant
average degree while having a greedy, decentralized routing algorithm taking at
most O(log1+ε n) hops w.h.p. Specifically, we will define the routing algorithm as
follows: define the subgraph made of nodes with popularity log n ≤ k ≤ A log n
as the highway, ignoring any long-range connections that do not connect two
“highway” nodes. We expect to have O(1/ log1+ε n) highway nodes. Using the
results from the previous section, we are able to route in O(log1+ε n) hops w.h.p.

First, we prove the expected constant average degree:

Lemma 10. The average node degree in the windowed NPA model is Q.

Proof. ∫ ∞

k=1

εQk/k2+εdk = εQ

∫ ∞

k=1

1/k1+εdk = εQ × 1/ε = Q

Where the normalization constant to pick k is:
∫ ∞

k=1

1/k2+εdk =
1

1 + ε

Next, we show that there are an expected O(1/ log1+ε n) highway.

Lemma 11. There are Θ(log1+ε n) highway nodes w.h.p.

Proof. Now, let’s find the probability that a node has popularity between log n
and A log n:

Pr(log n ≤ k ≤ A log n) =
∫ A log n

k=log n

Pr(k)dk

=
∫ A log n

k=log n

1/k2+εdk

=
(A1+ε − 1) ln1+ε(2)

(1 + ε)A1+ε

1
log1+ε n

Since A and ε are predetermined constants, the probability that a node has
a popularity in this range is ∝ log−(1+ε)(n).

Importantly, each node within this range of popularities considers all other
points within this range of popularities as long-distance node candidates with
equal likelihoods, a requirement important for the analysis of the randomized
highway model. Next we must prove:

Lemma 12. Each highway node expects to connect a constant fraction of its
connections to other highway nodes, where the constant is at least [1 + A1+ε]−1.
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Proof. The case where there is the least probability of overlap is when k = log n.
Let’s consider v, an arbitrary long-range connection of node u, where ku = log n.
The probability that v is part of the highway is:

Pr(v ∈ highway) =

∫ A log n

k=log n
k−2−εdk

∫ A log n

k=log n/A
k−2−εdk

= [1 + A1+ε]−1

This is enough to set up an instance of the randomized highway model.
An (N,P,Q, ε, A) instance of the windowed NPA model corresponds with an
(N ′ = N,P ′ = P,Q′ = εQ[1+A1+ε]−1, k′ = log1+ε n) instance with a few minor
modifications. The highway graph, instead of consisting of nodes with degrees
k, consists of nodes with degrees log n ≤ k ≤ A log n.

A little nuance applies since while k = log1+ε n, each of the nodes has fewer
connections, only O(log n). However, the constant probability of halving the
distance analysis still holds, and this algorithm achieves O(log1+ε n) expected
total greedy-routing steps. This concludes the proof for Theorem 3.

7.7 Miscellaneous Proofs

Lemma 13. Let Sd(w) denote the set of vertices at lattice distance d away from
any vertex w. Let u be any vertex, and let v be any vertex such that v ∈ Sd(u),
and let B = Bd(u). Then |Sj(v) ∩ B| is Θ(j) for all 1 ≤ j ≤ 2d.

Proof. Consider the ratio Rj,v = |Sj(v)∩B|
|Sj(v)| at each 1 ≤ j ≤ 2d. It is clear

that no matter where v is located in Sj(u), Rj,v always grows smaller as j
increases. The value of j that minimizes Rj,v for a particular v ∈ Sd(u) is then
2d, and we can achieve minv(Rv,2d) when v is a non-corner vertex in Sd(u), in
which case Rv,2d = d

8d = 1/8. Therefore at every 1 ≤ j ≤ 2d, we have that
1
8 ≤ |Sj(v)∩B|

4j , and therefore |Sj(v) ∩ B| ≥ j/2. Since we already have that
|Sj(v) ∩ B| ≤ |Sj(v)| ≤ 4j, the lemma follows.
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