
Approximate Parallel Prefix Computation and Its Applications
(Preliminary Version)

Michael T. Goodrich’ Yossi Matiast Uzi Vishkint

Abstract
In this paper we address two fundamental problems
in parallel algorithm design-parallel prefix sums and
integer sorting-and show that both of them can be
approximately solved very quickly on a randomized
CRCW PRAM. In the case of prefix sums the approx-
imation is in terms of the accuracy of the sums and
in the case of integer sorting it is in terms of allow-
ing some gaps between consecutive elements in the or-
dered list. By introducing approximation in these ways
we are able to solve these problems in o(lg lg n) time,
and thus avoid the near-logarithmic lower bounds by
Beame and H b t a d that hold for the exact versions
of these problems. Nevertheless, we demonstrate that
these approximations are strong enough to be used
as subroutines in fast randomized algorithms for some
well-known problems in parallel computational geom-
etry. Perhaps the most succinct way to describe the
power of the new tools which are presented is by ob-
serving that prior to this work it was known how
to solve the interval allocation problem fast. In the
present work we show how to solve the ordered version
of the problem.

1 Introduction

Computing all prefix sums for a list of group or semi-
group elements is perhaps the most frequently used
subroutine in parallel algorithms today. Deterministi-

*Department of Computer Science, Johns Hopkins Univer-
sity, Baltimore, MD 21218. This research supported by the
NSF and DARPA under Grant CCR-8908092, by the NSF un-
der Grants CCR-9003299 and IRI-9116843, and by The Bureau
of the Census under Contract JSA-91-23.

t h t i t u t e for Advanced Computer Studies, University of
Maryland; and the Department of Computer Science, Tel Aviv
University, Israel. Partially supported by NSF grants CCR-
9111348 and CCR-8906949. Current Address: AT&T Bell Lab-
oratories, 600 Mountain Avenue, Murray Hill, NJ 07974. This
work is part of this author’s PhD thesis [17].

:Institute for Advanced Computer Studies and Department
of Electrical Engineering, University of Maryland, College Park,
MD 20742. Also with the Department o f Computer Science,
Tel Aviv University, Israel. Partially supported by NSF grants
CCR-9111348 and CCR-8906949.

cally, one can find all such sums in logarithmic time
using an optimal number of processors, as shown by
Stone [21] and Ladner and Fischer [15]. In the CRCW
PRAM model one can do even better, in that, 8s shown
by Cole and Vishkin [7], one can achieve a running
time of O(lg n/ lg lg n) using an optimal number of pro-
cessors. This time was shown to be best possible with
any polynomial number of processors by Beame and
Histad [4], even if a randomized algorithm is sought
(using a theorem by Adleman [l]).

This lower bound result drove several researchers
searching for algorithms with significantly sub-
logarithmic running times to abandon using the prefix
sums problem as a subroutine in favor of new prob-
lems for which they could produce constant-time or
near-constant time algorithms. Indeed, several prob-
lems were suggested recently, which may be viewed
as much relaxed versions of the prefix sums problem,
and for which nearly-constant time algorithms can be
developed [9, 10, 11, 13, 17, 181. These problems in-
clude the linear approximate compaction problem [18],
the load balancing problem [9], the interval alloca-
tion problem [13], and the density partitioning prob-
lem [ll]. While these problems can be used, often
in concert, to replace parallel prefix for some applica-
tions, the goal of the present paper is return to the
prefix sums problem.

We show that one can solve an approximate ver-
sion of the prefix sums problem in o(lg1gn) parallel
time with high probability, using an optimal number
of processors on a CRCW PRAM. We show that,
with high Probability, each prefix sum given by our
method is within a small (1 + P) factor of the true
value, with 6 being l / lgd n for any constant d 2 0.
Specifically, the approximate prefix sums produced are
strictly non-decreasing in such a way that the differ-
ence between consecutive computed prefix sums is al-
ways not smaller than the difference between the exact
prefix sums.

We show the utility of this result by deriving a fast
randomized parallel algorithm for a “relaxedln but still
quite natural, version of the integer sorting problem,
known as padded integer sorting [16]. In this version of
integer sorting we allow for gaps in the ordered listing,

1063-713W93 $3.00 0 1993 IEEE
318

so long as the total space needed for the array con-
taining these elements is still linear. This contrasts
with recent fast solutions for the strictly-weaker inte-
ger chain sorting which is little more than a reduction
of sorting to the list ranking problem [2, 71 (which,
as can be derived by the lower bounds of Beame and
H t t a d , has a near-logarithmic lower bound). Even
though this is a relaxed version of sorting it is still
quite powerful, as we demonstrate by giving several ap-
plications to well-known problems in parallel compu-
tational geometry, including convex hull construction,
point set triangulation, and 2-dimensional hidden-line
elimination.

Related work: Rajasekaran and Reif [19] gave the
first optimal randomized parallel algorithm for in-
teger sorting in O(1gn) time. An improvement to
O(lg n/ lg lg n) time, matching the lower bound which
is implied by [4], was recently given by [12, 18, 201.
Recently, MacKenzie and Stout [16] gave an algorithm
for padded sorting. Their algorithm takes doubly log-
arithmic time with high probability, but the input is
assumed to be taken uniformly a t random from the
unit interval. They also considered some applications
to computational geometry, but it seems that these
applications use heavily the assumption that input
is taken uniformly at random from the unit square.
Hagerup [12] defined the integer chain sorting prob-
lem, and gave an optimal randomized algorithm in the
doubly logarithmic level. An algorithm in the O(1g’ n)
time level was subsequently given by [lo].
As for our applications in parallel computational ge-

ometry, previous related results include a randomized
method by Ghouse and Goodrich [8] for finding the
convex hull of a sorted set of points in almost surely
O(1g.n) time using an optimal number of proces-
sors, an O(lg1gn) time method by Berkman et al. [5]
for triangulating a one-sided monotone polygon, and
O(lg n) time deterministic methods by Atallah, Cole,
and Goodrich [3] for solving the 2-dimensional hidden-
line elimination problem we address.
Postscript. In an independent work, Hagerup and Ra-
man [14] have recently obtained results similar to ours
for padded integer sorting and for approximate pre-
fix sums. Their approach is entirely different, with
an emphasis on targeting general padded sorting and
then applying it to the more elementary problems of
padded integer sorting and approximate prefix sums.
Our solution is direct as one would expect for more el-
ementary problems. These results are important since
they provide new building blocks for the design of par-
allel algorithms. We believe that our methods have
also intrinsic value as they contribute new ideas.

2 Approximate Prefix Sums
Let a1 , ~ 2 , . . . , a, be a given sequence of integers. The
parallel prefiz problem [15,21] is to compute in parallel
the prefix sums sequence, i.e. to compute a sequence
b l , bz , . . . , b, such that, for i = 1,. . . n, bi = cjZl aj
for i = 1,. . .,n. A well-known method for solving
this problem in parallel (e.g., see [IS]) involves solving
a related problem, which we call the summation tree
problem, which is to define a complete binary tree T
uon top” of the sequence a1 , a2,. . . , a , and, for each
internal node v E TI compute the sum, which we de-
note by s(~) , of the elements stored in v’s descendants.
(Leaf i of the tree corresponds to item ai and we as-
sume for simplicity that n is a power of 2.) Indeed,
this will also be the approach we follow for solving the
approximate parallel prefix problem, which we define
as follows:

i

Approximate parallel prefix. Given some E 2 0
and a sequence al , a2, . . . , a, of non-negative numbers,
the e-approzimate parallel prefiz problem is to compute
in parallel an approzimate prefiz sums sequence, i.e.
a sequence bo = 0, b l , bz , . . ., b,, such that, for i =
1, . . ., n,

i i

(Caj)(l+ e)-’ < bi 5 (Caj)(l+ €1.
j =1 j=1

We say that such a sequence is consistent if bi - bi-1 2
ai, for i = 1,. . . , n (so that we automatically get bi 2
~ j = i ai) .

A n approximate summation tree. Similarly, we
can define an e-approzimate summation tree by build-
ing a complete binary tree on top of the sequence
a l , . . . , a, and computing a value S(v), for each in-
ternal node v E TI such that S (v) (l + < s (~) <
S (v) (l + e) . We say that such an approximate summa-
tion tree is consistent if s (v) > s (v l) + s(v,), where
01 and v, are the children of v in T.

Reducing approximate parallel prefix to ap-
proximate summation tree Our method for com-
puting a consistent c-approximate parallel prefix se-
quence is based on a reduction to the problem of con-
structing a consistent c-approximate summation tree.
So, suppose we have an €-approximate summation tree
built on top of the sequence a l l . . . , a,. Given the a p
proximation s(v) for each node v in TI we compute an
approximate parallel prefix sequence as follows. For a
leaf v we define L T (v) to be the set of nodes U E T on
the left fringe of the path from v to the root, i.e., such

3 19

that (i) U is a left child, (ii) U is not an ancestor of v,
and (E) the parent of U is an ancestor of v. For the
i'th leaf v we compute

By well-known inequalities, for 0 5 c 5 1,

(1 + e)zi 5 (1 + e)'"" e2"Bn 5 1 + 4elgn,

b; = S(U) +ai .
UELT(O)

This can either be done, for each leaf U, by "brute
force" in O(1) time using O(nl lk) processors, where
k 2 1 is a constant, or in O(lglgn/ lglglgn) time
with O(1gn) work [7].

L e m m a 2.1 If the tree T is a consistent E -

approximate summation tree, then the sequence bo =
0 , bl , . . ., b, i s a consistent e-approximate parallel pre-
fiz sequence.

Proof. The proof follows from the definition of a con-
sistent e-approximate summation tree, and is omitted
here. m

Therefore, it is sufficient for us to construct a con-
sistent €-approximate summation tree. However, this
computation is complicated by a number of factors,
not the least of which is that previous summation ap-
proximation schemes [lo, 11, 131 do not yield consis-
tent sums. So, let us address this consistency issue
first.

Achieving consistency. Suppose we have an E-

approximate summation tree T. We wish to make T
consistent, but do not wish to disturb the accuracy of
the approximate partial sums in T by too much.

L e m m a 2.2 Given an e-approzimate summation tree
T , one can convert T into a consistent (4elgn)-
approzimate summation tree in O(1) time using IT1
processors.

Proof. Our method is actually quite simple. Let
S'(o) denote the approximate value stored at v E T.
For each v in T, which is, say, a t height is i, we let

S(v) = (1 + €) Z i S ' (V) .
This choice is sufficient to guarantee consistency (i.e.,
S(u) 2 S(vt) + s(v ,)) . For, by the definition of an
e-approximate summation tree we have

S (V l) + S(v,) = S'(q)(l + €)'i-2 + S ' (Z ,) (l + q i - 2

S (V l) (l + E) 2 i - 1 + S (V ,) (l + p - 1 5
= S (v) (l + #i-1

5 S'(v)(l + €) Z i

= S(v) .

which establishes the claimed approximation factor.
Therefore, given an e-approximate summation tree,

for a sufficiently small e, we can make T consistent and
e'-approximate. Unfortunately, in addition to being
inconsistent, known methods for computing approxi-
mate sums are probabilistic [lo, 11, 131-they may re-
turn some inaccurate approximate partial sums (albeit
with small probability). Next, we provide sufficiently
accurate algorithms for our purposes.

C o m p u t i n g an e-approximate summation tree.
The core of our approximate parallel prefix algorithm
is an algorithm that computes e-accurate sums for all
the nodes of the tree simultaneously, for e = 1/ lgd n,
where d 2 0 is any fixed constant. A nice side bene-
fit of the e term for this method is that, by the pre-
vious discussion, it allows us to construct a consis-
tent e'-approximate summation tree (and, hence, an d-
approximate parallel prefix sequence) for e' = 1/ lgc n,
where c 2 0 is any fixed constant (this can be done
simply by taking d large enough relative to c) . To de-
rive this method, we present an algorithm that for any
node computes an €-accurate sum with n-polynomial
probability.' This algorithm is primarily based on
an algorithm due to [lo, Thm 6.11. For an input of
size n , their algorithm computes an e-accurate sum,
for e = l / l g d n , with n-polynomial probability. We
need a stronger result however, both in terms of ac-
curacy and of success probability, since we have many
sub-problems of various sizes-between polylog(n) and
n/polylog(n)-and for each subproblem we need to
compute (1 / lgd n)-accurate sum with n-polynomial
probability. (For such sub-problems, the algorithm
of [lo] would only compute (1/ 1glgn)-accurate sums
with lg n-polynomial probabilities.)

We first present an estimation algorithm stronger
than the one given in [lo, Thm 4.21:

L e m m a 2.3 (multiple estimation) Let m 2 lgZdt' n
and assume that we are given a partition of m pro-
cessors into sets, such that each processor is allocated
with an auziliary set of l g n processors, and let d 2 0
be a constant. Then, there ezists an algorithm which,
in O(lglgn/Iglglgn) time and using O(mlgm1gn)
space, computes for each set an (1/ lgd n)-estimate for
its size, with n-polynomial probability.

We say that a probability is n-polynomial if it is 1 - n-7

for a constant 7 > 0.

320

Proof. (Sketch) For each set ip we do a geometric
decomposition into the sets ip1, C p z , . . .: Each element
in ip selects itself to be in ipi with probability 2-i , for
i = 1 , . . . , l g m (and in none of the subsets ipi with
probability l / m) . Now, we will estimate 191 by com-
puting Iipil for some i such that 19il = O(1gn). Such
i exists with n-polynomial probability, and each esti-
mate is then an (1/ lg n)-estimate with n-polynomial
probability as well. To implement the computation of
Iipil, we first insert each subset ipi into an array of size
O(lg n) and then compute I9i I in O(lg lg n/ lglg lg n)
time [7] . By using the renaming algorithm of [9] we
can insert each subset of size at most l g n into its ar-
ray in O(lglg1gn) expected time. By applying the
same algorithm l g n times in parallel into l g n differ-
ent arrays, all subsets of size at most l g n are inserted
to their arrays in time O(lg lg lg n) with n-polynomial
probability. 8

We can now get

Lemma 2.4 (approximate sum) Let d > 0 be a
constant and d’ be another constant dependent on d .
Given m numbers, lgd‘ n 5 m 5 n, each allocated with
lg n teams of lg n processors each, a (1/ lgd n)-accurate
sum can be computed in O(lg lg n/ lg lg lg n) time with
n-polynomial probability.

Proof. (Sketch) Our algorithm is similar to the al-
gorithm of [lo, Thm 6.11 except for several modifi-
cations, which include: (1) instead of replacing each
number by one of the nearest powers of 2, as done
in Step 4 in [lo, Thm 6.11, we replace each number by
5 2 lg n powers of 2, according to its binary representa-
tion; and (2) in Step 5 we use the estimation algorithm
of Lemma 2.3. Since all other steps contribute errors
smaller than l /m with m-exponential probability, the
lemma follows. We only give here an overview.
The input numbers are first normalized to integers
from [O. . .mz]. Then, the input is further modified to
consist only of numbers which are powers of 2. This
implies partitioning the numbers into 2 lg m + 1 sets.
Next, the input is once again modified to get a more
favorable distribution of values, where the relatively
larger values can only exist in “big” groups; the rea-
son being that misestimating larger values contributes
more to an error, and having them in bigger groups en-
ables evaluating their number with higher probability.
Now, an estimate for the size of each set is computed
and the resulting sum is computed. 8

We now have

Lemma 2.5 Using nlg’ n processors, the (1 / lgd n)-
approzimate parallel prefiz problem can be solved, for

any constant d 2 0 , in O(lglgn/ lglglgn) time with
high probability.

Proof. Each leaf is allocated with lg n teams of lg n
processors each; each team will participate in comput-
ing the approximate sum of one of the leaf’s ancestors.
Using the approximate sum algorithm of Lemma 2.4,
we compute for each node v an e-accurate sum, for
e = l/lgd+’ n. If the height of v in T is i then we
let S (v) = (1 + e)ziS‘(v). If v is the i’th leaf then we
compute bi = CuEL(v) S(u)+a i . Since each leaf is allo-
cated with lg n processors, this can be done in parallel
in time O(lg1g n/ lg lglg n) by using the parallel prefix
algorithm of [7]. By Lemma 2.1 and Lemma 2.2 the
sequence bo = 0, bl, . . . , b, is a (1/ lgd n)-approximate
parallel prefix sequence. 8

In order to achieve an optimal algorithm, i.e.,
using n l l g l g n processors, we can now use stan-
dard techniques. Specifically, the input sequence
is first partitioned into blocks of size (lgn)’ each.
Within each block the prefix sums are computed in
O(lg lg n/ lg(’) n) time, using the algorithm of [7] . We
now consider a sequence a i , . . . , U’ ,/(lgn)’l where a:
is the sum of elements in the i’th block; i.e., U: =
Cl!;)’ ai-l+,. The algorithm of Lemma 2.5 is used
to compute the approximate parallel prefix sequence
b i , . . . , bL,(lgn) , . Finally, the approximate parallel pre-
fix sequence bl , . . . , b, is computed as follows: if j is in
block i then b; is the sum of b:-l and the prefix sum
of j within its block.

We have

Theorem 2.1 Let d be an arbitrary constant. Given
a sequence a1 , az, . . . , a, of positive numbers, one can
construct a (I / lgd n)-approzimate parallel prejiz se-
quence for it with high probability in 0(1) time using
0(n’+’lk) processors, or in O(lg Ig n/ lglg Ig n) time
with O(n) work on a CRCW PRAM, for any constants
c , k > l a n d d > O .

3 Padded Integer Sorting
As we show in this section, the approximate parallel
prefix problem will prove useful for the following prob-
lem.

Ordered allocation. Given a sequence 0 1 , . . .,a,,
the ordered allocation problem is to allocate in order
a sequence of non-overlapping intervals in an array of
size (1 + E) Cy=l ai so that the i’th interval is of size
2 a;. More formally, compute Ij = for i =
1,. . . , n, and L,+1 such that for all i = 1,. . ., n, Lj
and Ri are integers and

321

(a) Ri - Li + 12 (allocation);

(b) L,+l 5 (1 + e) cri (approximation);

(c) Ri < Li+l (no overlap and ordering).

The ordered allocation problem can be easily com-
puted from an approximate parallel prefix sequence
as follows: Define the sequence a:, . . . ,a;: if ai = 0
then ai = 0 otherwise a: = ai + 1. Compute the ap-
proximate parallel prefix sequence b{ , . . . , b; of {a:}.
Let L1 = 0; for i = l , . . . , n , let Ri = LbiJ and let
Li+l = + 1. It is easy to verify that the resulting
sequence 11, . . . , I, is an ordered allocation.

We use ordered allocation to derive our first applica-
tion of approximate parallel prefix computation, which
is for the following problem.

Padded Integer Sorting. Given a sequence X =
{zl, .. . , z,} taken from the integer interval [l, . . . , n],
the padded integer sorting problem is to compute an
injective mapping R : X ++ [l, . . . , pn] for some con-
stant p, such that R is order preserving; i.e., if z i <
then ~ (z i) < ~ (z j) . In other words, the problem is
to insert the elements of X in a sorted manner into an
array [l, . . . , pn], while allowing empty cells between
consecutive elements.

We show in this section how to reduce the padded
integer sorting problem to the approximate parallel
prefix problem. Let T~ps(n) be a time upper bound
for the approximate parallel prefix problem with n in-
put elements, using an optimal number of processors.

Similar to the approach of (191, it is useful to have
a stable sorting when the input is taken from a very
small universe size. (A sorting algorithm is stable if
the ordering within elements with equal values remains
the same.) Using an algorithm of [7], with the approx-
imate parallel prefix algorithm serving instead of the
usual parallel prefix algorithm, we have

Lemma 3.1 The padded integer stable-sorting prob-
lem with n input elements taken from the integer in-
terval [I,.. . , k] can be solved in time O(k + TAps(n)),
using an optimal number of processors.

We now show

Lemma 3.2 The padded integer sorting problem can
be solved in time O(T~ps(n) lg' n) with high proba-
bility, using an optimal number of processors.

Our algorithm is based on the integer chain-sorting
algorithm in [lo, Sect. 91. Their algorithm in fact
not only computes a chain of the elements in sorted
order, but it also groups the elements according to

their values. More precisely, the algorithm in [lo] con-
sists of O(lg* n) iterations, at each of which a subset
of the elements are inserted into an array-grouped
according to their value. Our algorithm has two mod-
ifications: (i) using an ordered allocation algorithm
instead of an interval allocation step to get the groups
ordered according to their values, and (ii) adding a
post-processing procedure in which all O(lg* n) arrays
are merged into a single array.

In step i of our algorithm we map a subset of the
active elements into an array of size cn/2', for some
constant c , such that the mapping is injective and or-
der preserving. The algorithm consists of O(1g' n)
rounds. At each round, a new array serves as a uwork-
ing space": for each set of elements sharing the same
value an interval is allocated within the array, and a
subset of these elements is mapped into it. Elements
that are mapped do not participate in future rounds.
Using the ordered allocation enables us to allocate in-
tervals in order: thus the elements that are mapped
into the array always consist of a non-decreasing mono-
tonic sequence. Each round is done in constant num-
ber of steps. Thus, after O(lg*n) steps we have
O(1g' n) arrays, where in each array the elements are
in sorted order. In a post-processing step, we merge
the arrays into a single array of size O(n) . Since the el-
ements are from the integer interval [I , . . . , n], we can
use the O(a(n)) integer merging algorithm of [6] to
merge all arrays in time O(1g Ig' n a(n)) = o(1g' n).

There is a slight complication though: some of the
arrays to be merged are of size less than linear; this
implies that a universe of size n is too large for the
merging algorithm. To overcome this, we first mod-
ify the range from which the input is taken to be
[l, . . . , n/(lg* n)']. This is done by considering only
the lg n - 3 lg lg' n most significant bits of each input
element. After (padded) sorting the modified input,
the stable-sorting algorithm of Lemma 3.1 is used to
sort according to the 31glg' n least significant bits, in
O(lg* n) time. It remains to show that all arrays to be
merged can be of size at most O(n/(lg* n)3) .

As in the integer chain sorting algorithm of [lo],
optimal speedup is obtained by employing a prepro-
cessing step in which the input size is reduced, using
linear work. Specifically, the input size is reduced to
n/(TAps(n)(lg* 7 ~) ~) in time O(TAps(n)lglg' n) (de-
tails omitted from this preliminary version). Then, the
arrays used a t each round are of size O(n/(lg* n)S) , as
required.

We therefore have

Theorem 3.1 The padded integer sorting prob-
lem can be solved with high probability in time
O(lg lg n lg' n/ lg lglg n) using an optimal number of

processors. 4.2 Point Set Triangulation
Suppose we are again given a set S of n points in the
plane. Related to the problem of constructing a convex
hull for a set of points is the problem of triangulating
that set, which is the problem of producing a subdivi-
sion of the convex hull of S into triangles, so that the
interiors of no two triangles intersect and the entire
convex hull of S is covered by triangles. Berkman et
al. [5]. show that one can construct a triangulation
of a monotone chain in O(lg1gn) time using an opti-
mal number of processors. Again, their method does
not actually use rank information. It too only assumes
one is given an ordered list of edges stored in an array.
One can construct such a list of edges by performing
a padded sort followed by a call to the "nearest ones"
problem. Thus, as we show in the full version, one can
modify their method to achieve the following result.

Theorem 4.2 Given a set S of n planar points with
integer coordinates, one can produce a triangulation of
S in O(Tprs(n) + lglgn) time, with high probability,
using an optimal number of processors on a random-
ized CRCW PRAM.

We have shown above that we can solve problems
defined on point sets with integer coordinates very fast
in parallel. In the subsections that follow we show
analogous results for lines.

Comment: We omit the times achievable with a subopti-
mal number of processors in this preliminary version.

4 Applications to Parallel Com-
putational Geometry

In this section we show that a number of well-known
problems in parallel computational geometry can be
solved efficiently and very fast by reductions to padded
sort. Each application assumes one is given a set of
geometric objects that are specified by integer coordi-
nates in the range [l..O(n)]. The motivation for study-
ing this restricted domain is that it is the domain that
one may find in computer graphics and computer vi-
sion applications, where points that determine the ge-
ometric objects are pixel coordinates on a computer
screen. Each of the results in this section are speci-
fied relative to Tprs(n) , the running t h e of padded
sort using an optimal number of processors. We begin
with two simple reductions, which require only one call
to padded sort, and we then give some more involved
applications that require multiple calls.

4.1

Suppose we are given a set S of n points in the plane.
The convez hull problem is to produce a representation
of the smallest convex set containing all the points of
S. Typically, we desire that this representation list
the edges of the convex hull (possibly with duplicate
entries) in clockwise order. Ghouse and Goodrich [8]
show that if one is given a set S of n points in the plane
sorted by z-coordinates, then one can compute the
convex hull of S in O(1g' n) time, with high probabil-
ity, using O(n) work on a randomized CRCW PRAM.
But, in fact, their algorithm never uses rank informa-
tion, and one can show that their method can be im-
plemented without loss of efficiency even assuming the
underlying array of sorted elements contains duplicate
entries (we omit the details in this extended abstract).
Thus, by prefacing their (modified) method by a sin-
gle call to padded sort, we can solve the convex hull
problem for an unsorted point set in the same time as
for the sorted case. Specifically, we have the following:

Convex Hulls in the Plane

Theorem 4.1 Given a set S of n planar points with
integer coordinates, one can construct a representation
ofihe conuez hull ofS in O(Tpls(n)+lg' n) time, with
high probability, using an optimal number of processors
on a randomized CRCW PRAM.

4.3 2-Dimensional Hidden Line Elimi-
nation

Suppose we are given a set S of n planar line segments
that do not intersect, except possibly at endpoints.
Suppose further that the endpoints of the segments in
S have integer coordinates. The 2-dimensional hidden
line elimination problem is to produce a sorted list of
pairs (zi, yi) such that zi is the z-coordinate of a seg-
ment endpoint and yi is the y-coordinate of the point
visible from (0,-00) a t zi (Le., the lowest point on
a segment in S that intersects the line z = 2;). Intu-
itively, one imagines the point (0, -CO) to be the "eye"
location, and the problem is to produce a representa-
tion of what that eye can see assuming each segment is
opaque. We show below how to solve this problem in
O(Tprs(n)) time using O(n1g n) work. The work com-
plexity matches that of the fastest deterministic algo-
rithm, which is due to Atallah, Cole, and Goodrich 131;
their algorithm takes O(lg n) time, however.

1. Sort the endpoints of S by z-coordinates by a call

2. Build a binary tree T "on top" of these z-
coordinates. Each leaf U of T is associated with

to padded sort.

323

a vertical slab I I (v) , which is the set of all points
whose z-coordinates fall in the z-interval associ-
ated with this leaf. Define for each internal node
U a slab n(v) that is the union of the z-coordinate
intervals defined by U'S descendants. (This can all
be easily implemented in O(1) time.)

For any segment s = H, we say that s covers v
if intersects the left and right boundaries of
n (v) but does not intersect both boundaries of
l I (p (v)) , where p (v) is v's parent. In this step
we assign O(1gn) processors to each segment s
and determine the nodes in T that s covers in
0 (1) time. For each segment B this produces a
collection of pairs (0 , s) such that s covers o.

Perform a padded sort on all the (U, s) pairs so as
to construct, for each o E TI an array (which is
actually a subarray of a larger array), C(v) , which
contains all the segments that cover U. We can
use padded sort for this step because the range of
possible v's is O(n) in size.

Note that each of the segments in C(v) intersect
n (v) in a well-defined order. In this step we com-
pute the lowest segment in each C(v) , which can
be done in 0(1) time, with high probability, using
C(v) processors.

For each endpoint p , determine the path from the
leaf associated with z (p) to the root, and find the
lowest segment from among all the lowest seg-
ments in the C(v) lists in this path. This, too,
can be done in O(1) time, with high probability,
and gives us a solution to the 2 - d hidden line
elimination problem.

Thus, our method makes two calls to padded sort
and all the other steps require only O(1) time. There-
fore we have

Theorem 4.3 Given a set S of n non-intersecting
planar segments with integer coordinates, one can
solve the 2-dimensional hidden line elimination prob-
lem for S in O(Tprs(n)) time, with high probability,
and O(n1gn) work on a randomized CRCW PRAM.

Acknowledgments
We would like to thank Yossi Gil for several helpful
discussions in early stages of this research.

References
[l] L. M. Adleman. Two theorems on random poly-

nomial time. In FOCS '78, pages 75-83, 1978.

[2] R. J . Anderson and G. L. Miller. Optimal paral-
lel algorithms for list-ranking. If. Process. Lett.,
33:269-273, 1990.

[3] M. Atallah, R. Cole, and M. Goodrich. Cas-
cading divide-and-conquer: a technique for de-
signing parallel algorithms. SIAM J . Computing,
18(3):499-532, 1989.

[4] P. Beame and J . Hhtad . Optimal bounds for de-
cision problems on the CRCW PRAM. In STOC
'87, pages 83-93, 1987.

[5] 0. Berkman, D. Breslauer, Z. Galil, B. Schieber,
and U. Vishkin. Highly parallelizable problems.
In STOC '89, pages 309-319, 1989.

[6] 0. Berkman and U. Vishkin. On parallel integer
merging. Info. Comp., 1992. To appear. A prelim-
inary version appeared in 0. Berkman, J. JaJa,
S . Krishnamurthy, R. Thurimella and U. Vishkin,
Some triply-logarithmic parallel algorithms, 31st
FOCS, 871-881, 1990.

[7] R. Cole and U. Vishkin. Faster optimal parallel
prefix sums and list ranking. Info. Comp., 81:334-
352, 1989.

[8] M. Ghouse and M. Goodrich. In-place techniques
for parallel convex hull algorithms. In SPAA '91,
pages 192-203, 1991.

[9] J . Gil. Fast load balancing on a PRAM. In SPDP
'91, pages 10-17, Dec. 1991.

[lo] J . Gill Y. Matias, and U. Vishkin. Towards a
theory of nearly constant time parallel algorithms.
In FOCS '91, pages 698-710, Oct. 1991.

Ill] M. T. Goodrich. Using approximation algorithms
to design parallel algorithms that may ignore pro-
cessor allocation. In FOCS '91, pages 711-722,
1991.

[12] T. Hagerup. Constant-time parallel integer sort-
ing. In STOC '91, pages 299-306,1991.

[13] T. Hagerup. Fast parallel space allocation, es-
timation and integer sorting. Technical Report
03/91, SFB 124, Fachbereich 14, Universitiit des
Saarlandes, 1991.

[14] T. Hagerup and R. Raman. Waste makes haste:
Tight bounds for loose parallel sorting. pages 628-
637, 1992.

[15] R. E. Ladner and M. J . Fischer. Parallel prefix
computation. J . ACM, 27:831-838, 1980.

324

[16] P. D. MacKenzie and Q. F. Stout. Ultra-fast ex-
pected time parallel algorithms. In SODA '91,
pages 414-423,1991.

[17] Y. Matias. Highly Parallel Randomized Algorith-
mica. PhD thesis, Tel Aviv University, Tel Aviv,
Israel, Dec. 1992.

[la] Y. Matias and U. Vishkin. Converting high prob-
ability into nearly-constant time-with applica-
tions to parallel hashing. In STOC '91, pages
307-316, 1991. I

[19] S . Rajasekaran and J. €I. Reif. Optimal and
sublogarithmic time randomized parallel sorting
algorithms. SIAM J. Comput., 18:594-607, 1989.

[20] R. Raman. Optimal sub-logarithmic time integer
sorting on a CRCW PRAM (note). Submitted for
publication, 1991.

[21] €I. S . Stone. Parallel tridiagonal equation solvers.
ACM lhzns. on Mathematical Software, 1(4):289-
307, 1975.

325

