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Abstract 
Recent results in parallel algorithm 

theory have shown random sampling 
to be a powerful technique for achiev- 
ing efficient bounds on the expected 
asymptotic running time of parallel al- 
gorithms for a number of important 
problems. In this paper we show exper- 
imentally that randomization is also a 
powerful practical technique in the de- 
sign and implementation of parallel al- 
gorithms. Specifically, we show that 
random sampling can be used to de- 
sign parallel algorithms with fast ex- 
pected run times, which meet or beat 
the run times of methods based on 
more conventional methods for a vari- 
ety of benchmark tests. The constant 
factors of proportionality in the run 
times are small, and, most importantly, 
the expected work (and hence running 
time) avoids worst cases due to input 
distribution. We justify our approach 
through experimental results obtained 
on a Connection Machine CM-2 for a 
specific problem, namely, segment in- 
tersection reporting, and explore the ef- 
fect of varying the parameters of our 
metho d. 

1 Introduction 

A fundamental goal of algorithmic research is to de- 
velop general paradigms for designing efficient algo- 
rithms. Ideally, such paradigms should be generic 
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enough to apply to many different types of prob- 
lems, yet powerful enough to result in methods that 
are significantly better than what could be achieved 
without these paradigms. One such paradigm that 
has recently emerged from research in algorithmic 
theory is the random sampling technique [ 5 ] .  Sim- 
ply put, the random sampling technique is based 
on the notion of selecting a relatively small ran- 
dom sample of the input, performing an inefficient 
(often “brute force”) procedure on the sample, and 
using the information from that procedure to sub- 
divide the input and recurse. 

On an intuitive level, the primary reason the 
random sampling paradigm has lead to efficient al- 
gorithms is that it allows one to call a simple, in- 
efficient method on a small subproblem, and then 
rely on a probablistic analysis to show that the so- 
lution to this subproblem divides the input into 
recursive calls whose expected size is also small. 
Moreover, since it is the algorithm that is mak- 
ing random choices, these expectations hold inde- 
pendent of any assumptions about the input dis- 
tribution. The classic example is the randomized 
quicksort algorithm (e.g. see [9]), which runs in 
expected O(n1ogn) time regardless of input distri- 
bution, whereas the expected O( n log n) running 
time of the standard quicksort assumes a uniform 
input distribution. Indeed, the standard quicksort 
algorithm will run in O(n2) time given inputs taken 
from a distribution of “almost sorted’’ lists, while 
randomized quicksort still runs in O ( n  log n)  ex- 
pected time for such distributions. 

1.1 Previous Work 

Random sampling has been used to achieve efficient 
bounds for the expected asymptotic running time 
for solving a host of different problems. It was f is t  
developed in the form we study in this paper by 
Clarkson [ 5 ] ,  and has subsequently been used by a 
number of other researchers to design algorithms 
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with efficient asymptotic expected running times 
(e.g., see [2, 6 ,  14, 15, 16,17, 7, 8, 11, 19, 211). This 
approach has also been used to design parallel algo- 
rithms with efficient expected asymptotic running 
times and efficient expected asymptotic processor 
bounds. Examples of this include methods by Alon 
and Megiddo [2], Reif and Sen[l9], Clarkson, Cole, 
and Tarjan [7], and the authors [ll]. Indeed, opti- 
mal randomized parallel methods already exist for 
the specific problem we address: Clarkson, Cole 
and Tarjan [7] give an algorithm for segment inter- 
section that runs in expected O(1ogn) time with 
O(n1ogn + I C )  expected work. Unfortunately, this 
methods is also quite complicated. 

We know of no previous work showing the prac- 
tical importance of this type of random sampling. 
There is therefore a natural question that we feel 
immediately follows from these recent advances in 
algorithmic theory: 

Does random sampling also lead to 
efficient algorithms in practice? 

1.2 Our Results 

In this paper we show that random sampling is in 
fact a powerful practical technique in the design 
and implementation of parallel algorithms. Specif- 
ically, we show that random sampling can be used 
to design parallel algorithms with fast expected run 
times, which meet or beat the run times of paral- 
lel algorithms based on more conventional meth- 
ods in benchmark tests. The constant factors of 
proportionality in our run times are small, and, 
most importantly, the expected running times are 
independent of any assumptions about input dis- 
tributions. Our work bounds are also quite small, 
but are asymptotically worse than that achieved by 
previous, more theoretical methods, such as those 
of Clarkson, Cole and Tarjan [7]. 

Our initial approach is based on two simple 
ingredients: (1) the existence of a simple, fast, 
processor-inefficient method, and (2) random sam- 
pling. The main idea is to take a random sample 
of size T (which we specify in the analysis of our 
method) and apply the fast method to this sam- 
ple. Assuming that T is sufficiently small, we will 
be guaranteed to have a sufficient number of pro- 
cessors to perform this step efficiently. By then 
applying a probabilistic argument, one can then 
show that this subproblem solution often naturally 
divides the input into independent subproblems of 

expected size O((n/T)logn), where n is the total 
input size. This first step is the same as that used 
in previous randomized algorithms. Our technique 
differs in what follows this first step, however, in 
that in our algorithms we follow this first step not 
by recursing on each subproblem, but by calling a 
fast method on each subproblem. We also test a 
(theoretically superior) variation on this method, 
in which we take another random sample of size T‘ 

within each subproblem that contains more than n’ 
points, where n‘ and T’ is specified in the analysis. 
This effectively amounts to recursing exactly once. 

We justify our approach through experimental 
results obtained on a Connection Machine CM- 
2 for segment intersection reporting, where one 
is given a collection of n segments in the plane 
and wishes a list of all intersecting pairs. This 
problem often arises from problems in computer 
graphics and solid modeling. For segment inter- 
section reporting, the conventional practical ap- 
proach involves dividing the segments into sub- 
groups using an appropriately chosen uni fom gn’d 
[l, 10, 201. These algorithms have a fast expected 
running time assuming that the input comes from 
an appropriately-defined uniform distribution. In- 
deed, as we show in our analysis, these algorithms 
are quite sensitive to the specific definition of 
“uniform” that one uses. The random sampling 
approach needs no such assumptions. Another 
method that is simple to implement, and so might 
be used in preference to more intricate algorithms, 
is the “brute force” approach in which every seg- 
ment is compared to every other segment. How- 
ever, while the asymptotic work bound is worst- 
case optimal, and the constants involved in the im- 
plementation are very small, this method always 
performs O ( n 2 )  work, even if there are no intersec- 
tions, and so may perform much unnecessary work. 

We have implemented our random sampling ap- 
proach for the above problem on a Connection Ma- 
chine CM-2 in c*,  and and have run comparisons 
against the more traditional methods for solving 
these problems in parallel. Our tests are based 
upon selecting random inputs from distributions 
that would seem to significantly favor the conven- 
tional algorithms as well as from distributions that 
are still quite natural, but which would seem to 
be “bad” for the conventional approaches. As one 
would expect, the conventional methods run quite 
fast on the “kind” distributions, but are not nearly 
as efficient on the bad distributions. On the other 
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hand, our methods, based on random sampling, run 
significantly faster on the bad distributions while 
still being competitive on the distributions that fa- 
vor the conventional approaches. 

In the sections that follow we specify the details 
to how we apply our random sampling approach to 
the our problem. 

2 Segment Intersections 

In the segment intersection problem, one is given a 
collection of n line segments in the plane and asked 
to report all intersecting pairs of segments. An 
interesting aspect of this problem, and one which 
makes the design of efficient algorithms a challenge, 
is that the size of the output can vary between 0 
pairs and (i) pairs. This problem was introduced 
by Bentley and Ottmann [3] who gave a simple 
plane sweep method running in O ( ( n  -t IC)logn) 
time. By a beautiful, but complicated, algorithm 
by Chazelle and Edelsbrunner [4], one can solve this 
problem in O(n1ogn + IC) worst-case time, where 
IC is the number of intersecting pairs. There is 
also a simpler randomized method, discovered inde- 
pendently by Clarkson [6] and Mulmuley [14] that 
runs in O(n1ogn + IC) expected time (for any in- 
put distribution) and is based upon the paradigm 
of iteratively inserting the segments one-at-time 
in random order. Al l  of these algorithms seem 
inherently sequential and do not seem to trans- 
late into efficient parallel methods. In parallel, 
as shown by Goodrich [12, 131, one can solve this 
problem deterministically in O(1ogn) time using ei- 
ther O(n1ogn + IC) or O(n2/logn) processors in 
the CREW PRAM parallel model*, while Clark- 
son, Cole and Tarjan gave a randomized parallel 
algorithm that runs in O(1ogn) time with an opti- 
mal expected O(n1ogn 4- I C )  work. These parallel 
methods establish parallel analogues to the efficient 
sequential methods, but could be criticized for their 
level of intricacy. 

2.1 The Uniform Grid Technique 

A much more practical approach, as suggested by 
Akman et al [l], and Franklin et al [lo], is based 

‘Recall that the CREW PRAM model is the synchronous 
shared-memory parallel model that allows for concurrent 
reads from any memory cell but requires that each write 
to a memory cell be exclusive. 

on the well-known uniform gTid technique (e.g., see 
S amet [ 2 01 ) . 

2.1.1 The Conventional Method 

This approach is as follows: 

1. Determine a bounding box for all the input 
segments and then determine appropriate di- 
mensions for dividing this box into a grid. A 
natural choice is to use the average 2- (resp., 
y-) interval covered by the segments as the 
length of the horizontal (vertical) side of each 
grid cell. This step can be easily implemented 
using two parallel summation steps. 

2. For each segment s, determine the grid cells 
that s passes through, and create pairs of the 
form ( c ,  s) for each cell c that contains some 
part of s. On an SIMD machine this step 
can be implemented by a simple parallel iter- 
ation, which repeatedly determines new cells 
crossed by each segment (for all segments in 
parallel) until every segment has determined 
all the cells it intersects. 

3. Sort the (c ,  s) pairs lexicographically. 

4. For each grid-cell c, consider all segments 
that intersect c, and apply a simple “brute 
force” procedure to find all their pairwise in- 
tersections that fall inside c. 

2.1.2 Analysis of the Uniform Grid Tech- 
nique 

A straightforward analysis shows that this method 
is obviously correct and that it should run quite 
efficiently on sets of short segments uniformly dis- 
tributed in the bounding box. Let g be the num- 
ber of grid cells, let n, be the number of seg- 
ments that fall into a cell c, and let N, be the 
number of cells that a segment s intersects. Sup- 
pose, for the sake of easy comparison, that this 
method is implemented in the CREW PRAM 
model. Then the running time of this method 
is O(1ogn + max,{N,}) and the total workt in- 
volved is O ( n  + ( ~ , ~ , ) ~ o g ( ~ , n , )  + E,$). If 

‘Recall that the work performed by a parallel algorithm 
is the total number of “real” calculations made by the vir- 
tual processors used in the algorithm, and this parameter is 
the factor that determines the speed-up of any implementa- 
tion on a massively parallel machine with a fixed number of 
processors. 
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the segments are short, then we would expect 
N ,  to be a constant. If the segments are uni- 
formly distributed, then we would expect n, to 
be proportional to n/g .  Thus, for this special 
case, the running time is expected to be O(1ogn) 
with a total work bound that is expected to be 
O(n1ogn + n2/g). (Note that to achieve O(1ogn) 
time in this case, n + n2/(g log n) processors would 
be needed.) 

One of the motivations for solving the segment 
intersection problem is that it aids in the solution 
of problems such as hidden surface removal, rectan- 
gle union computation, and boundary evaluation of 
CSG trees, which are used to represent “real-life” 
objects in computational solid geometry. However, 
there is no guarantee that the segments resulting 
from these problems will be the large uniform set of 
small edges that the uniform grid technique favors. 
Indeed, the uniform grid method should not per- 
form well on long segments uniformly distributed 
in the bounding box. Moreover, it is easy to gen- 
erate distributions where it is no better than the 
brute-force compare-all-pairs algorithm, which re- 
quires total work proportional to (:). Such a bad 
case would arise, for example, if most of the seg- 
ments are short and fall into only a few different 
cells, and a few of the segments are long and deter- 
mine a large bounding box. Note that the segments 
in this bad distribution need not intersect at all! 

2.2 The Brute Force Technique 

2.2.1 The Naive Method 

This is the most naive approach, and also the sim- 
plest to implement. The method is as follows: 

For each segment s, in turn, broadcast s to 
all the other segments, check for intersections, and 
then compact to collect all the intersections found. 

2.2.2 Analysis of the Brute Force Tech- 
nique 

A straightforward analysis shows that this method 
is correct. Again, for ease of comparison, assume 
that this is implemented in the CREW PRAM 
model. For n segments, the running time of this 
method is O(logn), with O(n2)  work. (These 
bounds would be achieved with n2/ logn proces- 
sors.) Note that these bounds hold even if there 
are no intersections at all. 

2.3 The Random Sample Approach 

Our algorithm for solving the segment intersection 
problem is also practical, but avoids the difficulties 
that would come from bad distributions. 

2.3.1 The Randomized Method 

Our method is as follows: 

1. 

2. 

3. 

4. 

5. 

Take a random sample S of roughly T seg- 
ments from the input, where the parameter r 
will be determined in the analysis. This step 
is implemented generating a random number 
2, between 0 and n, for each segment s, and 
including s in the sample if 2, 5 T .  

Comment: Note that a sample generated in 
Step 1 is clearly free from duplicate entries 
and has an expected size of r. (See Figure la  
for an example input and Figure l b  for a sam- 
ple taken from that input.) 

Use a brute-force procedure to compute all 
the intersecting pairs of segments in S. Use 
another brute-force procedure to then deter- 
mine for every segment endpoint or intersec- 
tion point p the first segment (which may be 
a segment on the bounding box) that is hit by 
a vertical ray emanating upward and down- 
ward from p. This defines a trapezoidal de- 
composition T of the bounding box. This de- 
composition is called a “trapezoidal” decom- 
position because it decomposes the bounding 
box into cells that are essentially trapezoids. 
(See Figure IC for the trapezoidal decompo- 
sition of the sample in Figure lb ,  and see 
Preparata and Shamos [18] for more on this 
problem). 

For each segment s, determine which cells in 
T it passes through, and for each segment s, 
create pairs of the form ( t , s )  for each cell t 
that contains some part of s. This step is 
implemented by broadcasting the trapezoids 
in T, one by one, so that each segment s can 
discover the trapezoids that it intersects. 

Sort the (t, s) pairs lexicographically. 

For each cell t, consider all segments that in- 
tersect t, and apply the brute force proce- 
dure, described in Section 2.2 above, to t to 
find all their pairwise intersections that fall 
inside t. 
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Figure 1: (la) a set, S, of segments in the plane Figure 1: (IC) the grid from the trapezodial decom- 
position of R 

Figure 1: ( lb)  a random sample,R, of S 

As mentioned above, the main contribution 
that random sampling makes is that it allows one 
to incorporate the structure of the input distribu- 
tion into the decomposition of the bounding box 
into cells. That is, it is an adaptive technique. 

2.3.2 Analysis of the Random Sample 
Method 

Let g be the number of cells in the trapezoidal de- 
composition of the sample, and let nt be the num- 
ber of segments that fall into a cell t in the trape- 
zoidal. Again, suppose for the sake of easy com- 
parison, that this method is implemented in the 
CREW PRAM model. Then the running time of 
this method is O(1ogn + g )  and the total work in- 
volved is O(gn  t T~ + (Ctnt) log(Ctnt)  + (max 
(n t ) )2 .  Since our algorithm is randomized, we can 
analyze the expected work performed by our al- 
gorithm, where the expectation is taken over all 
possible choices our algorithm could have made. 
Clarkson [6] shows the following: 

Lemma 2.1: Let A be a collection of n segments, 
which determine k pairs of intersections. Also, 
let S be a random sample of A of size T .  Then 
the expected number of intersecting pairs of seg- 
ments in S is kr(r - l ) /n (n  - 1). Moreover, if 
nt denotes the number of segments intersecting a 
cell t in the trapezoidal map for S ,  then Ctnt 
is O ( n  + kr /n )  with probability at  least 3/4 and 
maxt{nt} is O ( ( n / r )  logn) withprobabilityat least 
1 - l/n". 

This immediately implies that the expected 
value of g is O(T + kr2/n2) ,  and the constants of 
proportionality are small. Moreover, it implies that 
the running time of our method is expected to be 
O(1ogn + T + k T 2 / n  + ( n 2 / r 2 )  log2 n). 

2.3.3 The Recursive Randomized Method 

This differs from the simple random sample method 
in that after step 3 above, all the segments in any 
cell t containing more than some threshold value 
722 are then subject to resampling, to take a new 
sample from t of size m2. 

2.4 Experimental Results 

We should not be content with a nice asymptotic 
analysis on a theoretical model, however. In or- 
der to claim that our method yields fast practical 
methods we must experimentally compare it to the 
more conventional uniform grid approach. 

2.4.1 Types of Distributions 

We used the following input distributions for the 
segment intersection problem: 
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short uniform segments distributed at 
random in the interval (O,n)(O,n). The 
segments are of constant length. This dis- 
tribution is tailor-made for the uniform grid 
technique, and one would expect that it 
would do better on this "best case" distri- 
bution than the randomized method. 

axis-parallel rectangles of random sire 
and location. Several of the applications 
of segment intersection involve axis-parallel 
rectangles, so rectangles might give some in- 
sight into how the techniques would work in 
practice. 

parallel diagonal line segments The seg- 
ments are of length n, and the i th segment is 
between points (i, 0) and (24  i), so all the seg- 
ments will be included in at least one square 
of the grid method. Note that this could be 
avoided by using a different square size, but 
each fixed square size will have a similar worst 
case. 

2.4.2 Test Results 

All the segment intersection intersection algo- 
rithms were written in C*, and run on an 16384 
processor CM2, at  the University of Maryland In- 
stitute for Advanced Computer Science. The data 
points were generated on the CM2, using the in- 
ternal pseudo-random number generator to con- 
form to the distribution being tested. In accor- 
dance with the recommendations of the C* docu- 
mentation, each run was repeated several times, to 
ensure that the time achieved is repeatable. For 
comparisons between methods, the random sample 
method used a sample size of A. The timing was 
performed by the internal CM2 clock. 

e short  uniform segments The results con- 
firmed that this is ideal for the uniform grid 
technique: the uniform grid program ran two 
orders of magnitude faster than for any other 
distribution. It showed no noticeable slow- 
down with increasing input size: all tests, 
with input sizes varying from 1000 to 10000, 
ran in under a second. The randomized tech- 
nique showed a more noticable dependency 
on input-size. The randomized technique was 
somewhat faster than brute force, the differ- 
ence becoming more noticeable at larger in- 
put sizes. (See Figure 2.) 

4 0  

B O  

70 

6 0  

5 0  

4 0  

30 

30 

Figure 2: short uniform segments 

Figure 3: axis-parallel rectangles 

axis-parallel rectangles With this distri- 
bution, the uniform grid method took longer 
than the randomized technique, though not 
the brute force technique. Again, with the 
same comments as above, the brute force 
technique was slower than the randomized 
method. (See Figure 3) 

parallel diagonal segments With this, 
which was a worst case distribution for the 
grid method, the grid method was worse than 
both the randomized technique and brute 
force. (See Figure 4.) Note that this is what 
should be expected, as in such a "worst case,'' 
the grid computation amounts to that of the 
brute force technique, with some overhead. 

2.4.3 

As can be seen from Figure 5 ,  the overhead associ- 
ated with the recursion appears to be greater than 
any benefit gained. As one might expect, the per- 
formance of the recursive method is essentially the 

The Recursive Method in Practice 
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Figure 4: parallel diagonal segments 
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Figure 5: effect of more recursion on random sam- 
ple method, for diagonal segments, n=500 
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Figure 6:  effect of sample size on run time for par- 
allel diagonal segments 
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Figure 7: effect of sample size on run time for short 
uniform segments 

same as that of the non-recursive random sample 
method given a larger sample, plus some overhead. overall. 

2.4.4 

Without a method of determining a ”good” sample 
size in advance, the random sample method is not 
really useful, as it might otherwise have to be run 
several times in order to find a sample size with 
which the program runs efficiently. As can be seen 
from Figure 6, for this distribution there is a great 
range of sample sizes that have relatively little ef- 
fect on the time taken, and in particular a size of 
exactly f i  is an adequate choice. This can also be 
seen for the short randomly distributed segments 
used for Figure 7. Note that the overall shape of 
the graphs is as one would expect from the dis- 
cussion of lemma 2.1: a sample size that is very 
small results in unnecessarily large subproblems, 
and very long run times, while a large sample size 
also increases the overhead associated with solving 
the sample, and slightly increases the time taken 

The Effect of Sample S i z e  3 Conclusion 

We have shown how random sampling can be used 
to design efficient practical parallel algorithms that 
“randomize away” bad input distributions and run 
efficiently for any input distribution. Our meth- 
ods have small constants of proportionality in the 
running times and are either competitive or sig- 
nificantly better than existing methods based on 
conventional techniques for designing practical par- 
allel methods, which are quite sensitive to input 
distributions, as well as the naive “brute force’’ ap- 
proach. 

We have also shown that a recursive random 
sampling approach may not be worthwhile, due to 
the extra overhead incurred, and that the variation 
of time taken with sample size is as expected. 
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