
Experimental Evidence For The Power of Random Sampling in
Practical Parallel Algorithms

(Preliminary Version)

Mujtaba Ghouse* t
Dept. of Computer Science, The Johns Hopkins Univ., Baltimore, MD 21218

Michael T. Goodricht *
Dept. of Computer Science, The Johns Hopkins Univ., Baltimore, MD 21218

Abstract
Recent results in parallel algorithm

theory have shown random sampling
to be a powerful technique for achiev-
ing efficient bounds on the expected
asymptotic running time of parallel al-
gorithms for a number of important
problems. In this paper we show exper-
imentally that randomization is also a
powerful practical technique in the de-
sign and implementation of parallel al-
gorithms. Specifically, we show that
random sampling can be used to de-
sign parallel algorithms with fast ex-
pected run times, which meet or beat
the run times of methods based on
more conventional methods for a vari-
ety of benchmark tests. The constant
factors of proportionality in the run
times are small, and, most importantly,
the expected work (and hence running
time) avoids worst cases due to input
distribution. We justify our approach
through experimental results obtained
on a Connection Machine CM-2 for a
specific problem, namely, segment in-
tersection reporting, and explore the ef-
fect of varying the parameters of our
metho d.

1 Introduction

A fundamental goal of algorithmic research is to de-
velop general paradigms for designing efficient algo-
rithms. Ideally, such paradigms should be generic

‘This research supported by the NSF and DARPA un-
der Grant CCR-8908092, and by the NSF under Grant IRI-
9116843.

:This research is also supported by the NSF under Grants
CCR-9003299 and CDA-9015667, and by The Bureau of the
Census under Contract JSA-91-23.

enough to apply to many different types of prob-
lems, yet powerful enough to result in methods that
are significantly better than what could be achieved
without these paradigms. One such paradigm that
has recently emerged from research in algorithmic
theory is the random sampling technique [5] . Sim-
ply put, the random sampling technique is based
on the notion of selecting a relatively small ran-
dom sample of the input, performing an inefficient
(often “brute force”) procedure on the sample, and
using the information from that procedure to sub-
divide the input and recurse.

On an intuitive level, the primary reason the
random sampling paradigm has lead to efficient al-
gorithms is that it allows one to call a simple, in-
efficient method on a small subproblem, and then
rely on a probablistic analysis to show that the so-
lution to this subproblem divides the input into
recursive calls whose expected size is also small.
Moreover, since it is the algorithm that is mak-
ing random choices, these expectations hold inde-
pendent of any assumptions about the input dis-
tribution. The classic example is the randomized
quicksort algorithm (e.g. see [9]), which runs in
expected O(n1ogn) time regardless of input distri-
bution, whereas the expected O(n log n) running
time of the standard quicksort assumes a uniform
input distribution. Indeed, the standard quicksort
algorithm will run in O(n2) time given inputs taken
from a distribution of “almost sorted’’ lists, while
randomized quicksort still runs in O (n log n) ex-
pected time for such distributions.

1.1 Previous Work

Random sampling has been used to achieve efficient
bounds for the expected asymptotic running time
for solving a host of different problems. It was f is t
developed in the form we study in this paper by
Clarkson [5] , and has subsequently been used by a
number of other researchers to design algorithms

1063-7133193 $3.00 0 1993 IEEE
549

with efficient asymptotic expected running times
(e.g., see [2, 6 , 14, 15, 16,17, 7, 8, 11, 19, 211). This
approach has also been used to design parallel algo-
rithms with efficient expected asymptotic running
times and efficient expected asymptotic processor
bounds. Examples of this include methods by Alon
and Megiddo [2], Reif and Sen[l9], Clarkson, Cole,
and Tarjan [7], and the authors [ll]. Indeed, opti-
mal randomized parallel methods already exist for
the specific problem we address: Clarkson, Cole
and Tarjan [7] give an algorithm for segment inter-
section that runs in expected O(1ogn) time with
O(n1ogn + I C) expected work. Unfortunately, this
methods is also quite complicated.

We know of no previous work showing the prac-
tical importance of this type of random sampling.
There is therefore a natural question that we feel
immediately follows from these recent advances in
algorithmic theory:

Does random sampling also lead to
efficient algorithms in practice?

1.2 Our Results

In this paper we show that random sampling is in
fact a powerful practical technique in the design
and implementation of parallel algorithms. Specif-
ically, we show that random sampling can be used
to design parallel algorithms with fast expected run
times, which meet or beat the run times of paral-
lel algorithms based on more conventional meth-
ods in benchmark tests. The constant factors of
proportionality in our run times are small, and,
most importantly, the expected running times are
independent of any assumptions about input dis-
tributions. Our work bounds are also quite small,
but are asymptotically worse than that achieved by
previous, more theoretical methods, such as those
of Clarkson, Cole and Tarjan [7].

Our initial approach is based on two simple
ingredients: (1) the existence of a simple, fast,
processor-inefficient method, and (2) random sam-
pling. The main idea is to take a random sample
of size T (which we specify in the analysis of our
method) and apply the fast method to this sam-
ple. Assuming that T is sufficiently small, we will
be guaranteed to have a sufficient number of pro-
cessors to perform this step efficiently. By then
applying a probabilistic argument, one can then
show that this subproblem solution often naturally
divides the input into independent subproblems of

expected size O((n/T)logn), where n is the total
input size. This first step is the same as that used
in previous randomized algorithms. Our technique
differs in what follows this first step, however, in
that in our algorithms we follow this first step not
by recursing on each subproblem, but by calling a
fast method on each subproblem. We also test a
(theoretically superior) variation on this method,
in which we take another random sample of size T‘

within each subproblem that contains more than n’
points, where n‘ and T’ is specified in the analysis.
This effectively amounts to recursing exactly once.

We justify our approach through experimental
results obtained on a Connection Machine CM-
2 for segment intersection reporting, where one
is given a collection of n segments in the plane
and wishes a list of all intersecting pairs. This
problem often arises from problems in computer
graphics and solid modeling. For segment inter-
section reporting, the conventional practical ap-
proach involves dividing the segments into sub-
groups using an appropriately chosen uni fom gn’d
[l, 10, 201. These algorithms have a fast expected
running time assuming that the input comes from
an appropriately-defined uniform distribution. In-
deed, as we show in our analysis, these algorithms
are quite sensitive to the specific definition of
“uniform” that one uses. The random sampling
approach needs no such assumptions. Another
method that is simple to implement, and so might
be used in preference to more intricate algorithms,
is the “brute force” approach in which every seg-
ment is compared to every other segment. How-
ever, while the asymptotic work bound is worst-
case optimal, and the constants involved in the im-
plementation are very small, this method always
performs O (n 2) work, even if there are no intersec-
tions, and so may perform much unnecessary work.

We have implemented our random sampling ap-
proach for the above problem on a Connection Ma-
chine CM-2 in c*, and and have run comparisons
against the more traditional methods for solving
these problems in parallel. Our tests are based
upon selecting random inputs from distributions
that would seem to significantly favor the conven-
tional algorithms as well as from distributions that
are still quite natural, but which would seem to
be “bad” for the conventional approaches. As one
would expect, the conventional methods run quite
fast on the “kind” distributions, but are not nearly
as efficient on the bad distributions. On the other

550

hand, our methods, based on random sampling, run
significantly faster on the bad distributions while
still being competitive on the distributions that fa-
vor the conventional approaches.

In the sections that follow we specify the details
to how we apply our random sampling approach to
the our problem.

2 Segment Intersections

In the segment intersection problem, one is given a
collection of n line segments in the plane and asked
to report all intersecting pairs of segments. An
interesting aspect of this problem, and one which
makes the design of efficient algorithms a challenge,
is that the size of the output can vary between 0
pairs and (i) pairs. This problem was introduced
by Bentley and Ottmann [3] who gave a simple
plane sweep method running in O ((n -t IC)logn)
time. By a beautiful, but complicated, algorithm
by Chazelle and Edelsbrunner [4], one can solve this
problem in O(n1ogn + IC) worst-case time, where
IC is the number of intersecting pairs. There is
also a simpler randomized method, discovered inde-
pendently by Clarkson [6] and Mulmuley [14] that
runs in O(n1ogn + IC) expected time (for any in-
put distribution) and is based upon the paradigm
of iteratively inserting the segments one-at-time
in random order. Al l of these algorithms seem
inherently sequential and do not seem to trans-
late into efficient parallel methods. In parallel,
as shown by Goodrich [12, 131, one can solve this
problem deterministically in O(1ogn) time using ei-
ther O(n1ogn + IC) or O(n2/logn) processors in
the CREW PRAM parallel model*, while Clark-
son, Cole and Tarjan gave a randomized parallel
algorithm that runs in O(1ogn) time with an opti-
mal expected O(n1ogn 4- I C) work. These parallel
methods establish parallel analogues to the efficient
sequential methods, but could be criticized for their
level of intricacy.

2.1 The Uniform Grid Technique

A much more practical approach, as suggested by
Akman et al [l], and Franklin et al [lo], is based

‘Recall that the CREW PRAM model is the synchronous
shared-memory parallel model that allows for concurrent
reads from any memory cell but requires that each write
to a memory cell be exclusive.

on the well-known uniform gTid technique (e.g., see
S amet [2 01) .

2.1.1 The Conventional Method

This approach is as follows:

1. Determine a bounding box for all the input
segments and then determine appropriate di-
mensions for dividing this box into a grid. A
natural choice is to use the average 2- (resp.,
y-) interval covered by the segments as the
length of the horizontal (vertical) side of each
grid cell. This step can be easily implemented
using two parallel summation steps.

2. For each segment s, determine the grid cells
that s passes through, and create pairs of the
form (c , s) for each cell c that contains some
part of s. On an SIMD machine this step
can be implemented by a simple parallel iter-
ation, which repeatedly determines new cells
crossed by each segment (for all segments in
parallel) until every segment has determined
all the cells it intersects.

3. Sort the (c , s) pairs lexicographically.

4. For each grid-cell c, consider all segments
that intersect c, and apply a simple “brute
force” procedure to find all their pairwise in-
tersections that fall inside c.

2.1.2 Analysis of the Uniform Grid Tech-
nique

A straightforward analysis shows that this method
is obviously correct and that it should run quite
efficiently on sets of short segments uniformly dis-
tributed in the bounding box. Let g be the num-
ber of grid cells, let n, be the number of seg-
ments that fall into a cell c, and let N, be the
number of cells that a segment s intersects. Sup-
pose, for the sake of easy comparison, that this
method is implemented in the CREW PRAM
model. Then the running time of this method
is O(1ogn + max,{N,}) and the total workt in-
volved is O (n + (~ , ~ ,) ~ o g (~ , n ,) + E,$). If

‘Recall that the work performed by a parallel algorithm
is the total number of “real” calculations made by the vir-
tual processors used in the algorithm, and this parameter is
the factor that determines the speed-up of any implementa-
tion on a massively parallel machine with a fixed number of
processors.

661

the segments are short, then we would expect
N , to be a constant. If the segments are uni-
formly distributed, then we would expect n, to
be proportional to n/g . Thus, for this special
case, the running time is expected to be O(1ogn)
with a total work bound that is expected to be
O(n1ogn + n2/g). (Note that to achieve O(1ogn)
time in this case, n + n2/(g log n) processors would
be needed.)

One of the motivations for solving the segment
intersection problem is that it aids in the solution
of problems such as hidden surface removal, rectan-
gle union computation, and boundary evaluation of
CSG trees, which are used to represent “real-life”
objects in computational solid geometry. However,
there is no guarantee that the segments resulting
from these problems will be the large uniform set of
small edges that the uniform grid technique favors.
Indeed, the uniform grid method should not per-
form well on long segments uniformly distributed
in the bounding box. Moreover, it is easy to gen-
erate distributions where it is no better than the
brute-force compare-all-pairs algorithm, which re-
quires total work proportional to (:). Such a bad
case would arise, for example, if most of the seg-
ments are short and fall into only a few different
cells, and a few of the segments are long and deter-
mine a large bounding box. Note that the segments
in this bad distribution need not intersect at all!

2.2 The Brute Force Technique

2.2.1 The Naive Method

This is the most naive approach, and also the sim-
plest to implement. The method is as follows:

For each segment s, in turn, broadcast s to
all the other segments, check for intersections, and
then compact to collect all the intersections found.

2.2.2 Analysis of the Brute Force Tech-
nique

A straightforward analysis shows that this method
is correct. Again, for ease of comparison, assume
that this is implemented in the CREW PRAM
model. For n segments, the running time of this
method is O(logn), with O(n2) work. (These
bounds would be achieved with n2/ logn proces-
sors.) Note that these bounds hold even if there
are no intersections at all.

2.3 The Random Sample Approach

Our algorithm for solving the segment intersection
problem is also practical, but avoids the difficulties
that would come from bad distributions.

2.3.1 The Randomized Method

Our method is as follows:

1.

2.

3.

4.

5.

Take a random sample S of roughly T seg-
ments from the input, where the parameter r
will be determined in the analysis. This step
is implemented generating a random number
2, between 0 and n, for each segment s, and
including s in the sample if 2, 5 T .

Comment: Note that a sample generated in
Step 1 is clearly free from duplicate entries
and has an expected size of r. (See Figure la
for an example input and Figure l b for a sam-
ple taken from that input.)

Use a brute-force procedure to compute all
the intersecting pairs of segments in S. Use
another brute-force procedure to then deter-
mine for every segment endpoint or intersec-
tion point p the first segment (which may be
a segment on the bounding box) that is hit by
a vertical ray emanating upward and down-
ward from p. This defines a trapezoidal de-
composition T of the bounding box. This de-
composition is called a “trapezoidal” decom-
position because it decomposes the bounding
box into cells that are essentially trapezoids.
(See Figure IC for the trapezoidal decompo-
sition of the sample in Figure lb , and see
Preparata and Shamos [18] for more on this
problem).

For each segment s, determine which cells in
T it passes through, and for each segment s,
create pairs of the form (t , s) for each cell t
that contains some part of s. This step is
implemented by broadcasting the trapezoids
in T, one by one, so that each segment s can
discover the trapezoids that it intersects.

Sort the (t, s) pairs lexicographically.

For each cell t, consider all segments that in-
tersect t, and apply the brute force proce-
dure, described in Section 2.2 above, to t to
find all their pairwise intersections that fall
inside t.

552

Figure 1: (la) a set, S, of segments in the plane Figure 1: (IC) the grid from the trapezodial decom-
position of R

Figure 1: (lb) a random sample,R, of S

As mentioned above, the main contribution
that random sampling makes is that it allows one
to incorporate the structure of the input distribu-
tion into the decomposition of the bounding box
into cells. That is, it is an adaptive technique.

2.3.2 Analysis of the Random Sample
Method

Let g be the number of cells in the trapezoidal de-
composition of the sample, and let nt be the num-
ber of segments that fall into a cell t in the trape-
zoidal. Again, suppose for the sake of easy com-
parison, that this method is implemented in the
CREW PRAM model. Then the running time of
this method is O(1ogn + g) and the total work in-
volved is O(gn t T~ + (Ctnt) log(Ctnt) + (max
(n t))2 . Since our algorithm is randomized, we can
analyze the expected work performed by our al-
gorithm, where the expectation is taken over all
possible choices our algorithm could have made.
Clarkson [6] shows the following:

Lemma 2.1: Let A be a collection of n segments,
which determine k pairs of intersections. Also,
let S be a random sample of A of size T . Then
the expected number of intersecting pairs of seg-
ments in S is kr(r - l) /n (n - 1). Moreover, if
nt denotes the number of segments intersecting a
cell t in the trapezoidal map for S , then Ctnt
is O (n + kr /n) with probability at least 3/4 and
maxt{nt} is O ((n / r) logn) withprobabilityat least
1 - l/n".

This immediately implies that the expected
value of g is O(T + kr2/n2) , and the constants of
proportionality are small. Moreover, it implies that
the running time of our method is expected to be
O(1ogn + T + k T 2 / n + (n 2 / r 2) log2 n).

2.3.3 The Recursive Randomized Method

This differs from the simple random sample method
in that after step 3 above, all the segments in any
cell t containing more than some threshold value
722 are then subject to resampling, to take a new
sample from t of size m2.

2.4 Experimental Results

We should not be content with a nice asymptotic
analysis on a theoretical model, however. In or-
der to claim that our method yields fast practical
methods we must experimentally compare it to the
more conventional uniform grid approach.

2.4.1 Types of Distributions

We used the following input distributions for the
segment intersection problem:

553

short uniform segments distributed at
random in the interval (O,n)(O,n). The
segments are of constant length. This dis-
tribution is tailor-made for the uniform grid
technique, and one would expect that it
would do better on this "best case" distri-
bution than the randomized method.

axis-parallel rectangles of random sire
and location. Several of the applications
of segment intersection involve axis-parallel
rectangles, so rectangles might give some in-
sight into how the techniques would work in
practice.

parallel diagonal line segments The seg-
ments are of length n, and the i th segment is
between points (i, 0) and (24 i), so all the seg-
ments will be included in at least one square
of the grid method. Note that this could be
avoided by using a different square size, but
each fixed square size will have a similar worst
case.

2.4.2 Test Results

All the segment intersection intersection algo-
rithms were written in C*, and run on an 16384
processor CM2, at the University of Maryland In-
stitute for Advanced Computer Science. The data
points were generated on the CM2, using the in-
ternal pseudo-random number generator to con-
form to the distribution being tested. In accor-
dance with the recommendations of the C* docu-
mentation, each run was repeated several times, to
ensure that the time achieved is repeatable. For
comparisons between methods, the random sample
method used a sample size of A. The timing was
performed by the internal CM2 clock.

e short uniform segments The results con-
firmed that this is ideal for the uniform grid
technique: the uniform grid program ran two
orders of magnitude faster than for any other
distribution. It showed no noticeable slow-
down with increasing input size: all tests,
with input sizes varying from 1000 to 10000,
ran in under a second. The randomized tech-
nique showed a more noticable dependency
on input-size. The randomized technique was
somewhat faster than brute force, the differ-
ence becoming more noticeable at larger in-
put sizes. (See Figure 2.)

4 0

B O

70

6 0

5 0

4 0

30

30

Figure 2: short uniform segments

Figure 3: axis-parallel rectangles

axis-parallel rectangles With this distri-
bution, the uniform grid method took longer
than the randomized technique, though not
the brute force technique. Again, with the
same comments as above, the brute force
technique was slower than the randomized
method. (See Figure 3)

parallel diagonal segments With this,
which was a worst case distribution for the
grid method, the grid method was worse than
both the randomized technique and brute
force. (See Figure 4.) Note that this is what
should be expected, as in such a "worst case,''
the grid computation amounts to that of the
brute force technique, with some overhead.

2.4.3

As can be seen from Figure 5 , the overhead associ-
ated with the recursion appears to be greater than
any benefit gained. As one might expect, the per-
formance of the recursive method is essentially the

The Recursive Method in Practice

554

50 se oiids f

seconds recursive random sample

iioiii-eciirs ive random sample

15

30

20

10

Figure 4: parallel diagonal segments

I

10 20 30 40 50

sample size
Figure 5: effect of more recursion on random sam-
ple method, for diagonal segments, n=500

10 20 30 40 50
sample size

Figure 6: effect of sample size on run time for par-
allel diagonal segments

b O

so

4 0

30

20

l o I
I

10 90 30 4 0 5 0 60 7 0

snmplr sire

Figure 7: effect of sample size on run time for short
uniform segments

same as that of the non-recursive random sample
method given a larger sample, plus some overhead. overall.

2.4.4

Without a method of determining a ”good” sample
size in advance, the random sample method is not
really useful, as it might otherwise have to be run
several times in order to find a sample size with
which the program runs efficiently. As can be seen
from Figure 6, for this distribution there is a great
range of sample sizes that have relatively little ef-
fect on the time taken, and in particular a size of
exactly f i is an adequate choice. This can also be
seen for the short randomly distributed segments
used for Figure 7. Note that the overall shape of
the graphs is as one would expect from the dis-
cussion of lemma 2.1: a sample size that is very
small results in unnecessarily large subproblems,
and very long run times, while a large sample size
also increases the overhead associated with solving
the sample, and slightly increases the time taken

The Effect of Sample S i z e 3 Conclusion

We have shown how random sampling can be used
to design efficient practical parallel algorithms that
“randomize away” bad input distributions and run
efficiently for any input distribution. Our meth-
ods have small constants of proportionality in the
running times and are either competitive or sig-
nificantly better than existing methods based on
conventional techniques for designing practical par-
allel methods, which are quite sensitive to input
distributions, as well as the naive “brute force’’ ap-
proach.

We have also shown that a recursive random
sampling approach may not be worthwhile, due to
the extra overhead incurred, and that the variation
of time taken with sample size is as expected.

555

Acknowledgements

We would like to thank Lewis Stiller for several
helpful discussions, and we would like to thank
Dr. Larry Davis and the Maryland High Perfor-
mance Computing Consortium for generously giv-
ing us access to a Connection Machine CM-2 su-
percomputer.

References I

W.R. Franklin, N. Chandrasekhar, M. Kankan-
halli, M. Seshan, and V. Akman, “Efficiency of
uniform grids for intersection detection on serial
and parallel machines,” Proc. Computer Graph-
ics International ’88, Springer-Verlag, 1988.

[ll] M. Ghouse and M.T. Goodrich, “In-Place
Techniques for Parallel Convex Hull Algo-
rithms,” Proc. 3rd ACM Symp. on Parallel Al-
gorithms and Architectures, 1991, 192-203.

P O I

V. Akman, W.R. fia&n, M. K a h d a K
C. Narayanaswami, “Geometric computing and
uniform grid technique,” Computer-Aided De-

[12] M.T. Goodrich, “Intersecting Line Segments
in Parallel with an Output-Sensitive Number
of Processors,” SIAM Journal on Computing,

[13] M.T. Goodrich, “Constructing Arrangements
Optimally in Parallel,” Discrete and Computa-
tional Geometry, to appear. (a preliminary ver-
sion appeared in Proc. 3rd ACM Symp. on Par-
allel Algorithms and Architectures, 1991, 169-
179.)

[14] K. Mulmuley, “A fast planar partition algo-
rithm, (I),” Proc. 29th Ann. IEEE Symp. on
Found. Comp. Sci. (1988) pp. 580-589.

sign, 1989, 410-420. Vol. 20, NO. 4, 1991, 737-755.

N. Alon and N. Megiddo, “Parallel Linear Pro-
gramming in Fixed Dimension Almost Surely
in Constant Time”, Proc. 31st Annual IEEE
Symp. on Foundations of Computer Science,
1990, 574-582.

J. L. Bentley and T.A. Ottmann, “Algorithms
for reporting and counting geometric intersec-
tions,” IEE Trans. Comput. (2-28 (1979), pp.
643-647.

B. Chazelle and H. Edelsbrunner, “An opti-
mal algorithm for intersecting line segments in
the plane,” Proc. 29th Annual IEEE Symp. on
Foundations of Computer Science, 1988, 590-
600.

K.L. Clarkson, ‘ ‘ h t h e r Applications of Ran-
dom Sampling to Computational Geometry,”
Proc. 18th Annual AGM Symposium on The-
ory of Computing, (1986) 414-423.

K.L. Clarkson, “Applications of Random Sam-
pling in Computational Geometry 11,” Proc. 4th
Annual ACM Symposium on Computational
Geometry, (1988) pp. 1-11.

K.L. Clarkson, R. Cole, and R.E. Tarjan, “Ran-
domized Parallel Algorithms for Trapezoidal
Diagrams,” Proc. 7th ACM Symp. on Compu-
tational Geometry, 1991, 152-161.

K.L. Clarkson and P. Shor, “New applications
of random sampling in computational geometry
11,” Disc. & Comput. Geo., Vol. 4, 1989, 387-
421.

T.H. Cormen, C.E. Leiserson, and R.L. Rivest,
“Introduction to Algorithms,” MIT Press,
1989.

[15] K. Mulmuley, “A fast planar partition algo-
rithm, (II),” J. ACM 38 (1991) pp. 74-103.

[16] K. Mulmuley, “Randomized multidimensional
search trees: dynamic sampling,” Proc. 7th
Annu. Symp. Comput. Geom. (1991) pp. 121-
131.

[17] K. Mulmuley, “Randomized multidimensional
search trees: further results in dynamic sam-
pling,” Proc. 32nd Annu. IEEE Symp. Found.
Comput. Sci. (1991) pp. 216-227.

[18] F.P. Preparata and M.I. Shamos, Computa-
tional Geometry: An Introduction, Springer-
Verlag, New York, NY, 1985.

[19] J. H. Reif and S. Sen, “Polling: A New
Randomized Sampling Technique for Computa-
tional Geometry,” Proc. 21st ACM Symposium
on the Theory of Computing, (1989) pp. 394-
404.

[20] H. Samet, Applications of Spatial Data Struc-
tures, Addison-Wesley, 1990.

[21] R. Seidel, “Linear Programming and Convex
Hulls Made Easy,” Proc. 6th ACM Symp. on
Computational Geometry, 1990, 21 1-21 5.

556

